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ABSTRACT Generation self-scheduling and coal supply in coal-fired power plants are closely related but
typically optimized separately. To enhance the optimal operation of power plants, we propose a coordinated
optimal operation strategy of generation and coalmanagement in this paper. Uncertainties in electricity prices
and demands, coal prices, and coal inventory holding costs are captured and modeled by discrete scenarios.
Emission constraints are introduced to control generation emissions. The heat loss caused by the weathering
of coal during the storage is taken into account, which distinguishes the considered co-optimization problem
from the previous ones. The proposed strategy is built on a mixed-integer linear programming-typed
two-stage stochastic programming model, in which whether to purchase coal is determined in the first stage
and the quantity of coal purchase, the coal inventory, and the economic generation dispatch are determined
in the second stage. The objective is to maximize the expected profits. An improved Benders decomposition
algorithm is developed to solve the problemwhere multiple Benders cuts are added in each iteration and valid
inequalities are introduced to speed up the convergence of the algorithm. Numerical experiments demonstrate
the effectiveness of the proposed strategy and algorithm.

INDEX TERMS Generation self-scheduling, coal supply, co-optimization, stochastic programming, Benders
decomposition.

NOMENCLATURE
A. SETS AND INDICES
I , i Set and index of generators
J , j Set and index of days
S, s Set and index of scenarios
T , t Set and index of hours
Mi,m Set and index of linear segments for the coal

consumption curve of generator i
k Index of number of storage days

B. PARAMETERS
NI Number of generators
NJ Number of days over the decision time horizon
NS Number of scenarios
NT Number of hours over the decision time horizon

The associate editor coordinating the review of this manuscript and

approving it for publication was Bilal Alatas .

NMi Number of linear segments for the coal
consumption curve of generator i

RDi /R
U
i Downward/upward ramp rate of generator i

PLi /P
U
i Minimum/maximum power output of

generator i
Gi(·) Coal consumption function of generator i
αim/βim Slope/intercept of the mth segment line for the

coal consumption curve of generator i
pi0 Power output of generator i in hour 0
Dst Electricity demand in hour t in scenario s
ri Emission coefficient of generator i
Emax Maximum allowance of emissions over the

decision time horizon
λst Unit electricity price in hour t in scenario s
Qj Setup cost of coal purchase in day j
csj Unit coal price in day j in scenario s
hsj Unit coal inventory holding cost in day j

in scenario s
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ρ Daily heat-loss rate of coal
θ Thermal efficiency of coal
C0 Initial inventory of coal
ρ0 Heat-loss rate of the initial inventory of coal
Cmax Inventory capacity of the coal yard
F Minimum purchase requirement for coal purchase
Fmax
j Supply capacity of the coal market in day j
πs Probability of scenario s

C. DECISION VARIABLES
yj Binary decision variable to indicate

whether to purchase coal in day j
psit Power output of generator i in hour t in

scenario s
ψ s
it Quantity of coal consumed by generator i

in hour t in scenario s
φsit Quantity of thermal energy consumed by

generator i in hour t in scenario s
f sj Quantity of coal purchased at the beginning

of day j in scenario s
Cs
j Coal inventory at the end of day j in

scenario s
Insj0 Quantity of coal purchased at the beginning

of day j and consumed in day j in scenario s
Insjk Quantity of coal purchased at the beginning

of day j and stored for k days in scenario s
Ins00 Initial inventory of coal consumed in day 1

in scenario s
Ins0k Initial inventory of coal stored for k days

within the planning horizon in scenario s
zs Auxiliary variable to represent the lower

bound of the optimal objective function
value of the Benders subproblem
corresponding to scenario s

ξ1sitm, ξ2
s
qit , Dual variables of the Benders subproblem

ξ3sqit , ξ4
s
t , corresponding to scenario s

ξ5s, ξ6sj ,
ξ7s, ξ8sj ,
ξ9sqj
ξs Vector composed of the dual variables of

the Benders subproblem corresponding to
scenario s

I. INTRODUCTION
Generation self-scheduling (GSS) and coal supply (CS) are
two important parts in the operation of coal-fired power
plants. GSS is to decide the hourly output levels of generators
according to electricity prices and demands for maximizing
the generation profits. CS is to optimize the purchase and
storage plans of coal according to the power plant’s coal
demands and the coal market’s prices and supply capacity
for minimizing the cost. These two parts essentially have a
mutual impact. That is, GSS determines the coal demands to
be met in the CS plan, while CS provides adequate fuel to
ensure the stable operations of GSS in power plants. Such a

close relationship motivates us to investigate a coordinated
optimal operation strategy of GSS and CS with the objective
to maximize the total profits.

