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ABSTRACT In this paper, the output feedback adaptive multi-dimensional Taylor network (MTN) tracking
control for a class of nonlinear systems with unmeasurable states is investigated. Firstly, a nonlinear state
observer is designed to estimate the unmeasurable states, and then an adaptive MTN-based output-feedback
control approach is developed via backstepping technique. Secondly, in view of the simple structure ofMTN,
the controller based on MTN has the advantages of simple structure and fast calculation speed. Thirdly,
in order to avoid the ‘‘differential explosion’’ problem inherited from the backstepping design, dynamic
surface control (DSC) technique is introduced in the process of controller design. The results demonstrate that
this scheme guarantees the stability and tracking performance of the closed-loop system. Finally, simulation
examples are given to reveal the viability of the proposed method.

INDEX TERMS Multi-dimensional Taylor network, nonlinear systems, adaptive control, output-feedback,
backstepping.

I. INTRODUCTION
In recent years, more and more scholars have begun to pay
attention to the stability analysis and controller design of
nonlinear systems, and many interesting results have been
reported [1], [2]. Due to the output-feedback control is more
suitable for practical engineering systems [3], significant
progress has been made in the design of output-feedback
controllers for nonlinear systems, such as uncertain nonlinear
systems [4], input-delayed systems with time-varying uncer-
tainties [5], Markovian jump systems [6], and large-scale
stochastic nonlinear systems [7]. However, compared with
full state feedback control, for example, strict-feedback [8],
pure-feedback [9] and non-strict feedback [10], the design
of output feedback control is more difficult and challenging,
the results of controller design for nonlinear systems are
relatively few. Consequently, it remains a significant and
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interesting task to put forward a state observer with good esti-
mation performance and design an output feedback controller
with good control performance for nonlinear systems.

In view of the excellent performance of neural net-
works (NNs) and fuzzy logic systems (FLSs), especially
the traits of nonlinear, capacity of study and self adapt-
ing, the approximation-based adaptive neural or fuzzy con-
trol schemes have become a useful approach to deal
with uncertain nonlinear systems [11]–[26]. Meanwhile,
NNs-based or FLSs-based control approaches have been
applied to uncertain discrete-time nonlinear systems [11],
dynamic parameters adjustment nonlinear systems [12],
dynamic uncertainties nonlinear systems [13], strict-feedback
nonlinear systems [14]–[16], pure-feedback nonlinear sys-
tems [17], [18], switched nonlinear systems [19]–[22],
MIMO nonlinear systems [23], [24] and stochastic non-
linear systems [25], [26]. Although the adaptive neural or
fuzzy backstepping control has achieved great progress, three
aspects can not be ignored: (i) the training time of most
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NNs or FLSs are usually too long and there also exists local
minimum. (ii) Most of the NNs can not be applied to actual
dynamic systems because their neurons have limited func-
tions. (iii) The accuracy of fuzzy control is not high enough
and oscillation may occur. This encourages us to investigate
new approximation-based adaptive control approaches for the
control of nonlinear systems to solve the above problems.
In this context, the idea of multi-dimensional Taylor net-
work (MTN) emerged.

MTN is a three-layer feedback network, and includes
the input layer, middle layer and output layer. MTN-based
approach was first proposed to solve the problem of pre-
diction control. Later, it was successfully extended to the
control of nonlinear systems, and significant results have
been achieved, for instance, based on account of discrete
MTN, Yan and Kang [27] studied the asymptotic tracking
and dynamic regulation of SISO nonlinear systems. Kang
and Yan [28] proposed a MTN controller to stabilize the non-
linear time-varying delay systems with an inaccurate model.
Han and Yan [29] studied the problem of adaptive track-
ing control for SISO uncertain stochastic nonlinear systems
based on MTN. Yan and Han [30] investigated the problem
of adaptive MTN decentralized tracking control for a class of
large-scale stochastic nonlinear systems. Yan et al. [31] pro-
posed an optimal output-feedback tracking control approach
for SISO stochastic nonlinear systems. However, to the best
of the authors’ knowledge, fewer efforts have been devoted
to the MTN-approximation-based adaptive output-feedback
tacking control for nonlinear systems [32], [33]. Therefore,
the construction of adaptive MTN tracking control algorithm
for nonlinear systems is still an interesting and challenging
subject, which has some inspiration for our research.

