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ABSTRACT This paper studies the performance of hyperdense large-scale cellular networks with energy
harvesting. To combat the randomness of renewables, the base stations (BSs) with the harvested power
larger than the predefined power target are assumed to cooperatively share their surplus power to the BSs
with insufficient energy via directed microwave power transfer (MPT). To evaluate the performance of
the proposed cooperative power sharing scheme, a new performance metric, namely the power coverage
probability, which is defined as the probability that a BS satisfies its respective power target, is introduced
and then characterized by applying tools from stochastic geometry. It is shown that in the hyperdense regime,
the power coverage probability of cellular networks with energy harvesting and MPT based power sharing
depends on the statistical mean of the harvested renewables, the power target, the power sharing distance,
and the MPT path-loss exponent. Simulations are provided to validate our analysis.

INDEX TERMS Energy harvesting, multi-cell cooperation, microwave power transfer, stochastic geometry,
power coverage probability.

I. INTRODUCTION
Hyper densification of cellular network deployment is con-
sider to be the key enabling technology for 5G system to meet
the 1000x data rate challenge [1]–[3]. With densely deployed
base stations (BSs), the reduction of cell size considerably
increases the spatial reuse of the cellular network while
decreases the transmission distance of each data link. Though
deploying more cells significantly improves the spectrum
efficiency, the corresponding energy consumption grows dra-
matically with the increased BSs. Renewable energy, envi-
sioned as a promising alternative to the traditional fossil
fuel based power generation, provides an effective way of
reducing energy costs in dense cellular networks [4]. One of
the most challenging issues of cellular networks powered by
renewable energy lies in the stochastic and intermittent nature
of the renewable sources [5]. In this paper, motivated by the
law of large numbers, we smooth out such fluctuations by
enabling cooperative power sharing among the BSs.

Point process theory [6], [7] has been widely applied
in the study of large-scale wireless networks with energy
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harvesting. In [8], Huang characterized the tradeoff between
the energy arrival rate and the spatial throughput of
mobile ad hoc networks with energy harvesting. In [9],
Che et al. investigated the optimization problem of bidirec-
tional energy harvesting and information transmission in
large-scale communication networks with wireless charging.
In [10], Lee et al. studied the performance of opportunistic
energy harvesting in large-scale cognitive radio networks
and maximized the throughput of secondary network sub-
ject to outage constraints. In [11], Dhillon et al. developed a
tractable model for K-tier downlink heterogeneous networks
with energy harvesting and characterized the availability
region for a set of general uncoordinated BS operational
strategies. In [12], Huang considered deploying power bea-
cons in cellular networks to enable microwave power trans-
fer (MPT) for mobile recharging and derived the tradeoffs
between the network parameters. In [13], Sakr et al. inves-
tigated the performance of device to device (D2D) com-
munications with energy harvesting and characterized the
outage probabilities for both D2D and cellular users. It is
worth noting that in the above prior works [8]–[13], with
energy storage units, the randomness of the harvested energy
was smoothed out by exploiting the time diversity of the
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generated renewables. In [14], Huang et al. proposed a novel
energy field model and characterized the performance of
downlink cellular networks with on-site/distributed energy
harvesters. In [15], Khan et al. evaluated the transmission
success probability of a large-scale cluster based wireless
networks with energy harvesting, and captured the trade-
off between link-level performance and density of receivers
served. In [16], Wu et al. investigated a novel cooperative
transmission strategy for energy harvesting based small cell
basestations, and derived the cell load distributions, the aver-
age user capacity, and the coverage probability via Gamma
approximation. In [17], Guo et al. investigated a multi-cell
network with cooperative NOMA and energy harvesting, and
derived the closed-form expressions of the coverage proba-
bility, ergodic rate, and energy efficiency. It was pointed out
in [14]–[17] that the fluctuating effect of the harvested energy
can also be counteracted by exploiting the spatial diversity of
the generated renewables.