The market-based operational process of a coal-fired
power plant is illustrated in Figure 1. As shown in the figure,
the power plant first purchases coal from the coal market
according to the CS plan. Then, the purchased coal is tem-
porarily stored in an open-air coal yard. During the storage,
coal will has oxidation loss, namely weathering, resulting in
the decrease of the coal’s calorific value (hereinafter this is
briefly referred to as the heat loss of coal). Finally, the coal
is burned for power generation according to the GSS, emit-
ting a large amount of CO2 as a by-product. The produced
electricity is sold to the electricity market at market price.
The decision period for GSS is one hour and for CS is
one day. These decisions are affected by electricity prices
and demands, coal prices, and coal inventory holding costs,
which are full of uncertainty. The uncertainty may come
from the impacts of changes of weather, economic situation,
or government policies on energy. Therefore, the aforemen-
tioned coordinated operation of GSS and CS is a stochastic
co-optimization problem of GSS and CS with features of coal
weathering and generation emissions.

FIGURE 1. Market-based operational process of a coal-fired power plant.

There has been extensive research for GSS and CS in
the literature. However, these works typically optimize GSS
and CS separately, while the research on the aforementioned
coordinated operation still lacks. Studies on GSS problems
can be found in [1]–[9]. In [1], a worst-case robust eco-
nomic dispatch strategy for the GSSwith uncertain electricity
prices was presented. In [2] and [3], the authors addressed
the tradeoffs between profit and risk for the GSS. In [4],
information-gap decision theory based GSS models were
proposed. In [5], the GSS model considering carbon tax was
presented. In [6], a data-driven risk-averse approach was
developed for the GSS problem of combined-cycle units.
In [7], a mixed integer linear programming (MILP) model
was proposed for the GSS problem in pay-as-bid electricity
markets. In [8], a stochastic adaptive robust optimization
GSS model was presented for a virtual power plant. In [9],
the GSS horizon for a wind farm and compressed air energy
storage combined system was optimized. These works on
GSS only focused on optimizing the generation schedules
without considering fuel supply decisions. On the other hand,
studies on CS in power plants can be found in [10]–[13].
In [10], a general decision analysis formulation of coal inven-
tory for power plants was presented to assess optimal pur-
chase and storage decisions. In [11], a two-phase dynamic
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procedure was proposed for fuel procurement of electricity
utilities under demand andmarket price uncertainties. In [12],
an economic order quantity model incorporating stochas-
tic programming and interval parameters was proposed for
power plant planning. In [13], a risk management model was
proposed for the coal inventory problem under uncertainty
and emission constraints. These works on CS only focused on
optimizing the procurement and storage plans of coal without
considering the impact and effect of GSS.

Although there were works on the co-optimization of gen-
eration and fuel supply, related studies typically concentrated
on power-gas co-optimization, i.e., the coordinated schedul-
ing of power generation and natural gas supply. A stochastic
formulation for hedging between natural gas and electric-
ity markets was discussed in [14]. A deterministic coordi-
nated scheduling of security-constrained unit commitment
and natural gas transmission was studied in [15]. A stochas-
tic programming model that simultaneously determined the
trading quantities of natural gas and electricity and the gen-
eration schedule was proposed in [16]. An hourly demand
response was incorporated in the scheduling of integrated
electricity and natural gas networks in [17]. MILP formu-
lations for coupled power and gas networks were proposed
in [18] and [19]. An integrated stochastic model of natu-
ral gas and wind energy generators was proposed in [20].
An interval optimization based model for gas-power inte-
grated systems was proposed in [21]. Robust optimization
models for addressing the day-ahead coordinated operations
of interdependent power and gas systems were proposed
in [22] and [23]. A distributionally robust scheduling model
of gas-electricity integrated system considering wind power
uncertainty was proposed in [24]. Bi-level optimization mod-
els for gas-electricity systems were proposed in [25] and [26].
Since natural gas is well preserved in pipelines, the models
for power-gas co-operations do not consider fuel weather-
ing. However, coal is easy-to-be weathered due to its open
storage. Therefore, the models for power-gas co-operations
reviewed above cannot precisely describe the actual operation
of CS and be directly applied to the problem of GSS and CS
coordinated operation.

To address the aforementioned problem, in this paper,
we propose a GSS and CS coordinated optimal operation
strategy in the view point of a coal-fired power plant who
acts as a price-taker. The proposed strategy is built on a
two-stage stochastic programming model, in which emission
constraints are introduced to control generation emissions
and the heat loss caused by the weathering of coal is taken
into account for representing the plant’s practical operation.
The proposed strategy will enable the coal-fired power plant
to decide the optimal coal purchase and generation schedul-
ing for maximizing the operation profits, while satisfying
practical operational constraints including the capacity limits
of coal market supply and coal purchase and storage, gen-
erator operating requirements, and constraints for electricity
demands and emissions. The major contributions of the paper
can be summarized as follows:

1) In view of the mutual effect between GSS and CS in
coal-fired power plants, we propose a co-optimization strat-
egy of GSS and CS for enhancing the optimal operation and
coordination of power plants.

