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ABSTRACT The existing optical performance monitoring (OPM) scheme based on deep neural network
has no selection capability of the input data. They always accept and process all, which may result in
serious monitoring errors and reduce the credibility of the monitoring system. Because the transmitted
data in the future heterogeneous fiber-optic networks are diverse, and it’s likely to exceed the scope of the
monitoring system. We propose an unsupervised generative adversarial network (GAN) as the judgement
module in the new OPM framework to select the legal data within the scope of the monitoring system.
The generator consists of encoder-decoder-encoder (EDE) sub-network, jointly learns the image and latent
feature distribution of the legal data. And the training data for the network in the new added judgement
module is the same as the OPM analyzer network’s, therefore, no extra data are collected, which is low-cost.
In the simulation, four modulation formats under two bit-rates are taken into account to verify the model
performance in the judgement module. When 60 Gbps 64QAM signal is selected as illegal data, the max
value of the area under the curve (AUC) is 0.942. The judgement time for single image is about 12 ms.
Moreover, the influence of the task weights and the latent feature shape on the judgement performance are
investigated. The new added judgement module largely increases the credibility and safety of the existing
OPM scheme.

INDEX TERMS Optical performance monitoring (OPM), generative adversarial network (GAN).

I. INTRODUCTION
With the high-speed development of various cutting-edge
services, such as artificial intelligence (AI), fifth-generation
(5G) and cloud computing, the data transmitted in opti-
cal fiber network is also increasing explosively. Moreover,
in order to improve the quality-of-service (QoS) and meet
the real-time needs of end-users, the optical network becomes
more heterogeneous, dynamical and expecting a unified con-
trol and management of resources (e.g. bit-rate, modula-
tion format., etc.) [1]. The elastic optical networks (EONs)
together with software defined network (SDN) controllers
can meet these demands. To ensure the reasonable control
and management, it is crucial to provide correct and accu-
rate monitoring parameters (e.g. modulation format, optical
signal-to-noise ratio (OSNR), bit-rate, etc.) for the SDN con-
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troller using the technologies of OPM as well as bit-rate and
modulation format identification (BR-MFI) [2]. The optical
performance monitors deployed with the OPM and BR-MFI
technologies are equipped on the various intermediate node
of the optical network.

Recently, AI has attracted the attention of researchers,
among which the deep learning (DL) technology has become
a research hotspot in various areas such as natural language
processing (NLP), computer vision (CV), automatic speech
recognition (ASR), [3]–[5] etc. Compared with the tradi-
tionalmachine learning (ML)methods, DL has the significant
advantages of self-learning and automatic feature extraction
[6]. Naturally, with the purpose of improving the monitoring
accuracy, more and more DL technologies are used in OPM
[7] as well as BR-MFI [8], [9]. Moreover, some work even
realize the BR-MFI and OPM simultaneously. In [10], [11],
the convolutional neural network (ConvNet) was proposed for
the BR-MFI and OPM by using the data of the eye-diagram

75682 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-9990-1885
https://orcid.org/0000-0002-9561-4085
https://orcid.org/0000-0002-0125-8308
https://orcid.org/0000-0002-2251-9220
https://orcid.org/0000-0002-8729-9185
https://orcid.org/0000-0003-3183-2857


X. Fan et al.: Enhancing the Credibility of the Optical Performance Monitor With Adversarial Training

and constellation-diagram. In our previous works [12], the
multi-task learning (MTL) based ConvNet was proposed for
the OPM and BR-MFI by using the phase portrait images.
Similarly, by using the asynchronous amplitude histogram
(AAH), the MTL deep neural network (DNN) was proposed
for the OPM and BR-MFI [13], [14]. In general, with the help
of the advanced DL technologies, the result of the monitoring
tasks (OPM and BR-MFI) are becoming more and more
accurate.

