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ABSTRACT The process of inspecting electroencephalography (EEG) signals of patients with epilepsy to
distinguish between focal and non-focal seizure source is a crucial step prior to surgical interference. In this
paper, a deep learning approach using a long short-term memory (LSTM) algorithm is investigated for the
purpose of automatic discrimination between focal and non-focal epileptic EEG signals. The study is carried
out by acquiring 7500 pairs of x and y EEG channels signals from the publicly available Bern-Barcelona
EEG database. The manual classification of each signal type was visually done by two board-certified
electroencephalographers and neurologists. Initially, every channel signals are pre-processed using z-score
normalization and Savitzky-Golay filtering. The signals are used as inputs to a pre-defined Bi-directional
LSTM algorithm for the training process. The classification is performed using a k-fold cross-validation
following 4-, 6-, and 10-fold schemes. At the end, the performance of the algorithm is evaluated using
several metrics with a complete summary table of the recent state-of-art studies in the field. The developed
algorithm achieved an overall Cohen’s kappa «, accuracy, sensitivity, and specificity values of 99.20%,
99.60%, 99.55%. and 99.65%, respectively, using x channels and 10-fold cross-validation scheme. The study
pave the ways toward implementing deep learning algorithms for the purpose of EEG signals identification
in a clinical environment to overcome human errors resulting from visually inspection.

INDEX TERMS Classification, electroencephalography (EEG), epilepsy, focal, long-short-term memory

(LSTM), non-focal, training.

I. INTRODUCTION

Epilepsy has become a major neurological disorder of the
brain that is characterized by the occurrence of repeated
seizures. Normally, the brain sends electrical impulses to the
whole body throughout neurons and neurotransmitters. In a
case of an epileptic seizure, these electrical waves are dis-
rupted resulting in an imbalanced reactions from the body [1].
According to the World Health Organization (WHO) [2],
more than 50 million people around the world are suffering
from epileptic seizures, where as 80% among them are living
in low- and middle-income countries. Despite the develop-
ment of anti-epileptic medications, 33% of epileptic patients
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do not respond to the medication and are expected to suffer
from further unpredictable seizures in future.

Epilepsy is of two major types; focal and non-focal (gen-
eralized). In focal epilepsy, only a specific part of the brain is
affected, i.e. one hemisphere of the brain. On the other hand,
non-focal epilepsy affects multiple areas within the brain even
though they were not affected directly by the seizures [1], [3].
The majority of epileptic patients (60%) become pharmacore-
sistant, that is not responding to medications. Therefore, they
require surgical interference to treat the seizures [4]. As a
result, the precise localization of seizure areas is important
prior to the surgery to reduce the risks accompanied with
invasive interference with the brain.

Electroencephalogram (EEG) is considered the gold stan-
dards in epilepsy diagnosis for its ability to detect the brain
electrical activity as well as the presence of epileptic seizures
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FIGURE 1. The complete procedure followed in the study.

and abnormalities [5]. EEG allows for obtaining focal and
non-focal signals, thus, discriminating both epilepsy types
and identifying the region that the seizure is originating
from. In addition, EEG allows for the identification of both
the ictal and inter-ictal seizure activities. The ictal EEG
represent a continuous wave of spikes. On the other hand,
inter-ictal EEG is represented by the presence of tempo-
rary sharp waves. Sometimes, clinicians use long-term inter-
cranial EEG recording to detect deeper signals and localize
the source of the seizure within the brain [3], [5]. Therefore,
visual identification of focal and non-focal epileptic EEG
signals is considered time consuming for medical doctors.
In addition, multiple experts may have different views for
the patient EEG patterns. Thus, human error in diagnosing
epileptic seizure source is of a high chance of occurring [6].
Thus, there is a major need for an automated classification
approach that is able of distinguishing between the character-
istics of such signals and assisting clinicians in their decision
making process prior to surgical intervention.