2) The proposed strategy is built on a two-stage stochas-
tic programming model which considers the effects of coal
weathering and the control of generation emissions, and uses
scenarios to describe uncertainties in electricity prices and
demands, coal prices, and coal inventory holding costs.

3) An improvedBenders decomposition algorithm is devel-
oped to solve the proposed problem where multiple Benders
cuts are added in each iteration and valid inequalities are
introduced to speed up the convergence of the algorithm.

4) Numerical experiments are conducted to demonstrate
the effectiveness of the proposed strategy and algorithm.
A sensitivity analysis is carried out to discuss the impact of
coal weathering on the operation decision.

The rest of the paper is organized as follows. Section II
formulates the proposed co-optimization strategy. Section III
develops a Benders decomposition algorithm to solve the
problem. The effectiveness of the proposed strategy and the
algorithm efficiency are verified by case studies in Section IV.
Finally, Section V concludes the paper.

II. STRATEGY DESCRIPTION AND FORMULATION
In this section, we present the framework of the proposed
co-optimization strategy, the expression of uncertain parame-
ters, the thermal energy consumption functions of generators,
and the formulation of the proposed strategy.

A. FRAMEWORK OF THE CO-OPTIMIZATION STRATEGY
Figure 2 depicts the framework of the proposed
co-optimization strategy of GSS and CS. As illustrated in the
figure, the proposed strategy coordinates optimizations for
GSS and CS in a two-stage decision framework. Whether to
purchase coal is determined in the first stage, and the quan-
tity of coal purchase, the coal inventory, and the economic
generation dispatch are determined in the second stage. The
objective of the strategy is to maximize the total operation
profits. Under the strategy, the mutual effect between GSS
and CS is taken into account and the information in electricity
and coal markets is balanced in the decision-making.

FIGURE 2. Framework of the co-optimization strategy of GSS and CS.

B. EXPRESSION OF UNCERTAIN PARAMETERS
Electricity prices and demands, coal prices, and coal inven-
tory holding costs are uncertain and approximated by a finite
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number of discrete scenarios with certain probabilities of
occurrence. These scenarios and their probabilities can be
available from historical data. A common approach to obtain
the scenarios is to generate a large number of scenarios
using the Monte Carlo sampling method and then reduce
the number of scenarios using the cluster analysis method.
The scenario-based approach has been widely used in deal-
ing with uncertainties. Examples for modeling uncertainties
based on scenarios in generation scheduling problems can be
found in [27]–[30].

C. THERMAL ENERGY CONSUMPTION FUNCTIONS
For each generator, the quantity of thermal energy consump-
tion is proportional to the quantity of coal consumption:

φsit = θGi(p
s
it ), i ∈ I , t ∈ T , s ∈ S (1)

where θ represents the quantity of thermal energy provided
by each unit of coal, and Gi(psit ) is a quadratic function of p

s
it .

By approximating Gi(psit ), i ∈ I , t ∈ T , s ∈ S, using the
following piecewise linear functions:

ψ s
it ≥ αimp

s
it + βim, m ∈ Mi, i ∈ I , t ∈ T , s ∈ S, (2)

one can obtain the piecewise linear approximation for the
thermal energy consumption functions of generators as
follows:

φsit ≥ θ (αimp
s
it + βim),

m ∈ Mi, i ∈ I , t ∈ T , s ∈ S. (3)

D. MATHEMATICAL FORMULATION OF THE STRATEGY
Based on the above discussion, the co-optimization strategy
of GSS and CS is formulated as follows:
(P)

max −
NJ∑
j=1

Qjyj+
NS∑
s=1

πs[
NT∑
t=1

λst

NI∑
i=1

psit −
NJ∑
j=1

(csj f
s
j + h

s
jC

s
j )]

(4)

subject to constraints (3) and

PLi ≤ p
s
it ≤ P

U
i , i ∈ I , t ∈ T , s ∈ S (5)

−RDi ≤ p
s
it − p

s
i,t−1 ≤ R

U
i , i ∈ I , t ∈ T , s ∈ S (6)

NI∑
i=1

psit ≤ D
s
t , t ∈ T , s ∈ S (7)

1
θ

NT∑
t=1

NI∑
i=1

riφsit ≤ E
max, s ∈ S (8)

f sj =
NJ−j+1∑
k=0

Insjk , j ∈ J , s ∈ S (9)

24j∑
t=24(j−1)+1

NI∑
i=1

φsit = θ [In
s
0,j−1(1− ρ0)(1− ρ)

j−1

+

j∑
j′=1

Insj′,j−j′ (1− ρ)
j−j′ ], j ∈ J , s ∈ S (10)

Cs
j =

NJ∑
k=j

Ins0k +
j∑

j′=1

NJ−j′+1∑
k=j+1−j′

Insj′k , j ∈ J , s ∈ S (11)