In this paper, a novel framework is provided to analyze
the performance of large-scale cellular networks with energy
harvesting. The locations of BSs are modeled as a homoge-
neous Poisson point process (HPPP). With energy harvest-
ing module and energy storage module, each BS is able to
collect and store ambient renewables for data transmissions
in the subsequent time slot. The power1 harvested by the
BSs are expected to exceed their respective power targets
such that the outage constraints at the intended mobile users
can be satisfied. It is worth noting that due to the fluctuat-
ing effect of the renewables, the harvested power is unsta-
ble and thus may falls below the predefined power target.
To combat such randomness, it is assumed that the BSs with
the harvested power larger than the predefined power target
cooperatively share their surplus power to the BSs with the
harvested power lower than the predefined power target via
directed MPT [12]. Thus, different from that in [8]–[13],
we stabilize the harvested power by exploiting the spatial
diversity, instead of time diversity, of the generated renew-
ables. Further, different from [14]–[17], we investigate the
MPT based power sharing for power transfer. In this paper,
we mainly focus on the hyperdense regime of the cellular
networks with energy harvesting, which is a typical sce-
nario of 5G cellular systems. To evaluate the performance
of the proposed cooperative power sharing scheme, a new
performance metric, namely the power coverage probability,
which is defined as the probability that a BS satisfies its
respective power target, is introduced and then characterized
by applying tools from stochastic geometry. It is shown that
in the hyperdense regime, the power coverage probability
of cellular networks with energy harvesting and MPT based
power sharing depends on the mean value of the harvested
renewables, the power target, the power sharing distance,
and the MPT path-loss exponent. Simulations are provided

1In the following, due to the fact that power is the amount of energy
consumed per unit time, we simply denote energy as power by abuse of
notation.

to validate our analysis. The main contributions of this paper
are summarized as follows:
• We consider a hyperdense large-scale cellular network
with BSs powered by energy harvesting, where the
locations of BSs are modeled as a Poisson point pro-
cess (PPP) on R2. To cope with the randomness of
the harvested renewables, a MPT based power sharing
scheme is proposed. Particularly, it is designed that the
BSs with the harvested power larger than the predefined
power target cooperatively share their surplus power
to the BSs with the harvested power lower than the
predefined power target via directed MPT.

• To analyze the performance of the proposed MPT based
power sharing scheme, a novel framework is developed
with stochastic geometry. We first derive the mean and
variance of the received shared power via MPT at a
BS with the respective harvested power lower than the
predefined power target. Then, based on the results,
we further derived the upper and lower bounds on the
power coverage probability by applying the Cantelli’s
inequality.

• Extensive simulations are provided to verify our anal-
ysis. An implication of our analytical and simulated
results is that: for cellular networks with energy harvest-
ing and MPT based power sharing, it is more beneficial
to increase the density of BSs than expanding the power
sharing distance to counteract the randomness of the
renewables.

The remainder of this paper is organized as follows. The
system model and performance metrics are described in
Section II. The power coverage probability of the cellu-
lar network with energy harvesting and MPT based power
sharing is characterized in Sections III. Simulation results
are presented in Section IV. Finally, we conclude our paper
in Section V.

II. MODEL AND METRIC
A. SYSTEM MODEL
We consider a hyperdense large-scale cellular network pow-
ered by renewable energies onR2, where the locations of BSs
are modeled as a HPPP with density λ. Time is assumed to
be slotted. In each time slot, the BSs are designed to collect
and store ambient renewable energies for data transmissions
in the subsequent time slot. It is worth mentioning that com-
pared with the traditional cellular network with stable power
supply, the cellular network with energy harvesting suffers
considerable performance loss due to unreliable and spatially
fluctuating renewable sources. To combat such randomness
of renewables, in this paper, motivated by the law of large
numbers, we enable the BSs to cooperatively share their
surplus power via directed MPT.

Let Pk be the renewable power harvested by the k-th BS in
time slot t . To capture the fluctuating effect of renewables,
it is assumed that Pk follows an exponential distribution
with mean given by P. Further, to simplify the analysis,
the renewable power harvested by BSs at different locations
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FIGURE 1. MPT transmission and reception model.

are assumed to be independent.2 The power targets, i.e., the
transmission powers, for BSs in the cellular network with
energy harvesting are assumed to be the same and denoted
by ηb. Let 5b be the set of BSs with the harvested power
larger than the predefined power target ηb and let 9b be the
corresponding locations. In addition, let 5c

b be the set of
BSs with the harvested power less than the predefined power
target ηb and let 9c

b be the corresponding locations. Then,
with coloring theorem [7], it can be easily verified that9b and
9c
b follow two independent HPPPs with densities λb = λ ·βb

and λcb = λ · (1−βb), respectively, where βb = Pr {Pk ≥ ηb}.
The power Pk harvested by the k-th BS is expected to

exceed its respective power target ηb such that the trans-
mission outage constraints at the intended mobile users are
satisfied. It is worth noting that due to the randomness of
the renewables, Pk is unstable and thus may falls below the
predefined power target ηb. To make all the BSs reach their
respective power target ηb, in this paper, it is assumed that
the i-th BS in 5b located at Xi equally share its surplus
power Pi − ηib to the BSs in 5c