For the above-mentioned observations, this paper tries to
study the adaptive output-feedback tracking control design
problem for a class of nonlinear systems with unmeasur-
able states, and proposes an output-feedback control scheme
based on adaptive MTN. Firstly, using the method by ref-
erences [34], [35], a nonlinear state observer is designed to
estimate the unmeasurable states. Secondly, the backstepping
technique and MTN are combined to construct an adap-
tive output-feedback control scheme. Meanwhile, in order to
avoid the ‘‘differential explosion’’ problem inherited from
the backstepping design, DSC technique is introduced in
the process of controller design. Thirdly, the stability of the
closed-loop control system, the boundedness of the tracking
error and control signals are ensured by Lyapunov stability
theory. Finally, simulation results are presented to demon-
strate the effectiveness of the design approach. The contri-
butions of this paper are highlighted as follows:

(i) A novel adaptive output feedback control method based
on MTN is proposed for a class of nonlinear systems with
unmeasurable states. The proposed method can obtain accu-
rate tracking results with low computational cost, and has
good real-time performance and convergence.

(ii) The computational complexity of the designed
MTN-based controller is greatly minimizes through the

following two aspects: a) Because of the simple structure of
MTN, the controller based on MTN has the advantages of
simple structure and fast calculation speed. b) At every step of
backstepping, combining MTN method with DSC technique,
the calculating amount is reduced as well as the problem of
the nonlinear is effectively handled.

Throughout this paper, the following notations are used.
R indicates the set of all real numbers, Rn denotes the real
n dimensional space. In formula θTPmn (s), n denotes the
input number of MTN, m represents the highest power of the
polynomials in the middle layer of MTN, θT is the weight
vector of MTN.

II. SYSTEM DESCRIPTIONS AND PRELIMINARY
A. PROBLEM DESCRIPTION
Consider the following nonlinear system with external
disturbances: 

ẋi = xi+1 + fi (x̄i)+ di (t)
i = 1, · · · , n− 1

ẋn = u+ fn (x̄n)+ dn (t)
y = x1

(1)

where x = [x1, · · · , xn]T ∈ Rn is the system state, u ∈ R is
the control input, y ∈ R is the system output. di (t) is bounded
interference, x̄i = [x1, · · · , xi]T ∈ Ri, i = 1, 2, · · · , n. f (·) :
Ri
→ R is known smooth function with fi (0) = 0.
The objective of this paper is to design an adaptive con-

troller ensuring that y tracks yd , where yd is a given continu-
ous reference signal.

Rewriting the nonlinear system (1) into the following form{
ẋ = Ax+ F(x)+ Bu+ D(t)
y = Cx

(2)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1
0 0 0 · · · 0

 ,F(x) =

f1(x̄1)
f2(x̄2)
...

fn(x̄n)

 , B =

0
0
...

1

 ,
D(t) = [d1(t), · · · , dn(t)]T and C = [1, 0, · · · , 0]T .

The study of this paper is based on following assumptions.
Assumption 1: The given reference signal yd and its time

derivatives up to the n-th order are continuous and bounded.
Assumption 2: For each i = 1, . . . , n, di satisfies |di| ≤ d̄i,

where d̄i is an unknown constant.
Assumption 3: [34], [35] There exist a matrix H and a

function h(x), such that F(x) = Hh(x), and h(x) satisfies:

∂h(x)
∂x
+

(
∂h(x)
∂x

)T

≥ 0, ∀x ∈ Rn (3)

where h (x) and F (x) are vector-valued function with
F (0) = 0.
Remark 1: It should be noted that there are some physical

systems satisfy Assumption 3, such as single link flexible
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joint robot systems [36] and omnidirectional intelligent nav-
igation systems [37].
Assumption 4: [34], [35] Matrices A,C and H defined

in (2) and (3) satisfy the following linear matrix inequality
(LMIs):[
(A+LC)TQ1+Q1(A+LC)+Q2 Q1H + (I + KC)T

HTQn1 + (I + KC) 0

]
≤ 0

whereQ1 = QT
1 > 0,Q2 = QT

2 > 0,K = [k1, · · · , kn]T, and
L = [l1, · · · , ln]T.