C0 =

NJ∑
k=0

Ins0k , s ∈ S (12)

Cs
j ≤ C

max, j ∈ J , s ∈ S (13)

yjF ≤ f sj ≤ yjF
max
j , j ∈ J , s ∈ S (14)

yj ∈ {0, 1}, j ∈ J (15)

φsit , p
s
it ≥ 0, i ∈ I , t ∈ T , s ∈ S (16)

f sj ,C
s
j ≥ 0, j ∈ J , s ∈ S (17)

Ins0k ≥ 0, k ∈ {0} ∪ J , s ∈ S (18a)

Insjk ≥ 0, j ∈ J , k = 0, . . . ,NJ − j+ 1, s ∈ S (18b)

In the above model, the objective function (4) is to maxi-
mize the expected profits over all scenarios. The profits under
each scenario are determined by coal purchase startup costs,
the electricity sales revenue, coal purchase linear costs, and
coal inventory holding costs. The decision is made in two
stages. The first stage is to decide whether to purchase coal
(yj) in each day. The second stage is to decide the quantity
of coal purchase (f sj ) and the coal inventory (Cs

j ) in each
day and the generation level of each generator (psit ) in each
hour. Constraints (5) represent the power output ranges of
generators. Constraints (6) represent the upward and down-
ward ramp-rate constraints of generators. Constraints (7) rep-
resent electricity demand constraints in the electricity market.
Constraints (8) limit the total quantity of emissions over
the decision time horizon within the maximum allowance.
Constraints (9) represent the balance constraints on the pur-
chase, consumption, and storage of coal. Constraints (10)
represent thermal energy balance constraints for coal-fired
power generation in each day, which connect GSS and CS
decisions. Constraints (11) represent that the coal inventory
in each day consists of the coal initial inventory stored to the
day and the coal purchased no later than the day and stored to
the day. Constraints (12) represent the relationship between
the consumption and storage of coal initial inventory. It can
be noted from constraints (9)-(12) that variables Insj0, In

s
jk ,

Ins00, and In
s
0k are introduced to model the heat loss of coal

and the relationships between the introduced variables and
f sj , C

s
j , and C0 are presented in constraints (9), (11), and (12),

respectively. Constraints (13) represent the capacity limits for
inventory holding of the coal yard. Constraints (14) represent
the capacity limits for coal purchase in each day, which are
determined by not only the minimum purchase requirement
of the power plant itself, but also the supply capacity of the
coal market in that day. Constraints (15)-(18b) define the
value fields of decision variables.

III. SOLUTION METHODOLOGY
(P) is a large-scale mixed integer linear programming (MILP)
problem with multiple scenarios. Considering the structure
of (P), we develop a Benders decomposition algorithm in this
section to solve it.
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A. TRANSFORMATION OF THE PRIMARY PROBLEM
First, we can reduce the number of decision variables in (P) by
replacing Cs

j and f
s
j in (4), (13), (14), and (17) with equations

(9) and (11). Second, we transform (P) equivalently into a
minimization problem for convenience of expression. The
obtained equivalent transformation of (P) is given below:
(P1)

min
NJ∑
j=1

Qjyj +
NS∑
s=1

πs{

NJ∑
j=1

[csj (
NJ−j+1∑
k=0

Insjk )

+ hsj (
NJ∑
k=j

Ins0k +
j∑

j′=1

NJ−j′+1∑
k=j+1−j′

Insj′k )]−
NT∑
t=1

λst

NI∑
i=1

psit }

=

NJ∑
j=1

Qjyj +
NS∑
s=1

πs{

NJ∑
k=1

(
k∑
j=1

hsj )In
s
0k +

NJ∑
j=1

csj In
s
j0

+

NJ∑
j=1

NJ−j+1∑
k=1

(csj +
k+j−1∑
j′=j

hsj′ )In
s
jk−

NT∑
t=1

λst

NI∑
i=1

psit } (19)

subject to constraints (3), (5)-(8), (10), (12), (15), (16), (18a),
(18b), and

NJ∑
k=j

Ins0k +
j∑

j′=1

NJ−j′+1∑
k=j+1−j′

Insj′k ≤ C
max, j ∈ J , s ∈ S (20)

yjF ≤
NJ−j+1∑
k=0

Insjk ≤ yjF
max
j , j ∈ J , s ∈ S (21)

B. THE BENDERS SUBPROBLEM
By fixing the integer variable yj = ȳj in (P1), we can obtain
the Benders subproblem as follows:
(SP)

min
NS∑
s=1

πs{

NJ∑
k=1

(
k∑
j=1

hsj )In
s
0k +

NJ∑
j=1

csj In
s
j0

+

NJ∑
j=1

NJ−j+1∑
k=1

(csj +
k+j−1∑
j′=j

hsj′ )In
s
jk −

NT∑
t=1

λst

NI∑
i=1

psit } (22)

subjective to constraints (3), (5)-(8), (10), (12), (16), (18a),
(18b), (20), and

ȳjF ≤
NJ−j+1∑
k=0

Insjk ≤ ȳjF
max
j , j ∈ J , s ∈ S. (23)

C. THE BENDERS MASTER PROBLEM
The Benders master problem is:

(MP)

min
NJ∑
j=1

Qjyj +
NS∑
s=1

πszs (24)

subject to constraints (15).