However, there is a serious vulnerability in the exist-
ing OPM schemes when the optical performance monitor
is deployed in the real monitoring scenario. Specifically,
the analysis module of the existing OPM schemes directly
use the supervised learning method to train the DL model
as the data analyzer. A particular dataset is collected as the
monitoring scope, then, based on this dataset, the DL model
is trained to have an accurate monitoring result. In order for
the trained DL model to work properly, an important premise
is that the input data cannot exceed the monitoring scope,
otherwise, the DL model will give a totally wrong result.
Because the trained DL model can only give correct results
within the monitoring scope. For example, if a QAM type
signal is input into the analysis module which is only trained
to identify the on-off keying (OOK) type signal, the analysis
module would mistake the QAM signal for the OOK signal.
For the optical performance monitor, the input data within
the monitoring scope is defined as legal data, or else as illegal
data. Unfortunately, the existingOPM schemes have no selec-
tion of the input data, which means that they accept and pro-
cess all. Moreover, it is very easy for the optical performance
monitor deployed in the heterogeneous optical network to
receive the data exceeding the monitoring scope. Since the
monitoring results are important for the SDN controller to
manage and control the whole optical network, it is necessary
for the optical performance monitor to have the ability of
input data selection. The selection between the legal and
illegal data can be solved as a supervised learning problem
in theory, for example, we can put the illegal data into the
training dataset, and train the DL model to recognize them.
But there are endless illegal data types in the real monitoring
scenario, which means that the DL model cannot filter the
unknown illegal data while the training dataset is becoming
bigger and bigger. In order to eliminate the vulnerability and
improve the credibility of the optical performance monitor,
more advanced technology and OPM framework are needed.

In this paper, we design a new OPM framework to improve
the credibility in the practical monitoring scenario. Different
from the old OPM framework which directly accepts and
processes all the input data, a judgement module is added
into the new OPM framework to filter the illegal data which
exceeds the monitoring scope. The core of the judgement
module is an unsupervised GAN which generator consists
of EDE sub-network. The GAN model minimizes the dis-
tance between the images and latent features of the legal
data during training. The large distance metric form the
trained GAN model indicates illegal data. The asynchronous

FIGURE 1. The proposed new OPM framework across the dynamic and
heterogeneous optical network. OXC: optical cross-connect.

single channel sampling (ASCS) method is used to acquire
the phase portrait images as the input data. Four common
signals, 60/100 Gbps quadrature phase-shift keying (QPSK),
60/100 Gbps 4 quadrature amplitude modulation (QAM),
60/100 Gbps 16QAM, 60/100 Gbps 64QAM in the scenario
of various impairments such as OSNR, chromatic dispersion
(CD), and differential group delay (DGD) are comprehen-
sively investigated to verify the performance of the judgement
module. The good performance shows the effectiveness of the
proposed OPM scheme.

II. METHODS
A. MORE CREDIBLE OPM FRAMEWORK
Firstly, we propose the new OPM framework based on the
real monitoring scenario in the optical network, as shown
in Fig. 1. Future heterogeneous optical network is designed to
support various services (e.g. service a, b and c) with different
parameters (e.g. OSNR, CD, DGD, modulation format, bit-
rate, etc). For the better utilization of the resources in physical
layer, it is necessary to use the optical performancemonitor in
the intermediate nodes to provide the monitoring information
for the SDN controller. Based on the provided monitoring
information, the SDN controller can formulate strategies to
better control and manage resources. Thus, the optical perfor-
mancemonitors are required to provide as correct information
as possible.

The old OPM framework simply consists of two mod-
ules: data generation and data analysis modules. The data
generation module is used to continuously transform the
network transmission signal into the data format (e.g. AAH,
asynchronous delay-tap sampling (ADTS) images) suitable
for the processing of the analysis module. Here, the phase
portrait image is generated by theASCS. The analysismodule
based on neural network will analyze the input data and
then report the results. The neural network in the analysis
module is pre-trained, whichmeans that the monitoring scope
is determined. Once the data which exceeds the monitoring
scope is input into the analysis module, the totally wrong
monitoring results are attained. However, in the development
of the heterogeneous optical network, there will be more and
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FIGURE 2. The generation principle of the ASCS phase portraits.

more new services which can easily exceed the monitoring
scope of the existing optical performance monitor. Without
the ability to filter the illegal data, the monitoring information
provided by optical performancemonitor will lead to network
chaos.

To solve this problem, we design a more credible OPM
framework by adding a new judgement module on the old
OPM framework. The new added judgement module located
between the data generation module and the analysis module
is used to filter the illegal data. Specifically, if the judgement
module recognizes that the data generated by the data genera-
tion module is illegal, it will send out a warning and denial of
service. Otherwise, the legal data will be sent to the analysis
module to produce monitoring information. By adding the
judgement module in the new OPM framework, the optical
performance monitor becomes more credible, since it has
the ability to filter illegal data so that the totally wrong
monitoring information can be avoided. Moreover, since the
judgement module and the analysis module are decoupled,
the various monitoring algorithms studied by the predeces-
sors can be applied without any modification.