b(Xi, d) via directed MPT
as illustrated in Fig.1, where 5c

b(Xi, d) denotes the set of
BSs in 5c

b within a distance of d from Xi, and d denotes
the power sharing distance of cellular networks with energy
harvesting. Particularly, denotingMi as the counting measure
of 5c

b(Xi, d), the power shared by the i-th BS in 5b located
at Xi for each BS in 5c

b(Xi, d) is given by

P̂i =
Pi − ηib
Mi + 1

, (1)

where Mi is a Poisson distributed random variable with den-
sity given by λm = λcbπd

2. It is worth noting that in each

2It is worth noting that in general, due to the geographical differences of
BSs, the distributions of Pk s vary over the spatial domain. Also, the Pk s of
adjacent BSs are dependent. In this paper, however, to facilitate the analysis,
we assume that the Pk s are i.i.d exponential random variables with mean
given by P.

time slot, for BSs in 5b, all the remaining power ηib will be
utilized for data transmission in the next time slot.

The propagation loss of directed MPT is modeled as [12]

l(r) = r−α+ , (2)

where r denotes the power sharing distance, 2 < α < 4
denotes the directed MPT path-loss exponent, and

r+ = max (1, r) . (3)

Let Yj be the location of the j-th BS in 5c
b. In addition,

let 5b(Yj, d) be the set of BSs in 5b within a distance of d
from Yj as illustrated in Fig.1(b). Then, based on (1) and (2),
we obtain the total shared power received at the j-th BS
in 5c

b as

Sj =
∑

i∈5b(Yj,d)

Pi − ηib
Mi + 1

· |Xi − Yj|
−α
+ , (4)

where Xi denotes the location of the i-th BS in 5b(Yj, d).
Let Nj be the counting measure of 5b(Yj, d). Then, it can
be easily verified that Nj follows a Poisson distribution with
density given by λn = λbπd2. It can be also verified that
for ∀p, q ∈ 5b(Yj, d), p 6= q, Mp and Mq are dependent.
With (4), it thus follows that the total power (the harvested
power plus the shared power) received by the j-th BS in 5c

b
at the tagged time slot is given by

Tj = Pj + Sj, (5)

where Pj denotes the renewable power harvested by Yj.
To simplify the analysis, it is worth noting that in each time
slot, if Tj ≥ ηb, the j-th BS in 5c

b will use ηb for data
transmission in the next time slot and discard the remaining
power.

B. PERFORMANCE METRIC
To evaluate the performance of the proposed cooperative
power sharing scheme, we introduce a new performance
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metric, namely the power coverage probability, for cellular
networks with energy harvesting and MPT based power shar-
ing, which is specified as follows.

Power Coverage Probability: For cellular networks with
energy harvesting and MPT based power sharing, the power
coverage probability, denoted by τ , is defined as the proba-
bility that a BS satisfies its respective power target. Partic-
ularly, denoting P as the harvested power of the BS, η as
the corresponding power target, and S as the total shared
power received at the BS, the power coverage probability
for cellular networks with energy harvesting and MPT based
power sharing is given by

τ = Pr {P+ 1 (P < η) · S ≥ η} , (6)

where 1(A) denotes the indicator function.

III. CHARACTERIZATION OF Sj
In this section, we characterize the mean and variance of Sj.
Lemma 1: For cellular networks with energy harvesting

and MPT-based power sharing, the mean value of Sj received
at the j-th BS in 5c

b is given by

E
[
Sj
]
=

βb

1− βb
· P ·

1− e−λ(1−βb)πd
2

d2
·
α − 2d−(α−2)

α − 2
,

(7)

where βb = Pr {Pk ≥ ηb}.
Proof: See Appendix A. �

Remark 1: It can be easily verified that E
[
Sj
]
is an

increasing function of βb when βb is small, while a decreasing
function of βb when βb is large.
Remark 2: It can be also verified that E

[
Sj
]
is a decreas-

ing function of d , which is intuitively expected since a long
range of power transfer via MPT may suffer a considerable
loss of energy.
Remark 3: Further, it can be verified that E

[
Sj
]
is an

increasing function of λ, which is due to the fact that the
energy loss of MPT based power transfer decreases with the
transmission d and thereby λ.
Lemma 2: For cellular networks with energy harvesting

and MPT-based power sharing, the variance of Sj received
at the j-th BS in 5b can be approximated by

Var
[
Sj
]
∼=

βb

1− βb
·

2P2 ·
(
1− e−λ(1−βb)πd

2
)

λ (1− βb) πd4

×
α − d−(2α−2)

α − 1
. (8)

Proof: See Appendix B. �
Remark 4: It can be easily verified that Var

[
Sj
]
is a

decreasing function of d , which is due to the fact the fluc-
tuation of Var

[
Sj
]
decreases with the energy loss of MPT.