(MP) is an MILP problem and can be effectively solved by
an MILP solver. As (MP) is a relaxation of (P1), the optimal

objective function value of (MP) provides a lower bound
for (P1).

D. BENDERS CUTS
The lower bound provided by (MP) can be tightened by
adding Benders cuts that include Benders feasibility cuts and
Benders optimality cuts into (MP). In the typical Benders
decomposition algorithm, Bender cuts are constructed based
on the dual of the Benders subproblem and only one Benders
cut is added into the Bendersmaster problem in each iteration.
In this paper, instead of constructing Benders cuts according
to the typical Benders decomposition algorithm, we construct
multiple Benders cuts in each iteration to improve the conver-
gence of the algorithm [31], [32].

First, noting that (SP) is separable in scenarios, we decom-
pose (SP) into NS subproblems where the sth subproblem is:
(SPs)

min
NJ∑
k=1

(
k∑
j=1

hsj )In
s
0k +

NJ∑
j=1

csj In
s
j0

+

NJ∑
j=1

NJ−j+1∑
k=1

(csj +
k+j−1∑
j′=j

hsj′ )In
s
jk −

NT∑
t=1

λst

NI∑
i=1

psit (25)

subjective to constraints (3), (5)-(8), (10), (12), (16), (18a),
(18b), (20), and (23) corresponding to scenario s.
For the fixed ȳj, each (SPs) is a linear programming (LP)

model and its dual formulation is:

(DSPs)

max f (ȳj, ξ
s)

with

f (ȳj, ξ
s) =

NI∑
i=1

NT∑
t=1

(θ
NM∑
m=1

βimξ1sitm + P
L
i ξ2

s
1it − P

U
i ξ2

s
2it

−RDi ξ3
s
1it − R

U
i ξ3

s
2it )+

NI∑
i=1

pi0(ξ3s1i1 − ξ3
s
2i1)

−

NT∑
t=1

Dst ξ4
s
t − E

maxξ5s + C0ξ7s − Cmax
NJ∑
j=1

ξ8sj

+

NJ∑
j=1

(Fξ9s1j − F
max
j ξ9s2j)ȳj (26)

subjective to

NMi∑
m=1

ξ1sitm −
1
θ
riξ5s + ξ6sj ≤ 0,

i ∈ I , t = 24(j− 1)+ 1, . . . , 24j, j ∈ J (27)

−θ

NMi∑
m=1

αimξ1sitm + ξ2
s
1it − ξ2

s
2it + ξ3

s
1it − ξ3

s
2it

−δ(t≤T−1)(ξ3s1i,t+1−ξ3
s
2i,t+1)−ξ4

s
t ≤−λ

s
t , i ∈ I , t ∈ T

(28)
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−θ (1− ρ0)ξ6s1 + ξ7
s
≤ 0 (29a)

−δ(k≤J−1)θ (1−ρ0)(1−ρ)kξ6sk+1 + ξ7
s
−

k∑
j=1

ξ8sj ≤
k∑
j=1

hsj ,

k ∈ J (29b)

−θξ6sj − ξ9
s
1j + ξ9

s
2j ≤ c

s
j , j ∈ J (30a)

−δ(1≤j≤NJ−1, 1≤k≤NJ−j)θξ6sk+j(1− ρ)
k
+

j+k−1∑
j′=j

ξ8sj′ − ξ9
s
1j

+ ξ9s2j ≤ c
s
j +

j+k−1∑
j′=j

hsj′ , j ∈ J , k = 0, . . . ,NJ − j+ 1

(30b)

ξ1sitm ≥ 0, i ∈ I , t ∈ T , m ∈ Mi (31)

ξ2sqit ≥ 0, ξ3sqit ≥ 0, q = 1, 2, i ∈ I , t ∈ T (32)

ξ4st ≥ 0, t ∈ T (33)

ξ5s ≥ 0, ξ7s ∈ R (34)

ξ6sj ∈ R, ξ8sj ≥ 0, j ∈ J (35)

ξ9sqj ≥ 0, q = 1, 2, j ∈ J (36)

where ξ1sitm, ξ2
s
qit , ξ3

s
qit , ξ4

s
t , ξ5

s, ξ6sj , ξ7
s, ξ8sj , ξ9

s
qj are dual

variables corresponding to constraints (3), (5)-(8), (10), (12),
(20), and (23), respectively, and δ(A) is an indicative function
to represent whether event A is true or not. Each (DSPs) is an
LP model and can be conveniently solved by an LP solver.