B. MULTI-DIMENSIONAL TAYLOR NETWORK
Figure 1 shows the structure of MTN with n inputs and
the highest power of the polynomials in the middle layer
is m, where s1, · · · , sn are the input vector of the MTN,
θ = [θ1, · · · , θn]T is the weight vector of the MTN.

FIGURE 1. The topological structure of MTN.

In this paper, the unknown nonlinear functions in the sys-
tem will be approximated by the MTN. In particular, suppose
f (s) is defined on a compact set �S ∈ Rn, then we have

f (s) = θTPmn (s)

where

Pmn (s) = [s1, · · · , sn︸ ︷︷ ︸
1 term

, s21, s1s2, · · · s
2
n︸ ︷︷ ︸

2 term

, · · · , sm1 , · · · , s
m
n
]T︸ ︷︷ ︸

m term

,

θT = [θ1, · · · , θn]T and sT = [s1, · · · , sn]T .

Lemma 1: [29] Assume that φ (s) is a continuous function
defined on a compact set�s. Then, for any given desired level
of accuracy ε > 0, there exists a MTN, such that

ϕ (s) = θ∗TPmn (s)+ δ (s) (4)

where θ∗ is the ideal weight vector and defined as

θ∗ := arg min
θ∈Rl

{
sup
s∈�s

∣∣∣φ (s)− θTPmn (s)
∣∣∣}

and δ (s) denotes the approximation error and satisfies
|δ (s)| ≤ ε.

III. MTN-BASED ADAPTIVE OUTPUT-FEEDBACK
CONTROLLER DESIGN
A. NONLINEAR OBSERVER DESIGN
First of all, the following observer [34], [35] is used to
estimate the unmeasured states

˙̂x = A ˆx+L(C x̂− y)+ F[x̂+ K (C x̂− y)]+ Bu (5)

where x̂ =
[
x̂1, · · · , x̂n

]T is the observer state vector and
matrices K and L satisfy Assumption 4.

Define the observer error as x̃ = x− x̂, from (2), we have

˙̃x = (A+ LC)x̃ + F(x)− F(v)

where v = x̂ + K (Cx̂ − y).
Consider the following Lyapunov function

V0 =
1
2
x̃TQ1x̃ (6)

then, the time derivative of V0 is

V̇0 =
1
2
x̃T
(
Q1(A+ LC)+ (A+ LC)TQ1

)
x̃

+ x̃TQ1Hϕ + x̃TQ1D

where φ(x,µ) = h(x)−h(x−µ), and by taking into consider-
ation of Assumption 3, Lemma 1 and formula F(x) = Hh(x).
Similar to the literature [35], we have

V̇0 ≤ −
1
2
x̃TQ2x̃+ x̃TQ1D (7)

From Assumption 2, there exist constant matrix D̄ =

[d̄1, · · · , d̄n]T such that

D ≤ D̄ (8)

Then, by the Young’s inequality, we have

x̃TQ1D ≤
1
2
‖x̃‖2 +

1
2

∥∥Q1D̄
∥∥2 (9)

By (7), (8) and (9), we have

V̇0 ≤ −
1
2
‖x̃‖2 (λ− 1)+

1
2

∥∥Q1D̄
∥∥2 (10)

where λ = λmin(Q1)λmin(Q2).

B. MTN-BASED CONTROLLER DESIGN
According to (1) and (5), we have following entire system

ẏ = x̂2 + x̃2 + φ1(x1)+ d1
˙̂x2 = x̂3 − l2x̃1 + φ2( ¯̂x2, y)
...

˙̂xn = u− lnx̃1 + φn( ¯̂xn, y)

(11)

where φi( ¯̂xi, y) = F(x̂1 + k1(x̂1 − y), · · · , x̂i + ki(x̂1 − y)),
i = 2, · · · , n and φ1(x1) = f1(x1).
First of all, a change of coordinates is introduced as follows{

z1 = y− yd
zi = x̂i − αi,f (i = 2, · · · , n)

(12)
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where αi,f is the output of the first-order filter with αi−1 as
the input.
Step 1: According to (12), we have

ż1 = x̂2 + x̃2 + φ1 + d1 − ẏd (13)

Consider the following Lyapunov function

V1 = V0 +
1
2
z21 +

1
2
θ̃
T
10
−1
1 θ̃1 (14)

where θ̃1 = θ1 − θ̂1 is the parameter error and 01 = 0T
1 > 0

is any constant matrix.
The time derivative of V1 is

V̇1 = V̇0 + z1(x̂2 + x̃2 + φ1 + d1 − ẏd )− θ̃
T
10
−1
1
˙̂
θ1 (15)