B. ASYNCHRONOUS SINGLE CHANNEL SAMPLING
In the data generation module, we use the ASCS method to
generate phase portrait images as the object of subsequent
processing. The ASCS is a simple and low-cost method, since
only the single-tap sampling without clock information is
required [15], [16]. The principle of using the ASCS method
to generate phase portraits is presented in Fig. 2. The optical
signal transmitted in the network will be converted into elec-
trical signal after being directly detected by the photodetector
(PD). Then, the single-tap sampling with low rate 1/Tsampling
is used to attain the original sample sequence marked as
q1, q2, · · · qN . The shifted (shifted by k samples) version of
the original sequence is attained to produce the sample pairs

FIGURE 3. The phase portraits of all eight signals affected by various
impairments. The first and the third rows correspond to OSNR = 12 dB
without DGD and CD, the second and the forth rows correspond to OSNR
= 24 dB, DGD = 4 ps and CD = 50 ps/nm.

(qi, qi+k) together with the original sequence. The collected
sample pairs are displayed as the phase portraits. Moreover,
the different signals’ phase portraits under diverse impair-
ments are shown in Fig. 3. Obviously, the phase portraits can
directly show the influence of various monitoring parameters,
which are suitable for processing by the judgement and anal-
ysis modules.

C. ADVERSARIAL EDE CONVNET FOR DATA JUDGEMENT
After the data generation module, the phase portraits will be
sent to the judgement module which is the focus in this paper.
In the judgement module, the adversarial EDE ConvNet is
proposed to filter the illegal data. The whole neural network
model is designed on the framework of GAN invented by
Goodfellow et al. [17]. As an unsupervised algorithm, GAN
have been applied to various applications [18]–[23] because
of its strong ability of learning data distribution. The basic
idea of GAN is that the generator network G and the discrim-
inator network D compete against each other in the training
phase. Specifically, the generator network tries to learn the
input data distribution and produce an image, then the dis-
criminator network judges the authenticity (real or fake) of
the generated image.

The overview of the adversarial EDEConvNet is illustrated
in Fig. 4. The generator is formed by an encoder-decoder-
encoder sub-network. The generator learns the image and
latent feature distribution by reconstructing the input image
and extracted latent feature, respectively. Taking a 32×32×3
color image I as the input of the generator, the first encoder
sub-network GE1 downscales the input image to a feature
Z of shape 1 × 1 × 100. The feature Z which contains the
most comprehensive information of the input image with
the least size can be regarded as the input image’s latent
feature. Then, the decoder sub-network GD reconstructs the
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FIGURE 4. The architecture of the proposed adversarial EDE ConvNet in the judgement module.

TABLE 1. Details of the basic block.

input image I as Î by upscaling the feature Z . The GE1
consists of 4 layers, and each layer consists of convolutional
operation, batch-norm and leaky ReLu() activation. Similarly,
the GD uses the convolutional transpose operation, ReLU()
activation, batch-norm and the tanh() activation. Moreover,
the second encoder sub-network GE2, which has the same
structure as GE1 but different weight parameters, is used to
extract the latent feature Ẑ from the reconstructed image Î .
The feature Ẑ has the same shape as feature Z . During training
phase, the input image I and the reconstructed image Î are
identified by the discriminator network D as real and fake,
respectively. With the help of the GAN framework, the EDE
network can better learn the representation of the legal data.
The details of the configuration (the filter size, stride, padding
and number of channels) in the basic blocks are displayed
in Table 1. To avoid repetition, the configuration of other
blocks are omitted. Because other blocks are the reuse of the
basic blocks, which means that they have the same structure
and configuration.

In order to train the proposed model, a big training dataset
denoted as {Ii}Mi=1 is collected from the monitoring scope,

where M is the number of the phase portraits and Ii ∈
R32×32×3. Note that the training dataset only contains the
legal data since the phase portraits are collected from the
monitoring scope. Besides, a testing dataset of N phase
portraits collected from both the inside and outside of the
monitoring scope can be denoted as

{(
I ′i , yi

)}N
i=1, where the

image label yi ∈ {0, 1} (0: illegal data, 1: legal data) and I ′i ∈
R32×32×3. Based on the above two datasets, our model first
learns the legal data distribution on the training dataset, then
the trained model identifies whether the data in the testing
dataset is legal or illegal. In the testing phase, a score S