Remark 5: It can be also verified thatVar
[
Sj
]
is a decreas-

ing function of λ, which is due to the law of large number.
With Lemmas 1 and 2, in the following section, we charac-

terize the power coverage probability of the cellular networks
with MPT-based power sharing.

IV. POWER COVERAGE PROBABILITY
In this section, we analyze the power coverage probability of
the cellular networks with MPT based power sharing. It is
worth noting that thanks to the homogeneousness of the stud-
ied cellular network with energy harvesting and MPT based
power sharing, the average power coverage performance of
the cellular network can be characterized by the coverage
performance experienced at the j-th BS.With this fact and (6),
we obtain the power coverage probability of cellular networks
with energy harvesting and MPT-based power sharing as

τ = Pr
{
Pj < ηb

}
· Pr

{
Pj + Sj ≥ ηb

∣∣∣Pj < ηb

}
+ Pr

{
Pj ≥ ηb

}
= (1− βb) · Pr

{
Pj + Sj ≥ ηb

∣∣∣Pj < ηb

}
+ βb

= (1− βb) · ϕb + βb, (9)

where

ϕb = Pr
{
Pj + Sj ≥ ηb

∣∣∣Pj < ηb

}
= Pr

{
Pj + Sj ≥ ηb

∣∣∣Pj < ηb,Sj < ηb

}
· Pr

{
Sj < ηb

}
+ Pr

{
Pj + Sj ≥ ηb

∣∣∣Pj < ηb,Sj ≥ ηb
}
· Pr

{
Sj ≥ ηb

}
= Pr

{
Pj + Sj ≥ ηb

∣∣∣Pj < ηb,Sj < ηb

}
· Pr

{
Sj < ηb

}
+ Pr

{
Sj ≥ ηb

}
. (10)

Remark 6: It can be easily verified that the power coverage
probability τ contains two parts. The first part calculates the
power coverage probability of BSs with the harvested energy
less than the predefined target η. In this case, the respec-
tive BSs may satisfy the power target ηb if and only if
Pj + Sj ≥ ηb. The second part calculates the power coverage
probability of BSs with the harvested energy lager than the
predefined target η, which is straight forward from the pro-
posed MPT based power sharing scheme.
In the following, we first derive βb and ϕb, and then based on
which characterize τ .
Lemma 3: For cellular networks with energy harvesting

and MPT-based power sharing, we obtain βb as

βb = e−
ηb
P . (11)

Remark 7: It can be verified that βb is a decreasing func-
tion of ηb while an increasing function of P.

Proof: See Appendix C. �
In the following, we first characterize Pr

{
Sj ≥ ηb

}
, and then

based on which characterize ϕb.
Lemma 4: For cellular networks with energy harvesting

and MPT-based power sharing, Pr
{
Sj ≥ ηb

}
is upper and

lower bounded by{
ε̄ ≤ Pr

{
Sj ≥ ηb

}
≤ 1, if E

[
Sj
]
≥ ηb,

0 ≤ Pr
{
Sj ≥ ηb

}
≤ ε, if E

[
Sj
]
< ηb,

(12)
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where

ε =
Var

[
Sj
]

Var
[
Sj
]
+
(
ηb − E

[
Sj
])2 , (13)

and

ε̄ = 1− ε

= 1−
Var

[
Sj
]

Var
[
Sj
]
+
(
ηb − E

[
Sj
])2 . (14)

Proof: See Appendix D. �
Remark 8: It is worth noting that only the mean and vari-

ance of Sj can be derived. As such, only upper and lower
bounds on Pr

{
Sj ≥ ηb

}
can be obtained.

Remark 9: It is also worth noting that the derived upper
and lower bounds on Pr

{
Sj ≥ ηb

}
are piecewise functions,

where the segmentation point depends on the values of E
[
Sj
]

and ηb.
Based on Lemma 4, we characterize ϕb in the following

lemma.
Lemma 5: For cellular networks with energy harvest-

ing and MPT-based power sharing, ϕb is upper and lower
bounded by{
ε̄ ≤ ϕb ≤ 1, if E

[
Sj
]
≥ ηb,

0 ≤ ϕb ≤
E[Sj]
ηb
+

(
1− E[Sj]

ηb

)
· ε, if E

[
Sj
]
< ηb.