Due to the difficulty in visually differentiating between
EEG signals in both epilepsy types, machine learning algo-
rithms have become of a high importance in detecting differ-
ences and classifying such signals. Among these algorithms
are the Least-Squares Support Vector Machine (LS-SVM)
[7], [8], Adaptive Neuro-Fuzzy Inference Systems (ANFIS)
[9], K-Nearest Neighbor (KNN) [10], and Bayesian Lin-
ear Discriminant Analysis (BLDA) [11] learning systems.
However, these algorithms require manual feature extraction
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including the time- and frequency-domains features. In addi-
tion, features extracted in entropy and wavelet transforms are
also utilized. Therefore, the use of a deep learning approach
could ease the classification process, as it does not require
manual feature engineering that usually requires continuous
tuning due to the variable nature of EEG signals. Among
these algorithms are the Recurrent Neural Networks (RNNs)
and Long Short-Term Memory (LSTM), which has been used
very recently in few studies for other EEG classification
applications [12]-[14].

A. OUR CONTRIBUTION

In this paper, a deep learning approach following an LSTM
algorithm is explored for the purpose of focal and non-
focal epileptic EEG signals classification (Figure 1). The
obtained EEG signals corresponding to both epilepsy types
are acquired from an online database and processed for
two channels to be described later in the paper; the x- and
y-channels. Initially, the data-set is pre-processed for all
signals by passing them to z-score normalization step fol-
lowed by digital filtering. The training and classification pro-
cess was applied using both channels through a pre-defined
Bi-directional LSTM algorithm. For each channel, the LSTM
classifier was trained following a k-fold cross-validation
using 4-, 6-, and 10-fold schemes. At the end, the overall
performance is evaluated using several performance met-
rics including the accuracy, sensitivity, specificity, precision,
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F1-score, Cohen’s Kappa («x), Matthews Correlation Coef-
ficient (MCC), and Jaccard Index (JI). Each step is briefly
explained in the upcoming sections.

B. PAPER ORGANIZATION

The paper is organized as follows. In Section II, the LSTM
network architecture is described briefly with general back-
ground information. For Section III, the materials and meth-
ods used in the study are presented including the data-set
selected, the pre-processing steps, the training and classifi-
cation schemes, and the evaluation metrics definitions. For
section IV, the results are provided along with a brief discus-
sion on the observations. The paper is concluded with future
work in Section V.

Il. LONG SHORT-TERM MEMORY

In Recurrent Neural Networks (RNNs), chain-like struc-
tures are used to capture temporal sequences between the
data. However, this cause problems when training data using
back-propagating processes such as the exploding/vanishing
gradient problems [15]. Therefore, LSTM networks were
first introduced back in 1997 by Hochreiter and Schmid-
huber [16] to store the long-term dependencies between
data points. LSTM has been used for several applications
including speech recognition, image detection, and language
modeling [17], [18].

The architecture of the LSTM network includes memory
blocks, which are the input (i), output (o), and forget (f) gates,
and a cell that manages the flow of information between the
three surrounding gates. The input and output gates control
the activation of the input and output information flow, and
are described as follows,

ir = o (Wyixe + Wiihy—1 + Weici—1 + by) (D
01 = 0 (Wyoxt + Whohi—1 + Weocr + by) 2

In addition, the forget gate controls the memory needed to
be kept within the network, and is given as,

fir = oWypxy + Wighy—y + Weper—1 + by) 3)

where W, is the input to gate weight, Wp, is the hidden to
hidden weight, W, is the peephole weight, b, is a bias vector,
and 4, is the hidden layer output and is given by,

hy = ostanh(c;) (@)
where ¢, represents the input cell which can be defined as,
¢ = tanh(Wyexy + Wiehi—1 + be) 5)
Moreover, the output cell C; is described as,
C =fiCi—1 + iscy 6)

The input/output cells are connected to the gates by
feedback sources with a Constant Error Carousel (CEC)
that activates on each input entry to allow gradients to
flow unchanged. The activation function is the sigmoid o ()
bounded by (0,1).
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FIGURE 2. The Bi-directional LSTM shortcut architecture showing both
the forward and backward directions.