(
I ′i

)
indicating the probability of the input testing image being
illegal will be calculated based on the L2 distance of the latent
features Z and Ẑ . The S

(
I ′i

)
can be expressed as

S
(
I ′i

)
=

∥∥GE1 (
I ′i

)
− G

(
I ′i

)∥∥
2 =

∥∥∥Z − Ẑ∥∥∥
2

(1)

The scores of the whole testing dataset are normalized to [0,
1]. The testing image I ′i is regarded as illegal when its score
S

(
I ′i

)
exceeds a certain threshold. During the training phase,

the model is trained by the combined three loss functions.
Each loss function is used to optimize the different part of
the model. The first loss function is the adversarial loss. The
most common way to train GAN is to update the generator G
based on the output of the discriminatorD, but this way is not
stable. In order to alleviate the training instability, we use the
feature matching [24] method to update G based on the D′s
internal feature. Given an input image Ii from the distribution
of training dataset, the featurematchingmethod calculates the
L2 distance between the D’s internal feature of the original
image Ii and the reconstructed image Îi, respectively. The
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FIGURE 5. Simulation system for testing the performance of the
judgement module.

adversarial loss can be expressed as

lossadv = Ex∼px
∥∥∥f (Ii)− Ex∼px f (

Îi
)∥∥∥

2
(2)

where f (·) is the output of the D’s third layer. The second
loss function is the reconstruction loss. It is used to optimize
theGE1 andGD by learning the content information about the
input data. Since the L1 distance produces less blurry image
that the L2 distance [19], we use the L1 distance to define the
reconstruction loss as

lossrec = Ex∼px
∥∥∥Ii − Îi∥∥∥

1
(3)

The third loss function is the latent feature loss. The above
two loss functions can enforce the G to learn the legal data
distribution in image space, moreover, we add the latent
feature loss to learn the distribution in latent feature space.
The latent feature loss can be defined as

losslat = Ex∼px
∥∥∥Z − Ẑ∥∥∥

2
(4)

Based on the three loss functions, theG learns the distribution
of legal data both in image and feature space. When an illegal
data which has different distribution with the legal data is
inputted to the trained model, the distance between the latent
features z and z’ will increase beyond the threshold, since the
model is trained only on legal data. Finally, the overall loss
function can be expressed as

lossoverall = lossrec + λ1losslat + λ2lossadv (5)

where λ1 and λ2 are the task weights to balance the influence
of the latent feature loss and the adversarial loss, respec-
tively. Twomodels with different important factors are trained
for the comparison of performance. One model named as
‘‘Model 1’’ is trained when λ1 = 15 and λ2 = 0, which
means that the ‘‘Model 1’’ is trained without the framework
of GAN since λ2 = 0. The other model named as ‘‘Model 2’’
is trainedwhen λ1 = 15 and λ2 = 5. The specific information
about the selection of the important factors is discussed in
section B part III.

III. SYSTEM SETUP AND RESULTS
In order to collect data and build the neural network model,
the simulation system is established on VPItransmission-
Maker and Tensorflow library as shown in Fig. 5. Firstly,
eight signals are generated in the transmitter by two bit-
rates (60/100 Gbps) and four common modulation for-
mats (4QAM, 16QAM, QPSK and 64QAM). To simulate
the impairments in single-mode fiber (SMF) transmission,

FIGURE 6. The AUC performance for the ‘‘Model 1’’ and ‘‘Model 2’’ when
each signal type is selected as illegal class.

the CD/DGD emulator, the erbium-doped fiber amplifier
(EDFA) as well as the variable optical attenuator (VOA) is
used to add CD/DGD and OSNR, respectively. The values of
OSNR, CD and DGD are adjusted in range 10-28 dB (the step
is 2 dB), 0-450 ps/nm (the step is 50 ps/nm) and 0-10 ps (the
step is 1 ps), respectively. The electrical signals are converted
from the optical signals by PD. Then the ASCS method is
used to generate phase portrait images (in ‘‘.png’’ format).
Eventually, the phase portraits are sent to the adversarial EDE
ConvNet in the judgement module to identify whether it is
legal or illegal.