By the Young’s inequality, we have

z1x̃2 ≤
1
2
z21 +

1
2
‖x̃‖2 (16)

z1d1 ≤
1
2
z21 +

1
2
d21 (17)

substituting (16) and (17) into (15) gives

V̇1 ≤ V̇0 − θ̃
T
10
−1
1 θ̂1 +

1
2
‖x̃‖2 +

1
2
d21 + z1(x̂2 + f̃1) (18)

where f̃1 = φ1 − ẏd + z1.
According to Lemma 1, for any ε1 > 0, there exists aMTN

θT1S(z1), such that

f̃1 = θT1S1 + σ1(z1), |σ1(z1)| ≤ ε1 (19)

Based on (18) and (19), taking the virtual control
signal α1 as

α1 = −k1z1 − θ̂
T
1S1(z1) (20)

where k1 > 0 is a design parameter.
Form (19) and (20), and by the Young’s inequality, we have

z1(x̂2 + f̃1) ≤ z1(x̂2 − α1)+ z1θ̃
T
1S1 − k1z

2
1 +

1
2
z21 +

1
2
ε21

(21)

Substituting (21) into (18) gives

V̇1 ≤ −
1
2
(λ− 2) ‖x̃‖2 +

1
2

∥∥Q1D̄
∥∥2 − θ̃

T
10
−1
1
˙̂
θ1 + z1θ̃

T
1S1

+
1
2
d21 + z1(x̂2 − α1)− k1z

2
1 +

1
2
z21 +

1
2
ε21 (22)

In order to avoid the repetitive differential of α1 , a new
variableα2,f is introduced and letα1 pass through a first-order
filter whose time constant is τ2, and α2,f is

τ2α̇2,f + α2,f = α1, α2,f (0) = α1(0) (23)

where τ2 > 0 is time constant.
Define the output error of the filter as

χ2 = α2,f − α1 (24)

Due to z2 = x̂2 − α2,f , and by (23) and (24), we have

z1(x̂2 − α1) = z1z2 + z1χ2 (25)

substituting (25) into (22) gives

V̇1 ≤ −
1
2
(λ− 2) ‖x̃‖2 +

1
2

∥∥Q1D̄
∥∥2 + θ̃

T
1 (z1S1 − 0

−1
1
˙̂
θ1)

+
1
2
d21 − k1z

2
1 +

1
2
z21 +

1
2
ε21 + z1z2 + z1χ2. (26)

Step 2:A new state variable α3,f is introduced, and α2 is input
into a first-order low-pass filter with a time constant of τ3 to
obtain a new variable α3,f as

τ3α̇3,f + α3,f = α2, α3,f (0) = α3(0) (27)

where τ3 > 0 is time constant.
Define the output error of the filter as

χ3 = α3,f − α2 (28)

The time-derivative of χ3 is

χ̇3 = −
χ3

τ3
+ B3(z̄2, x̃,

¯̂
θ2, χ̄3) (29)

where z̄2 = [z1, z2]T, χ̄2 = [χ1, χ2]T,
¯̂
θ2 = [θ̂1, θ̂2]T and

B3(z̄2, x̃,
¯̂
θ2, χ̄3) = −

∂α2

∂y

(
x̂2 + x̃2 + φ1 (x1)

)
−
∂α2

∂ θ̂1

˙̂
θ1

−
∂α2

∂ θ̂2

˙̂
θ2 −

∂α2

∂ x̂2
˙̂x2 −

∂α1

∂α2,f
α̇2,f

Consider the following Lyapunov function

V2 = V1 +
1
2
z22 +

1
2
χ2
2 +

1
2
θ̃
T
20
−1
2 θ̃2 (30)

where θ̃2 = θ2− θ̂2 is the parameter error, and 02 = 0T
2 > 0

is any constant matrix.
The time-derivative of V2 is

V̇2 = V̇1 − θ̃
T
20
−1
2
˙̂
θ2+χ2

(
−
χ2

τ2
+B2

)
+z2(x̂3 + f̃2) (31)

where f̃2 = φ2 − l2x̃1 − α̇2,f .
Similar to Step 1, a new MTN θT2S2(z2) is employed to

approximate the unknown function f̃2, for any given ε2 > 0,
we have

f̃2 = θT2S2 + σ2(z2), |σ2(z2)| ≤ ε2 (32)

where z2 = [z1, z2]T, and σ2(z2) is approximation error.
Taking the virtual control signal α2 as