The previous equations describe the LSTM standard model
in the forward chain using a hidden layer #,_;. To illustrate
the backward chain used in the Bi-directional LSTM (BDL-
STM) networks, hidden layer ;1 is utilized. This results in
having the overall out as,

N N
V= Wﬁyh + W<h—yh + by 7

— <~
where for all N levels of stack, 2 and A" are the hidden
layers output in the forward and backward directions, respec-
tively. A shortcut view of the BDLSTM is illustrated in Fig. 2,
where each LSTM block contains all the gates described
earlier.

IIl. MATERIALS AND METHODS

A. DATA-SET

The data-set is obtained from Bern-Barcelona EEG Database;
which is an intracranial EEG study of epileptic patients
done at the Department of Neurology of the University of
Bern, Bern, Switzerland [19]. Five patients with longstanding
pharmacoresistant temporal lobe epilepsy were included in
the study. All patients were enrolled for epilepsy surgery
and EEG signal acquisition was part of the diagnostic pro-
cedure prior to the surgery. Three patients had a complete
seizure freedom, two patients had auras with no post surgery
seizures, and All five patients had successful surgical out-
comes. For every EEG recording, multi-channel EEG signals
were acquired using AD-TECH (Racine, WI,USA) intracra-
nial strip and depth electrodes. The reference electrode was
extracranial located between 10/20 Fz and Pz positions. All
EEG signals were sampled at 512 or 1024 Hz based on the
number of channels used (more or less than 64 channels).
Each EEG signal was recorded for about 41.66 hours duration
for the focal and non-focal seizure activity. Based on the
intracranial recordings, brain seizures could be localized for
all patients.
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FIGURE 3. Sample pairs (x and y channels) from the EEG recordings data-set: (a) Focal pair, (c) Non-Focal pair.

Focal EEG signals were recorded using channels that
detect the first ictal signal and were judged by visual inspec-
tion of two board-certified electroencephalographers and
neurologists. The remaining EEG channels were used to
record the non-focal signals. The EEG recordings were ran-
domly divided into 3750 pairs of signals name as x and y.
For an x signal, one focal EEG channel was selected from
any patient at random while for the corresponding y signal,
one of this channel’s neighboring focal channels was selected.
The random selection of focal channels was done without
replacement using a uniform random number generator. The
same selection procedure was applied for the non-focal data-
set. Prior to storing the EEG signals pairs, they were band-
pass filtered (0.5-150 Hz) using a fourth-order Butterworth
filter. In addition, they were visually inspected to insure
that no artifacts took place within the recordings. It worth
mentioning that no clinical selection criteria was applied such
as the absence of presence of epileptiform activity. A sample
of each of the focal and non-focal EEG recordings pairs from
the x and y channels are shown in Figure 3.

B. DATASET PREPARATION

In this study, all signals pass through an algorithm to enhance
their features prior to running through the training and clas-
sification process. The steps are,
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e Z-score Normalization
« Savitzky-Golay Filtering

1) Z-SCORE NORMALIZATION

Z-score normalization is a common signal processing tech-
nique used to ensure a balanced view for the data. Usually,
large trends in the signals dominates the smaller trends, thus,
increasing the dynamic amplitude range of the signal. The
normalization process yields signals of a mean (u) of zero
and standard deviation (o) of 1 by forcing all features to
follow a normal Gaussian distribution based on the following
equation,

x=_k ®)
o

It is found in literature that signal normalization enhance
the overall classification process [20], [21].

2) SAVITZKY-GOLAY FILTERING

Savitzky-Golay (SG) filter is a finite impulse response fil-
ter commonly used to enhance the overall precision of
the data [22]. Through convolution mechanism, the input
signal is smoothed with a higher Signal-to-Noise (SNR)
ratio. For each signal, a set of polynomial coefficients are
obtained using a least-square method. These coefficients are
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convoluted at each data point of the input signal to produce
an enhanced smother signal [23]. The coefficients are usually
obtained by fitting a low order polynomial to the input data
following this equation,

i=(m—1)/2 mt 1
V= ) Gy )
i=—(m—1)/2

where Y} is the smoothed output signal from the input signal
nxj,y;j at every j = 1,2,...,n points, x is the independent
variable, y is the dependent variable, and C; is the set of m
polynomial coefficients.