For each combination of the modulation format and bit-
rate, we collect 1100 (10 × 10 × 11) phase portraits. There-
fore, for the eights signals, a large dataset comprises of 8800
(1100 × 8) phase portraits is collected. To simulate different
monitoring scope, we treat each type of signal as the illegal
data, while the rest seven signals are regarded as the legal data
in the monitoring scope. Totally, eight sets of dataset are pre-
pared, each of which regarded the individual signal as the ille-
gal data. For each set of dataset, the legal data (7700 images)
are randomly split into the training dataset and the testing
dataset according to the proportion of 6/7 (6600 images)
and 1/7 (1100 images), respectively. Finally, the illegal data
(1100 images) would be combined into the testing dataset
which split from legal data as the final testing dataset (2200
images). Generally, there are eight sets of data, and each
set of data has the training dataset (6600 legal images) and
the testing dataset (2200 images of mixed legal and illegal
data). Note that in the actual optical performance monitor,
the judgement module and the analysis module are trained
on the identical training data, therefore, no extra data are
needed for the new added judgement module, which is low-
cost. The proposed adversarial EDE ConvNet is optimized
by the Kinga and Adam [25] on the overall loss function with
the learning rate lr = 2e−3 andmomentums β1 = 0.46, β2 =
0.986.

A. THE PERFORMANCE OF DATA JUDGEMENT
Firstly, for each signal selected as the illegal data, the AUC
values of the ‘‘Model 1’’ and ‘‘Model 2’’ are presented in
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FIGURE 7. (a) The original input images. (b) The corresponding
reconstructed images by the ‘‘Model 1’’. (c) The corresponding
reconstructed images by the ‘‘Model 2’’. The images with red border
indicate the illegal data. The correlation values between the
reconstructed and the input images are displayed at the top of each
reconstructed image.

Fig. 6. The definition of AUC is that the area under the
Receiver Operating Characteristic (ROC) curve, which is
often used to evaluate the binary classifier’s performance. The
classifier corresponding to the bigger AUC has a better per-
formance. Obviously, the ‘‘Model 2’’ achieves higher AUC
than the ‘‘Model 1’’ for all illegal classes. The highest AUC
0.820 and 0.942 are achieved by the ‘‘Model 1’’ and ‘‘Model
2’’, respectively, when the 60 Gbps 64QAM is selected as the
illegal class. The lowest AUC 0.425 and 0.510 are achieved
by the ‘‘Model 1’’ and ‘‘Model 2’’, respectively, when the
60 Gbps 4QAM is selected as the illegal class. The results
show that with the help of the GAN framework, the ‘‘Model
2’’ (λ2 = 5) can better fit the data distribution of the moni-
toring scope.

Moreover, select the highest AUC models (the ‘‘Model 1’’
and ‘‘Model 2’’ when 60 Gbps 64QAM is selected as illegal
class) as the research objects, some examples of the input
images, and the corresponding reconstructed images (recon-
structed by the ‘‘Model 1’’ and ‘‘Model 2’’, respectively) are
illustrated in Fig. 7, in which the images with red border are
the illegal data (60 Gbps 64QAM). The Fig. 7(a) shows the
input images. The Fig. 7(b) and Fig. 7(c) shows the corre-
sponding reconstructed images of the Fig. 7(a) by the ‘‘Model
1’’ and ‘‘Model 2’’, respectively. The correlation between
the reconstructed and the input images are displayed at the
top of each reconstructed image in Fig. 7(b) and 7(c). Since
the reconstructed legal images have the better image content
and the bigger correlation value than the reconstructed ille-
gal images, we can conclude that both the two models can
effectively reconstruct the legal images, but fail to reconstruct
the illegal images. It is because that the trained model have
learned the legal data distribution, so it is easy to reconstruct
legal image rather than the illegal image. The difference of
the reconstruction performance between the legal and illegal
images is an intuitive reflection of the distribution difference
between the legal and illegal data. For the legal images,
the reconstruction performance of the ‘‘Model 2’’ is better
than the reconstruction performance of the ‘‘Model 1’’, while,
for the illegal images, the reconstruction performance of the
‘‘Model 2’’ is worse than the reconstruction performance of

FIGURE 8. The AUC performance in response to the latent feature shape
when each signal type is selected as the illegal class.

the ‘‘Model 1’’. This means that the ‘‘Model 2’’ which trained
on the GAN framework is more powerful in identifying the
illegal data.