α2 = −k2z2 − θ̂
T
2S2(z2), (k2 > 0) (33)

By (32) and (33), we have

z2(x̂3 + f̃2) ≤ z2(x̂3 − α2)+ z2θ̃
T
2S2 − k2z

2
2 +

1
2
z22 +

1
2
ε22

(34)
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Due to z3 = x̂3 − α3,f , and by (34),we have

V̇2 ≤ −
1
2
(λ− 2) ‖x̃‖2 +

1
2

∥∥Q1D̄
∥∥2 + 2∑

i=1

zizi+1

+

2∑
i=1

ziχi+1 +
1
2

2∑
i=1

ε2i +

2∑
i=1

θ̃
T
i (ziSi − 0

−1
i
˙̂
θ i)

−

2∑
i=1

kiz2i+
1
2

2∑
i=1

z2i + χ2

(
−
χ3

τ3
+ B3

)
+

1
2
d21

(35)

Step i(3 ≤ i ≤ n − 1). A new state variable αi+1,f is
introduced, and αi,f is input into a first-order low-pass filter
with a time constant of τi+1 to obtain a new variable αi+1,f as

τi+1α̇i+1,f + αi+1,f = αi, αi+1,f (0) = αi(0) (36)

where τi+1 > 0 is time constant.
Due to zi+1 = x̂i+1 − αi+1,f , define the output error of the

first-order low-pass filter as

χi+1 = αi+1,f − αi (37)

The time-derivative of χi+1 is

χ̇i+1 = −
χi+1

τi+1
+ Bi+1(z̄i, x̃,

¯̂
θ i, χ̄i+1) (38)

where z̄i = [z1, · · · , zi]T, χ̄i = [χ1, · · · , χi]T,
¯̂
θ i =

[θ̂1, · · · , θ̂i]T and

Bi+1(z̄i, x̃,
¯̂
θ i, χ̄i+1) = −

∂αi

∂y
(x̂2 + x̃2 + φ1(x1))−

i∑
j=1

∂αi

∂ θ̂ j

˙̂
θ j

−

i∑
j=2

∂αi

∂ x̂j
˙̂xj −

i−1∑
j=1

∂αi

∂αj+1,f
α̇j+1,f .

Consider the following Lyapunov function

Vi = Vi−1 +
1
2
z2i +

1
2
χ2
i +

1
2
θ̃
T
i 0
−1
i θ̃ i (39)

where θ̃ i = θ i − θ̂ i is the parameter error, and 0i = 0T
i > 0

is any constant matrix.
The time-derivative of Vi is

V̇i= V̇i−1−θ̃
T
i 0
−1
i
˙̂
θ i + zi(x̂i+1+ f̃i)+ χi

(
−
χi+1

τi+1
+ Bi+1

)
(40)

where f̃i = φi − lix̃1 − α̇i,f and li > 0.
Similar to Step 2, for any given εi > 0, we have

f̃i = θTi Si(zi)+ σi(zi), |σi(zi)| ≤ εi (41)

where zi = [z1, · · · , zi]T, and σi(zi) is approximation error.
Take the virtual control signal αi as

αi = −kizi − θ̂
T
i Si(zi), (ki > 0) (42)

By (41) and (42), we have

zi(x̂i+1 + f̃i) ≤ zi(x̂i+1 − αi)+ ziθ̃
T
i Si − kiz

2
i +

1
2
z2i +

1
2
ε2i

(43)

Due to zi+1 = x̂i+1 − αi+1,f and (43), we have

V̇i≤−
1
2
(λ−2) ‖x̃‖2+

1
2

∥∥Q1D̄
∥∥2 + i∑

i=1

zizi+1 +
i∑

i=1

ziχi+1

+

i−1∑
i=1

χi

(
−
χi+1

τi+1
+ Bi+1

)
+

i∑
i=1

θ̃
T
i (ziSi − 0

−1
i
˙̂
θ i)