(15)

Proof: See Appendix E. �
Remark 10: Similar as that of Pr

{
Sj ≥ ηb

}
, only upper

and lower bounds on ϕb can be obtained. Also, the derived
upper and lower bounds on ϕb are piecewise functions
with the segmentation point depends on the values of
E
[
Sj
]
and ηb.

Based on Lemmas 3 and 5, we characterize τ in the follow-
ing theorem.
Theorem 1: For cellular networks with energy harvest-

ing and MPT-based power sharing, τ is upper and lower
bounded by{

ς ≤ τ ≤ 1, if E
[
Sj
]
≥ ηb,

e−
ηb
P ≤ τ ≤ υ, if E

[
Sj
]
< ηb,

(16)

where

ς = ε̄ ·
(
1− e−

ηb
P

)
+ e−

ηb
P , (17)

and

υ =

(
E
[
Sj
]

ηb
+

(
1−

E
[
Sj
]

ηb

)
· ε

)
·

(
1− e−

ηb
P

)
+ e−

ηb
P .

(18)

Proof: Based on Lemmas 3 and 5, with (9), (16) can
be immediately obtained. This thus completes the proof of
Theorem 1. �
Based on Theorem 1, we characterize lim

λ→∞
τ in the follow-

ing corollary.

Corollary 1: For cellular networks with energy harvesting
and MPT-based power sharing, we have

lim
λ→∞

τ =

{
1 if µc ≥ ηb,

e−
ηb
P × e

µc
P if µc < ηb,

(19)

where

µc = lim
λ→∞

E
[
Sj
]

=
1

e
ηb
P − 1

·
P
d2
·
α − 2d−(α−2)

α − 2
.

(20)

Proof: See Appendix F. �

V. NUMERICAL RESULTS
In this section, to validate our analytical results and demon-
strate the benefit of MPT based multi-cell cooperation,
extensive simulations are presented. Throughout this section,
unless specified otherwise, we set P = 5, ηb = 0.5, and
α = 3. Further, the power sharing distance d is measured in
meter.

FIGURE 2. Mean value of Sj versus power sharing distance d for
λ = 0.01,0.1,1, respectively.

Fig. 2 plots the analytical and simulated results on themean
value of Sj for λ = 0.01, 0.1, 1, respectively. It is observed
that the simulation results match with analytical results.3 It
is also observed that the mean value of Sj is a decreasing
function of the power sharing distance d , which is intuitively
expected since the energy transformed via MPT may suffer a
considerable loss due to the long range transmission. Further,
it is observed that the mean value of Sj is an increasing
function of λ, which is due to the fact that the total energy loss
of MPT based power transfer decreases with d and thereby λ.
Fig. 3 plots the analytical and simulated results on the

variance of Sj for λ = 0.01, 0.1, 1, respectively. It is observed
that the simulation results match with analytical results. It is
also observed that the variance of Sj is a decreasing function

3It worth noting that the simulation results are fluctuating around the
analytical results, which is due to the the central limit theorem.
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FIGURE 3. Variance of Sj versus power sharing distance d , for
λ = 0.01,0.1,1, respectively.

FIGURE 4. Power coverage probability of cellular networks with energy
harvesting and MPT based power sharing for λ = 0.01.

of the power sharing distance d , which is due to the fact that
the fluctuation of Sj vanishes as d . Further, it is observed that
the variance of Sj is decreasing function of λ, which is due
to the law of large number.

Figs. 4, 5, 6 shows the analytical and simulated results on
power coverage probability of cellular networks with energy
harvesting and MPT based power sharing versus the power
sharing distance d , for λ = 0.01, 0.1, 1, respectively. It is
observed that the derived upper and lower bounds on power
coverage probability are valid. It is also observed that the
power coverage probability is a decreasing function of d ,
which is due to the fact the energy loss via MPT increases
dramatically with d .
Fig. 7 compares the simulated values of power coverage

probability of cellular networks with energy harvesting and
MPT based power sharing for λ = 0.01, 0.1, 1,∞. It is
observed that the power coverage probability of cellular net-
works with energy harvesting and MPT based power shar-
ing is an increasing function of λ, which is mainly due to
the fact that the distance of the power transfer decreases

FIGURE 5. Power coverage probability of cellular networks with energy
harvesting and MPT based power sharing for λ = 0.1.