C. TRAINING AND CLASSIFICATION

The training and classification process was performed using
both the x and y EEG channels and following a k-fold cross-
validation scheme. The process was applied using 4-folds,
6-folds, and 10-folds to ensure several splits of the data when
performing the training process.

The LSTM network architecture selected was the BDL-
STM. In addition, five layers were used in the training net-
work including input sequence, fully connected, softmax, and
classification layers. The sequence length of the data was
10240 representing the number of elements. Furthermore, a
fully connected layer of two classes was used to provide the
output sequence to the softmax and classification layers.

D. EVALUATION METRICS

The evaluation metrics selected in this study include the
accuracy, sensitivity, specificity, precision, and F1-score, and
are defined as follows,

TP + TN
Accuracy = (10)
TP+ TN + FP + FN
. P
Sensitivity = —— (11)
TP + FN
Specificity = N (12)
pecificity = IN +FP
. TP
Precision = ——— (13)
TP + FP
2TP
Fl—score = —————— (14)
2TP + FP+ FN

where true positives (TP) represents the total number of sig-
nals being classified correctly, true negatives (TN) represents
the total number of the other signals being classified cor-
rectly as other signals, false positives (FP) represents the total
number of signals classified incorrectly, and false negatives
(FN) represents the total number of other signals classified
incorrectly as other signals.

Furthermore, to evaluate the agreement between the
observed and the expert classifications, Cohen’s Kappa (k)
coefficient [24] is used following this equation,

K = Po—Pe (15)
1-P,
where Py the observed agreements and P, represent the agree-
ments expected by experts.
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FIGURE 4. Sample pairs (x and y channels) from the EEG recordings
data-set: (a) Focal pair, (c) Non-Focal pair.

To elaborate more on the observations of the LSTM clas-
sifier, the Matthews Correlation Coefficient (MCC) is a mea-
sure introduced by Matthews [25] in 1975 to measure the
quality of binary classification, and it is calculated based on
the following equation,

TP x TN — FP x FN

- /(TP + FP)YTP + FN)(TN + FP)(TN + FN)
(16)
In addition, the Jaccard Index (JI) [26] is included among
the evaluation metrics and is often introduced to measure

the similarities between two datasets or two classification
observations. It is formulated as,

TP
JI = ————
TP +FP + FN

mcc

a7

IV. RESULTS AND DISCUSSION

A. CURRENT OBSERVATIONS

The proposed method was implement using MATLAB, where
each of the 7500 EEG records were pre-processed as men-
tioned earlier. A sample from the non-focal EEG signals is
shown in Fig. 4 before and after the pre-processing steps
(normalization and SG filtering). The SG digital filter uses
a window of length 25, averaging each 25 samples with a
polynomial order of 3. The selected of these parameters was
done after several trial and error tests.

To evaluate features between the two signal groups (focal
and non-focal), Pearson correlation coefficients were calcu-
lated between two random recordings using the x and y EEG
channel data and were observed as 0.01 and 0.04, respec-
tively. These signals are used as an input for the BDLSTM
network, where 10 cells are used to extract corresponding
signals features [27]. Each time step is considered a feature to
be utilized in the LSTM training network. Each cell includes
a forward and a backward input/output stream as described
earlier in Section II. At each time steps, having a 10240 time
steps, the outputs of both streams are element-wise multi-
plied to obtain corresponding 10-dimensional representation,
which are concatenated and fed to a 2-dimensional fully con-
nected layer followed by a softmax activation function and a
classification layer for predictions. The process of this feature
extraction/learning process is illustrated briefly in Fig. 5.
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TABLE 1. The overall performance of the developed algorithm in classifying FEEG and NFEEG signals using x-channels.

Forward
Stream
Backward

Stream

Backward
Stream

Backward
Stream

v v
Classification Softmax Fully
Connected Concatenate
Layer Layer
Layer

FIGURE 5. Training and classification network layers showing the forward
and backward streams of the BDLSTM.

For the LSTM network settings, the Adaptive Moment
Estimation (ADAM) solver was used as the LSTM optimizer
for its ability to provide adaptive learning rates [28]. The
solver parameters were 0.001, 0.9, and 0.999 for the learning
rate («), By, and By, respectively. The training network is
selected to have a total number of 30 epochs with a mini-
batch size of 50. The selection of these parameters was done
after several trials.