Second, we construct Benders cuts based on (DSPs),
s ∈ S, as follows. If (DSPs) is infeasible for a given scenario s,
determine an extreme ray ξ̃

s
of the polyhedron composed of

constraints (27)-(36) corresponding to scenario s and produce
the following Benders feasibility cut:

f (yj, ξ̃
s
) ≤ 0. (37)

Otherwise, if (DSPs) is feasible for all scenario s, obtain the
optimal solution ξ̂

s
to each (DSPs), s ∈ S, and generate

multiple Benders optimality cuts as follows:

f (yj, ξ̂
s
) ≤ zs, s ∈ S. (38)

E. VALID INEQUALITIES
To speed up the convergence of the algorithm, we construct
the following supply capacity valid inequalities based on
the constraints in (P) and add them into the Benders master
problem:

n∑
i=1

24j∑
t=1

xit≤C0+

j∑
j′=1

yj′ min{Fmax
j′ , Cmax

+

n∑
i=1

24j′∑
t=24j′−23

xit },

j ∈ J (39)

where

xit =

{
αimit max{pi0 − tRDi ,P

L
i } + βimit , t ≤ τi,

Gi(PLi ), t > τi,
(40)

τi = max{0, (pi0 − PLi )/R
D
i }, (41)

mit = min{m ∈ Mi : PLi +(m−1)1pi ≤ max{pi0 − tRDi ,P
L
i }

≤ PLi + m1pi}, (42)

and

1pi = (PUi − P
L
i )/Mi. (43)

Valid inequalities (39) is used to insure that the minimum
quantity of coal consumption is no more than the maximum
supply of coal, where the latter is determined by the initial
inventory, coal-purchase decisions, the supply capacities of
the coal market, and the inventory capacity of the coal yard.

F. ALGORITHM FRAMEWORK
Based on the above discussion, the proposed Benders
decomposition algorithm can be implemented based on the
following steps:
Step 0. Initialize l = 1, y(1)j = 0, and ZU = +∞, where l

is the index of iteration and ZU is the upper bound
of the optimal objective function value of (P1). Add
valid inequalities (39) to (MP).

Step 1. Fix yj = y(l)j in (DSPs), ∀s ∈ S, and add Benders cuts
to (MP) as follows:
Step 1.0. Initialize s = 1 and w = 1, where w is

a binary variable to indicate whether all
(DSPs), ∀s ∈ S, are feasible in the current
iteration.

Step 1.1. Solve (DSPs) using an LP solver. If (DSPs)
is infeasible, add a Benders feasibility cut
(37) to (MP) and set w = 0. If (DSPs)
is feasible, record the optimal objective
function value of (DSPs) as gs.

Step 1.2. If s ≤ NS−1, let s = s+1 and go to Step
1.1.

Step 1.3. If w = 1, add Benders optimality cuts
(38) to (MP), calculate BU =

∑NJ
j=1 Qjyj+∑NS

s=1 πsg
s, and update ZU with BU if

BU < ZU .
Step 2. Solve (MP) by an MILP solver and obtain its opti-

mal solution y(l+1)j and its optimal objective function
value BL .

Step 3. If either of the following criteria is met, stop the
iteration. Otherwise, let l = l + 1 and go back to
Step 1:
1) The relative gap (ZU − BL)/|BL | is zero;
2) The maximum iteration number is reached.

IV. NUMERICAL RESULTS
In this section, the proposed strategy and algorithm are val-
idated by extensive numerical experiments implemented in
Visual C++ under the computing environment of 3.40 GHz
and 16.0 GB memory. The MILP and LP involved are com-
pleted by using CPLEX 12.5 callable library. The maximum
iteration number is set to 50 in the experiments.

The numerical experiments are performed in four
parts. First, we use test cases of different sizes to test
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TABLE 1. Settings for partial parameters.

TABLE 2. Value ranges for partial parameters.

the performance of the proposed Benders decomposi-
tion algorithm. Second, we test the effectiveness of the
co-optimization strategy by comparing the strategy with
the separated optimization strategy that optimizes GSS and
CS separately. Third, we provide the sensitive analysis of
the heat-loss rate of coal. Finally, the impact of emission
constraints on the solution is tested.