+
1
2

i∑
i=1

ε2i +
1
2
d21 −

i∑
i=1

kiz2i +
1
2

i∑
i=1

z2i . (44)

Step n: Consider the following Lyapunov function

Vn = Vn−1 +
1
2
z2n +

1
2
χ2
n +

1
2
θ̃
T
n0
−1
n θ̃n (45)

where θ̃n = θn − θ̂n is the parameter error.
According to (45) with i = n, we have

V̇n= V̇n−1 − θ̃
T
n0
−1
n
˙̂
θn+χn

(
−
χn+1

τn+1
+Bn+1

)
+zn(u+ f̃n)

(46)

where f̃n = φn − lnx̃1 − α̇n,f and ln > 0.
Similarly, by the Lemma 2.1, for any given εn > 0, we have

f̃n = θTnSn + σn(zn), |σn(zn)| ≤ εn (47)

where zn = [z1, · · · , zn]T, and σn(zn) is approximation error.
Take controller u as

u = −knzn − θ̂
T
nSn(zn), (kn > 0) (48)

By the Young’s inequality, we have

zn(u+ f̃n) ≤ znθ̃
T
nSn − knz

2
n +

1
2
z2n +

1
2
ε2n (49)

Substituting (49) into (46) gives

V̇n ≤ −
1
2
(λ− 2) ‖x̃‖2 +

1
2

∥∥Q1D̄
∥∥2 + n−1∑

i=1

zizi+1

+

n−1∑
i=1

ziχi+1 +
1
2

n∑
i=1

ε2i +

n∑
i=1

θ̃
T
i (ziSi − 0

−1
i
˙̂
θ i)

+

n−1∑
i=1

χi

(
−
χi+1

τi+1
+Bi+1

)
−

n∑
i=1

kiz2i +
1
2

n∑
i=1

z2i +
1
2
d21 .

(50)

By the Young’s inequality, we have
n−1∑
i=1

zizi+1 ≤
n−1∑
i=1

(
1
2
z2i +

1
2
z2i+1

)
≤

n∑
i=1

z2i (51)

n−1∑
i=1

ziχi+1 ≤
n−1∑
i=1

(
1
2
z2i +

1
2
χ2
i+1

)
≤

1
2

n∑
i=1

z2i +
1
2

n−1∑
i=1

χ2
i

(52)
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n−1∑
i=1

χi

(
−
χi+1

τi+1
+ Bi+1

)
≤ −

n−1∑
i=1

χ2
i+1

τi+1

+
1
2

n−1∑
i=1

ξ2i+1λ
2
i+1χ

2
i+1

+
1
2

n−1∑
i=1

1

ξ2i+1

(53)

where ξi, λi(i = 1, · · · , n − 1) is any constant greater than
zero. Substituting (51), (52) and (53) into (50), we have

V̇n ≤ −
1
2
(λ− 2) ‖x̃‖2 +

1
2

∥∥Q1D̄
∥∥2 − (ki − 4)

n∑
i=1

z2i

−

n−1∑
i=1

(
−
1
2
+

1
τi+1
−

1
2
ξ2i+1λ

2
i+1

)
χ2
i +

1
2

n∑
i=1

ε2i

+
1
2

n−1∑
i=1

1

ξ2i+1

+

n∑
i=1

θ̃
T
i (ziSi − 0

−1
i
˙̂
θ i)+

1
2
d21 . (54)

In summary, the design procedure of the MTN-based con-
troller is shown in Figure 2.

FIGURE 2. Block diagram of control system.

C. STABILITY ANALYSIS
Theorem 1: Considering the nonlinear system (1), if design
the observer in the form of (5), design the control law u
in the form of (48), the intermediate virtual control signals
αi(i = 1, · · · , n− 1) described as (42), and the adaptive laws
˙̂
θ i(i = 1, · · · , n− 1) defined as

˙̂
θ i = zi0iSmi (zi)− ηi0iθ̂ i (55)

where constants ki > 0 and ηi > 0 are designed parameters,
and constants matrices 0i = 0T

i > 0. Then, under bounded
initial conditions, all the signals in the closed-loop system
are bounded, and the tracking error converges to a small
neighborhood of the origin.
Proof: For the stability analysis of the closed-loop system,

we choose the following Lyapunov equation:

V =
1
2
x̃TQ1x̃+

1
2

n∑
i=1

z2i +
1
2

n∑
i=1

χ2
i +

1
2

n∑
i=1

θ̃
T
i 0
−1
i θ̃ i

(56)

By (54) and (56), we have

V̇ ≤ −
1
2
(λ− 2) ‖x̃‖2 +

1
2

∥∥Q1D̄
∥∥2 − (ki − 4)

n∑
i=1

z2i

−

n−1∑
i=1

(
−
1
2
+

1
τi+1
−

1
2
ξ2i+1λ

2
i+1

)
χ2
i +

1
2

n∑
i=1

ε2i

+
1
2

n−1∑
i=1

1

ξ2i+1

+

n∑
i=1

ηiθ̃
T
i θ̂ i +

1
2
d21 . (57)

By the Lemma 1, we have

ηiθ̃
T
i θ̂ i ≤ −η̄iθ̃

T
i 0
−1
i θ̃ i +

ηi

2
‖θ i‖

2 (58)

where η̄i = ηi
/
2λmax(0

−1
i ).

Substituting (58) into (57) gives

V̇ ≤ −
1
2
(λ− 2) ‖x̃‖2 +

1
2

∥∥Q1D̄
∥∥2 − (ki − 4)

n∑
i=1

z2i

−

n−1∑
i=1

(
−
1
2
+

1
τi+1
−

1
2
ξ2i+1λ

2
i+1

)
χ2
i +

1
2

n∑
i=1

ε2i

+
1
2

n−1∑
i=1

1

ξ2i+1

−

n∑
i=1

(
η̄iθ̃

T
i 0
−1
i θ̃ i

)

+
1
2

n∑
i=1

(
ηi ‖θ i‖

2
)
+

1
2
d21 . (59)

Let

ai = min
{
λ− 2
λmax(Qi)

, 2 (ki − 4) ,

2
(
−
1
2
+

1
τi+1
−

1
2
ξ2i+1λ

2
i+1

)
, η̄i

}
a0 = min {a1, · · · , an}

b0 =
1
2

∥∥Q1D̄
∥∥2 + 1

2

n∑
i=1

ε2i

+
1
2

n−1∑
i=1

1

ξ2i+1

+
1
2

n∑
i=1

(
ηi ‖θ i‖

2
)
+

1
2
d21 .
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then inequality (59) can be rewritten in the following form

V̇ ≤ −a0V + b0 (60)

Using the similar arguments in [32], it is easy concluded
that the conclusions of Theorem 1 is valid.
Remark 2: The inequality (60) implies that

V (t) ≤ V (0) e−a0t +
b0
a0
, ∀t ≥ 0 (61)

According to (61), we know that V (t), x̃i, zi,
∥∥∥θ̃ i∥∥∥ are

bounded. Thus, to guarantee that the tracking error converges
to a small residual set around the origin in the sense of
mean quartic value, we can properly adjust the parameters
a0 and b0.
Remark 3: Recalling (56) and (61), we have

n∑
i=1

θ̃
T
i 0
−1
i θ̃ i ≤ 2V (0) e−a0t + 2

b0
a0

(62)

Thus, for given$ > 2b0
/
a0, there exists a time T , for all

t ≥ T , such that

n∑
i=1

θ̃
T
i 0
−1
i θ̃ i ≤ $ (63)

which means that
∥∥∥θ̃ i∥∥∥ converge to zero by properly adjusting

the parameters, such as ki, τi, ξi, ηi.
Remark 4: Theoretically speaking, based on Theorem 1,

choosing appropriately the design parameters, such as ki,
ηi and 0i, can make the tracking error arbitrarily small.
In practical application, however, these parameters should be
selected appropriately to meet specific requirements.

IV. SIMULATION RESEARCH
In this section, we will demonstrate the effectiveness of the
proposed adaptive MTN control method through two simula-
tion examples.
Example 1: Consider the following nonlinear system

ẋ1 = x2 − x31 + 0.1 sin t
ẋ2 = u+ x31 − x

5
2 + 0.2 cos t

y = x1

(64)

with the initial states x1 (0) = 0 and x2 (0) = 0.
According to (2) and (62), we have

A =
[
0 1
0 0

]
,F =

[
x31

x31 − x
5
2

]
,D =

[
0.1 sin t
0.2 cos t

]
,C =

[
1
0

]
.