Table 1 shows the overall performance of the developed
algorithm in classifying the two EEG signal categories using
the x-channels. The best k-fold scenario was the 10-fold
cross-validation, as it covers more data in the training process.
In addition, the Cohen’s kappa (k) value reached 99.20% with
an accuracy of 99.60% in classification for both classes. All
other metrics were higher than 99.00%, which reflects high
sensitivity and precision. On the other hand, Table 2 shows the
overall performance using the y-channels. A Cohen’s kappa
(k) of 98.80% was observed with an accuracy of 99.40%.
The values of the MCC and JI were close to the Cohen’s
kappa (k) values following the two channel signals in 10-fold
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Scenario | Cohen’s Kappa (k) MCC JI Accuracy | Classes | Sensitivity | Specificity | Precision | F1-score
EG 96.99 96.99 96.99 96.99
4-fold 93.97% 93.97% | 94.15% 96.99% JE % % % %
NfEEG 98.73% 99.14% 99.15% 98.94%
EG 97.22 97.07 97.07 97.14
6-fold 94.29% 94.29% | 94.45% 97.15% JE % % % %
NfEEG 97.07% 97.22% 97.23% 97.15%
EG 99.55 99.65 99.65 99.60
10-fold 99.20% 99.20% | 99.20% 99.60% E % % % %
- - NfEEG 99.65% 99.55% 99.55% 99.60%
TABLE 2. The overall performance of the developed algorithm in classifying FEEG and NFEEG signals using y-channels.
Scenario | Cohen’s Kappa (x) MCC JI Accuracy | Classes | Sensitivity | Specificity | Precision | F1l-score
EG 98.49 98.98 98.99 98.74
4-fold 97.47% 97.47% | 97.62% 98.73% JE i i i i
NfEEG 98.98% 98.49% 98.48% 98.73%
EEG 99.07 99.36 99.36 99.21
6-fold 98.43% 98.43% | 98.63% 99.21% f % % % %
NfEEG 99.36% 99.07% 99.07% 99.21%
EG 99.49 99.31% 99.31 99.40%
10-fold 98.80% 98.80% | 98.80% | 99.40% | L= % - % -
NfEEG 99.31% 99.49% 99.49% 99.40%
TABLE 3. The Confusion matrix of the original classes and the LSTM
x(o) x( ]) essses x(t) predicted classes using the x-channel signals.

Original Classes
Total
Focal | Non-Focal
LSTM Focal 3737 17 3750
Classes | Non-Focal 13 3733 3750
Total 3750 3750 7500

TABLE 4. The Confusion matrix of the original classes and the LSTM
predicted classes using the y-channel signals.

Original Classes
Total
Focal | Non-Focal
LSTM Focal 3724 19 3750
Classes | Non-Focal 26 3731 3750
Total 3750 3750 7500

cross validation. This suggests strong similarity between the
original expert classes and predicted classes using the LSTM
classifier.

To elaborate more on the observations, the confusion
matrix of the classifier when using the x-channels (highest
value) is shown in Table 3. The TPs of each class is shown
in the diagonal boxes. The LSTM algorithm successfully
classified 3737 signal as focal and 3733 signal as non-focal.
On the other hand, the algorithm wrongly classified 17 signals
as non-focal and 13 as focal. For the confusion matrix of
the y-channels shown in Table 4, the observations is close
to the classification process of the x-channels, however, the
number of correctly classified classes is less. Both tables
provided comparable results which suggest the possibility of
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TABLE 5. Summary table of the recent studies in classifying focal and non-focal EEG signals.