Test cases are generated randomly based on IEEE data
and the real data of a coal-fired power plant located in
Northeastern China. The decision time horizon is set to be
28 days (672 hours), the numbers of generators are 4, 7, and
10, respectively, and the numbers of scenarios are 5, 10, 15,
and 20, respectively. The combination of the configurations
forms 12 different problem sizes. For each problem size,
ten test cases are generated randomly where each test case
is described as follows. Generators are sampled randomly
from the 33 generators in the modified IEEE 118-bus sys-
tem. Parameters for coal consumption curves of the sampled
generators are adjusted so that the average coal consumption
for power generation is 0.22 t/MWh. Settings for parameters
F , Cmax, Emax, and Dst are shown in Table 1. Fmax

j is set to
be 672

∑NI
i=1 Gi(P

U
i ) if the coal market can supply sufficient

coal and 0 otherwise. Without loss of generality, C0 is set to
be 24

∑NI
i=1 Gi(P

U
i ) and ρ0 is 0.01. Other parameters’ values

are generated randomly from the ranges given in Table 2.
For each generator, a five-piece piecewise linear function is
utilized to approximate the quadratic coal consumption func-
tion. In the second, third, and fourth parts of the experiments,
the cases under different numbers of scenarios demonstrate
similar patterns of results; so only the results of test cases
with ten scenarios will be shown for the sake of brevity.

TABLE 3. Numerical results of CPLEX solver and algorithms BD and
MVBD.

A. PERFORMANCE OF THE PROPOSED BENDERS
DECOMPOSITION ALGORITHM
To benchmark the performance of the proposed Benders
decomposition algorithm, CPLEX solver and the typical Ben-
ders decomposition algorithm are used to solve the test cases.
For simplicity, hereinafter the typical Benders decomposition
algorithm and the proposed algorithm are referred to as BD
andMVBD, respectively. Table 3 shows the numerical results
in which the following three indices of the algorithm perfor-
mance are compared:

1) N o, which is the number of test cases that can be solved
optimally.

2) N i, which is the number of iterations of algorithms BD
and MVBD.

3) RT, which is the average computation time of each
solution method. (If a solution method is out of memory for
a certain test case, the computation time of that case in the
corresponding RT is not included. If a solution method is
out of memory for all test cases for a certain problem size,
the average computation time of this method for this problem
size is not shown).

From Table 3, one can obtain the following observations:
1) When CPLEX solver is used to solve the test cases

directly, all small-size test cases (i.e., size 1) and some of the
medium-size cases (i.e., sizes 2-5, 7, and 10) can be solved
optimally. For large-size problems (i.e., sizes 6, 8, 9, 11,
and 12), CPLEX solver is out of memory for all test cases.
The average number of solvable test cases under the same
problem size is 3.

2) When algorithm BD is used to solve the test cases,
there are eight test cases that are not solved to optimality.
The average number of iterations and computation time and
the longest computation time are 27, 250.85 s, and 791.63 s,
respectively.

3) For algorithm MVBD, it can solve all the test cases
under all problem sizes to optimality. The average number of
iterations and computation time and the longest computation
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time are 13, 115.46 s, and 334.22 s, respectively. The compu-
tation time increases linearly as the problem size increases.
The results indicate that algorithm MVBD can solve the
considered test cases to optimality in a reasonable time.

4) A comparison of the results between algorithm BD and
algorithm MVBD shows that the introduced multi-cut gen-
eration strategy and valid inequalities can effectively reduce
both the number of iterations and the computation time of
the Benders decomposition algorithm. A comparison of the
results between algorithm MVBD and CPLEX solver indi-
cates that algorithm MVBD is more effective than CPLEX
solver for solving the considered test cases.

B. EFFECTIVENESS OF THE CO-OPTIMIZATION STRATEGY
To verify the effectiveness of the proposed co-optimization
strategy (hereinafter referred as the CO strategy), we apply
the separated optimization strategy (referred to as the SO
strategy, in which GSS is optimized first, and then CS is opti-
mized based on the obtained self-scheduling) as a benchmark.
The following two situations are considered:

1) Situation 1: the base situation where the coal market can
supply sufficient coal during the decision horizon.

2) Situation 2: the situation where the coal market is out of
stock for several consecutive days during the decision time
horizon. The duration of the coal shortage, denoted by Dout ,
is set to be 7, 14, and 21 days, respectively, and the beginning
day of the coal shortage is generated randomly form day 2 to
day NJ − Dout + 1. For the convenience of comparing the
solution performances, we introduce a linear penalty item in
the expected profits for any unsatisfied coal demand where
the unit penalty cost is set to be 200$/t.

Tables 4 and 5 show the numerical results in which the
following four indices are compared:

TABLE 4. Comparison of the solutions between the SO and CO strategies
in situation 1.

TABLE 5. Comparison of the solutions between the SO and CO strategies
in situation 2.

1) N n, the number of test cases in which no solution can be
found by the SO strategy or the CO strategy.

2) The expected profits under the SO strategy and the CO
strategy, in which each result is the average of the ten test
cases under the same problem size.

3) PI, the profit increment obtained from the expected
profits under the CO strategy minus those under the SO
strategy.

4) RPI, the relative profit increment calculated by
PI/expected profits under the SO strategy× 100%.