Let h (x) =
[
x31
x52

]
,H =

[
−1 0
1 −1

]
, then F = Hh (x), and it

is easy to verify that, when Q1 =

[
1.5 1
1 1

]
, K = [−0.5, 1]T

and L = [−1,−2]T , Assumptions 3-4 hold.

Design the following state observer

˙̂x1 = x̂2 −
(
x̂1 − x1

)
−
(
x̂1 − 0.5

(
x̂1 − x1

))3
˙̂x2 = u− 2

(
x̂1 − x1

)
+
(
x̂1 − 0.5

(
x̂1 − x1

))3
−
(
x̂2 +

(
x̂1 − x1

))5
According to Theorem 1, the virtual control laws,

the actual control law and the adaptive control laws are
designed as

α1 = −k1z1 − θ̂
T
1S1(z1)

u = −k2z2 − θ̂
T
2S2(z2)

˙̂
θ i = zi0iSmi (zn)− ηi0iθ̂ i, i = 1, 2

where z1 = x1 − yd , z2 = x̂2 − α2,f , z1 = z1, z2 = [z1, z2]T.
In the simulation, the parameters are chosen as follows:

k1 = 15, k2 = 10, η1 = 0.5, η2 = 1.5, 01 = 20I4, 02 = 5I9,
τ2 = 0.005. The reference signal yd = sin t . The simulation
results are shown in Figures 3-8.

FIGURE 3. The system output and the reference signal of example 1.

FIGURE 4. The control input of example 1.

The simulation results indicate that a good tracking con-
trol performance has been achieved. Figure 5 indicates the
tracking error converges to a small neighbourhood around the
origin. Figures 6-7 show that all signals of the closed-loop
system, such as state x1, x2 and their estimation x̂1, x̂2 are

bounded. Figure 8 depicts that the adaptive parameters
∥∥∥θ̂1∥∥∥
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FIGURE 5. The tracking error y − yd of example 1.

FIGURE 6. State x1 and its estimation x̂1 of example 1.

FIGURE 7. State x2 and its estimation x̂2 of example 1.

and
∥∥∥θ̂2∥∥∥ are bounded. The presented simulation results ver-

ify the effectiveness of the proposed control approach.
Example 2: On a similar method to [39], [40], a type of

closed, continuously stirred tank, chemical reactor with one
mode of feed stream and disturbances can be described as
follows: 

ẋ1 = x2 + 0.5x1 + 0.1 sin t
ẋ2 = u+ 0.1 cos t
y = x1

(65)

Using the same process of Example 1, design the following
state observer

˙̂x1 = x̂2 −
(
x̂1 − x1

)
+ 0.5

(
x̂1 +

(
x̂1 − x1

))
˙̂x2 = u−

(
x̂1 − x1

)

FIGURE 8. The adaptive parameters
∥∥∥θ̂1

∥∥∥ and
∥∥∥θ̂2

∥∥∥ of example 1.

FIGURE 9. The system output and reference signal of example 2.

FIGURE 10. The control input of example 2.

FIGURE 11. The tracking error y − yd of example 2.

The simulation results are shown in Figures 9-14. The sim-
ulation results further verify the effectiveness of the control
method proposed in this paper.
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FIGURE 12. State x1 and its estimation x̂1 of example 2.

FIGURE 13. State x2 and its estimation x̂2 of example 2.

FIGURE 14. The adaptive parameters
∥∥∥θ̂1

∥∥∥ and
∥∥∥θ̂2

∥∥∥ of example 2.

V. CONCLUSION
In this paper, the problem of adaptive output-feedback track-
ing control has been investigated for a class of nonlinear sys-
tems with unmeasurable states based on multi-dimensional
Taylor network approach. A nonlinear observer is designed to
estimate the unmeasurable states of the system. By combining
backstepping approach and dynamic surface control tech-
nique, a novel MTN-based adaptive output-feedback control
scheme has been proposed. The designed MTN-based con-
troller in this paper has the advantages of simple structure
and fast computation speed, and the proposed approach can
overcome the problem of ‘‘explosion of complexity’’. The
simulation results show that the proposed control scheme can
keep all signals of the closed-loop system bounded and the

tracking error converges to any small neighborhood around
the origin.

Our future work will be directed at further extending the
proposed methodology to switching nonlinear systems and
MIMO nonlinear systems.
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