Study ‘ Year ‘ Extracted Features ‘ Method Overall Performance Additional Information
Accuracy | Sensitivity | Specificity
L. . Dual Tree Complex Wavelet . .
Deivasigamani et al. [9] | 2016 ANFIS 99.00% 98.00% 100.00% | EEG signals were decomposed using the DT-CWT
Transform (DT-CWT) features
Discrete Fourier
Singh et al. [29] 2017 LS-SVM 89.52% - - AUC =97.89%
Transform (DFT) features
Time, fi , inf tion th 8
Sriraam etal. [30] | 2017 | o oauency INOMMANONIICON: o nized SVM | 92.15% | 9456% | 89.74% AUC =94.83%
and statistically based features
SS ent L 1 t f
Gupta et al. [31] a017 | Cross entropy, log energy entropy LS-SVM 9441% | 9325% | 95.57% -
and SURE entropy based features
Bivariate Empirical Mode . R
Sharma et al. [32] 2018 LS-SVM 84.01% - - EEG signals were decomposed using the BEMD
Decomposition (BEMD) based features
Data reduction using
. Locality Sensitive Discriminant Analysis (LSDA)
Frequency domain (Bispectrum) .. L .
Sharma et al. [33] 2019 based features SVM 96.20% 95.46% 96.96% Positive predictive value (PPV) = 97.01%
asec features Negative predictive value (NPV) = 95.39%
AUC = 96.00%
\ This Study | 2020 | Bi-directional LSTM based features | BDLSTM | 99.60% | 99.65% | 99.55% AUC = 99.24%
using both groups in the classification process. In addition, T —— 1 oam-
the high value of correct predictions of the LSTM classifier 0s o
shows efficient outcomes in the discrimination between focal g | _osesn
and non-focal EEG signals. : g
.. . . .. 2 o04- o
In addition, the Receiver Operating Characteristic (ROC) E 09952
. . . L 0.995
curve and the corresponding Precision-Recall plot are shown o voie
in Figure 6 (a) and (b), respectively, for the x-channel clas- ol o 09946
0 02 0.4 0.6 08 1 0.9945 0.995 0.9955 0.996 0.9965

sification process. The algorithm achieved an Area Under
the Curve (AUC) of 99.24%, a Positive Predictive Value
(PPV) of 99.47%, and a Negative Predictive Value (NPV) of
99.63%. The Precision-Recall plot shows that the algorithm
returned relevant results more than irrelevant ones with a high
precision and recall of >99% at different thresholds.

B. STATE-OF-ART STUDIES

To investigate the observations found in this study relative
to other studies, several researchers implemented machine
learning algorithms for the purpose of focal and non-
focal EEG classification. Table 5 provides a brief summary
of the recent research works in this area. All researches
covered in the table utilized the famous Bern-Barcelona
database [19] described in section III. The table shows dif-
ferent machine algorithms including Adaptive Neuro Fuzzy
Inference System (ANFIS), Least-Squares Support Vector
Machine (LS-SVM), Optimized SVM, and regular SVM. In
addition, a couple of these research works required further
decomposition of the EEG signals using Dual Tree Com-
plex Wavelet Transform (DT-CWT) and Bivariate Empirical
Mode Decomposition (BEMD). The proposed algorithms did
not require features extraction or signals decomposition step
prior to the training and classification process. The current
study showed close to literature observations with a slightly
higher values in the averaged overall performance. The over-
all accuracy of the algorithms have reached 99.60% with
high sensitivity of 99.65% and specificity of 99.55% using
the x-channels and 10-fold cross-validation scheme. It worth
noting that the studies covered in the summary table did not
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(a) ROC Curve (b) Precision-Recall
FIGURE 6. The ROC curve and Precision-Recall plot for the classifier
output using the x-channels and 10-fold cross-validation scheme: (a) ROC
curve, (b) Precision-Recall.
use deep learning algorithms and required manual feature
extraction from the EEG signals.

V. CONCLUSION

In this paper, a study is conducted to investigate the use of an
LSTM classifier to distinguish between focal and non-focal
EGG signals of patients with epilepsy. The study showed high
levels of accuracy of 99.60% in the classification process
using a 10-fold cross-validation scheme. The higher accuracy
was obtained when using x-channels and showed a high
agreement with experts classification of 99.20%. Both the x
and y EEG channels provided comparable results and suggest
the use of both channels to discriminate focal and non-focal
EEG signals. The study suggest LSTM as a potential deep
learning algorithm in clinical EEG signals identification.
Future work includes improvements on the architecture of the
network with further testings on different epilepsy data-sets.
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