From Tables 4 and 5, one can have the following observa-
tions:

1) The SO strategy cannot find a solution for some of
the test cases in situation 2. This is because the SO strategy
ignores the supply capacity of the coal market in the opti-
mization of GSS, so that it may not be able to buy enough
coal to meet the demand of power generation. The number
of test cases in which the SO strategy cannot find a solution
increases as the duration of coal shortage increases. When the
duration of coal shortage increases to 21 days, the SO strategy
is infeasible for all the test cases. The CO strategy, in contrast,
can find solutions for all the test cases under all coal-shortage
durations.

2) In both situations, the CO strategy leads to higher
expected profits compared with the SO strategy. This indi-
cates the advantage of the proposed CO strategy that it can
contribute to higher profits for the power plant.

3) Compared with Situation 1, Situation 2 shows higher
values of PI and RPI. This is not only because the CO
strategy can find the global optimum but also because the
occurrence of unsatisfied coal demand introduces a penalty
cost in Situation 2. In Situation 2, as the duration of coal
shortage increases, both PI and RPI increase. This indicates
that the advantage of the CO strategy over the SO strategy
is more obvious with the increase of the duration of coal
shortage.

The above observations demonstrate the advantages of the
CO strategy over the SO strategy.

C. SENSITIVITY ANALYSIS OF THE HEAT-LOSS RATE
To show how the change of the heat-loss rate of coal affects
the solution, we set the heat-loss rates to be 0.0005, 0.0010,
and 0.0015, respectively, and present the total quantity of
coal purchase and the expected profits under these dif-
ferent heat-loss rates. The numerical results are reported
in Tables 6 and 7, from which the following observations can
be made:

TABLE 6. Quantity of coal purchase (t) under different heat-loss rates of
coal.
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TABLE 7. Profits ($) under different heat-loss rates of coal.

TABLE 8. Profits ($) for problems with (W) and without (WO) emission
constraints.

TABLE 9. Quantity of emissions (t) for problems with (W) and without
(WO) emission constraints.

1) As the heat-loss rate increases, the total quantity of coal
purchase increases. This indicates that the power plant needs
to buy more coal to compensate for the increased thermal
energy loss of coal.

2) The expected profits decrease with the increase of the
heat-loss rate. This indicates that the heat-loss rate of coal
is one of the key factors affecting the power plant’s profits.
Therefore, it is advisable for power plants to better manage
the coal storage so as to obtain higher profits.

D. IMPACT OF EMISSION CONSTRAINTS ON THE
SOLUTION
In the proposed strategy, emission constraints are introduced
to control emissions from power generation. The following
comparative studies are preformed to show the impact of
emission constraints on the solution. First, we compare the
solutions for problems with and without emission constraints.
Second, we consider four sets of value range for emission
coefficients, denoted by Rl , l = 1, 2, 3, 4, and compare
the solutions corresponding to different value-range settings
for emission coefficients. Other parameter settings remain
unchanged. Numerical results of the first comparison are pre-
sented in Tables 8 and 9, and those of the second comparison
are presented in Table 10.

From Tables 8 and 9, one can have the following observa-
tions:

1) The expected profits reduce by 1.36% when emission
constraints are considered. This is because the emission con-
straints reduce the feasible region of the problem.

2) The quantity of emissions reduces by 2.46% with emis-
sion constraints included. This indicates the effectiveness of
emission constraints in emission reduction.

TABLE 10. Expected profits for problems under different value-range
settings for emission coefficients.

From Table 10, it can be seen that the expected profits
increase with the decrease of emission coefficients. In other
words, under the restriction of emission constraints, power
plants with low emission generators can obtain more profits.
This indicates that the introduction of emission constraints
can stimulate coal-fired power plants to develop efficient
clean-generation technologies to improve their economic
profits within the maximum emission allowance.

V. CONCLUSION
In this paper, we propose a co-optimization strategy of GSS
and CS for coal-fired power plants in deregulated electricity
markets. Electricity prices and demands, coal prices, and
coal inventory holding costs are stochastic and expressed by
scenarios. The heat loss due to the weathering of coal during
the storage and emission constraints are taken into account.
The proposed strategy is built on a two-stage stochastic pro-
gramingmodel with the objective ofmaximizing the expected
profits, in which the first stage determines whether to pur-
chase coal and the second stage optimizes the quantity of
coal purchase, the coal inventory, and the power scheduling
of each generator. To solve this model, we develop a Ben-
ders decomposition algorithmwhich decomposes the original
problem into a master problem and multiple subproblems.
Multiple Benders cuts are added into the master problem
in each iteration and valid inequalities are constructed to
improve the convergence of the algorithm. The numerical
experimental results indicate that 1) the proposed Benders
decomposition algorithm can solve the considered problem
effectively, 2) for GSS and CS, the co-optimization strat-
egy is advantageous over the separated optimization strat-
egy, 3) power plants can increase their profits by improving
the coal storage, and 4) the proposed model which consid-
ers emission constraints can help coal-fired power plants to
manage their emissions and can incentivize them to develop
low-carbon generation methods.
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