B. LATENT VECTOR LENGTH AND TASK WEIGHT
The latent features Z and Ẑ are used to represent the data dis-
tribution, the shape of the latent feature would directly affect
the representation ability of the data distribution, then affect
the model performance of identifying illegal data. Besides,
the task weights also affects the model performance. There-
fore, it is necessary to study how these hyper-parameters
affect the model performance. Here, we take the ‘‘Model
2’’ as the research object and change the shape of its latent
feature. The AUC values for each latent feature shape under
different monitoring scope are illustrated in Fig. 8. It is clear
that when the shape of the latent feature is 1 × 1 × 100,
themodel achieves best AUC for almost all monitoring scope.
To be more concrete, when the length of the third dimension
is less than 100, the larger the third dimension is, the better
the model performance is. Nevertheless, once the length of
the third dimension exceeds 100, the model performance
begins to decline. It is because that small shape cannot contain
all the useful features, while large shape contains too much
redundant features.

Next, the influence of the task weights on the model per-
formance is studied when the shape of the latent feature is
fixed at 1× 1× 100 and 60 Gbps 64QAM is selected as the
illegal data, as shown in Fig. 9. The task weights are adjusted
in the range of [0, 30] with the step of 5. Obviously, when the
task weight λ2 is at the range of [0, 15] and the task weight
λ1 is at the range of [0, 10], the model performance is poor
(AUC is about less than 0.5084). When the λ1 is at the range
of [10, 20] and the λ2 is at the range of [0, 10], the model
achieves good performance. The optimal model performance
(the AUC value is 0.9420) is achieved when the λ1 equals
15 and the λ2 equals 5, which is exactly the task weights
configuration of the ‘‘Model 2’’.

VOLUME 8, 2020 75687



X. Fan et al.: Enhancing the Credibility of the Optical Performance Monitor With Adversarial Training

FIGURE 9. The AUC performance in response to the task weights of λ1
and λ2.

FIGURE 10. Histogram of the judgement scores for the images in the
testing dataset.

Generally, in order to make the model have good perfor-
mance, it is very important to select the appropriate shape of
the latent features and the task weights. In the case of this
paper, it is suitable to set the latent feature shape, the λ1 and
the λ2 to 1× 1× 100, 15 and 5, respectively.

C. DISTRIBUTION OF THE JUDGEMENT SCORES AND
FEATURES
The ‘‘Model 2’’ trained when the 60 Gbps 64QAM signal is
selected as the illegal data is used to evaluate the correspond-
ing testing dataset. The histogram of the judgement score
S

(
I ′i

)
during the test phase is illustrated in Fig. 10. It is clear

that a separation score around 0.4 can effectively separate
the testing data into the legal data and illegal data. Although
the legal data and the illegal data have the overlapping parts,
the proportion of the overlapping parts is very small, which
has a limited impact on the overall performance. Moreover,
the t-SNE [26] visualization of the extracted features from the
third layer (f (·)) of the discriminator networkD is illustrated
in Fig. 11. The shape of the feature produced from the third
layer of the D is 4 × 4 × 256. The t-SNE is a non-liner
dimensionality reduction algorithm, which is common for

FIGURE 11. The t-SNE visualization of the extracted features from the
third layer of the discriminator network.

visualization. It is obvious that the legal data and illegal
data can be roughly separated into two parts, which means
that the discriminator network D has the ability to identify
whether the data is legal or not. The above results directly
prove the validity of the proposed model. Based on the Intel
Core i7 CPU, the average time for the model to process each
image in the testing dataset is around 12 ms, which can be
shorter by using the Graphics Processing Unit (GPU) devices.
Compared with the old OPM framework, although the new
added judgement module increases the processing time of
the data (within an acceptable range), it greatly enhances the
credibility of the optical performance monitor, which is of
great significance to the development of the optical network.

IV. CONCLUSION
In conclusion, an adversarial EDE network as the new added
judgement module in the new OPM framework is proposed.
The new OPM framework as well as the adversarial EDE
network can filter the data which exceed themonitoring scope
of the optical performance monitor, so as to avoid the totally
wrong monitoring results. By the comparison of the EDE
network (without GAN framework), the proposed adversarial
EDE network achieves better performance. When 60 Gbps
64QAM signal is selected as illegal data, the max value of
the AUC is 0.942. A short time around 12 ms is taken for our
model to process a single input image, which is very efficient.
The judgementmodule and the analysis module are trained on
the identical training data, therefore, no extra data are needed
for the new added judgement module, which is convenient
and low-cost. Moreover, the effects of the latent feature shape
and the task weights on the model performance were studied
in detail. The proposed method is of great significance to
enhance the credibility of the optical performance monitor
and assure the efficient operation of the optical network.
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