FIGURE 6. Power coverage probability of cellular networks with energy
harvesting and MPT based power sharing for λ = 1.

FIGURE 7. Performance comparison of power coverage probability of
cellular networks with energy harvesting and MPT based power sharing
for λ = 0.01,0.1,1,∞.

with λ. Particularly, the tight upper bound on the power
coverage probability is a piecewise function of d , which can
be achieved by increasing λ to∞. Further, the segmentation

VOLUME 8, 2020 77209



X. Chen: Power Coverage Analysis of Cellular Networks With Energy Harvesting and MPT-Based Power Sharing

point of the power coverage probability depends on the mean
value of Sj and ηb. An implication of the above observations
is that: for cellular networks with energy harvesting andMPT
based power sharing, it is more beneficial to increase the
density of BSs than expanding the power sharing distance d
to counteract the randomness of the renewables.

VI. CONCLUSION
This paper has studied the performance of hyperdense
large-scale cellular networks with energy harvesting. To com-
bat the randomness of renewables, the BSs with the harvested
power larger than the predefined power targets are assumed
to cooperatively share their surplus power to the BSs with the
harvested power lower than the predefined power targets via
directed MPT. By applying tools from stochastic geometry,
we first derived the mean and variance of Sj to capture the
statistics of the shared power. Then, based on the obtained
results, we characterize the power coverage probability of the
studied large-scale cellular network with energy harvesting
andMPT based power sharing. Finally, extensive simulations
are provided to verify our analysis. An implication of our
analytical and simulated results is that: for cellular networks
with energy harvesting and MPT based power sharing, it is
more beneficial to increase the density of BSs than expanding
the power sharing distance to counteract the randomness of
the renewables. It is hoped that the results in this paper
will provide new insights to the practical design of power
sharing schemes via MPT in cellular networks with energy
harvesting.

APPENDIXES
APPENDIX A
PROOF OF LEMMA 3.1

Proof: For cellular networks with energy harvesting and
MPT-based power sharing, it can be easily verified that

E
[
Sj
]
= E

 ∑
i∈5b(Yj,d)

Pi − ηib
Mi + 1

· |Xi − Yj|
−α
+


(a)
= 2πλβb ·

∫ 1

0
P · E

[
Pi − ηib
Mi + 1

]
· rdr

+ 2πλβb ·
∫ d

1
P · E

[
Pi − ηib
Mi + 1

]
· r−α · rdr

(b)
= 2πλβb ·

∫ 1

0
P · E

[
1

Mi + 1

]
· rdr

+ 2πλβb ·
∫ d

1
P · E

[
1

Mi + 1

]
· r−α · rdr

= πλβb · P · E
[

1
Mi + 1

]
+πλβb · P · E

[
1

Mi + 1

]
·
2− 2d−(α−2)

α − 2

= πλβb · P · E
[

1
Mi + 1

]
·
α − 2d−(α−2)

α − 2

(c)
= πλβb · P ·

1− e−λ(1−βb)πd
2

λ (1− βb) πd2
·
α − 2d−(α−2)

α − 2

=
βb

1− βb
· P ·

1− e−λ(1−βb)πd
2

d2
·
α − 2d−(α−2)

α − 2
,

(21)

where (a) follows from the Campbell’s Theorem, (b) follows
from the fact that

E
[
Pi − ηib

]
= E

∫ ∞
ηib

(
Pi − ηib

)
·

1
Pe
−
Pi
P

e−
ηib
P

dPi


= P, (22)

and (c) follows from the fact that

E
[

1
Mi + 1

]
=

∞∑
Mi=0

λ
Mi
m e−λm

Mi!
·

1
Mi + 1

=
1
λm

∞∑
Mi=0

λ
Mi+1
m e−λm

(Mi + 1)!

=
1
λm
·
(
eλm − 1

)
· e−λm

=
1− e−λ(1−βb)πd

2

λ (1− βb) πd2
. (23)

This thus completes the proof of Lemma 1. �

APPENDIX B
PROOF OF LEMMA 3.2

Proof: For cellular networks with energy harvesting and
MPT-based power sharing, it can be easily verified that

Var
[
Sj
]
= Var

 ∑
i∈5b(Yj,d)

Pi − ηib
Mi + 1

· |Xi − Yj|
−α
+


(a)
= 2πλβb ·

∫ 1

0
E

(Pi − ηib
Mi + 1

)2
 · rdr

+ 2πλβb ·
∫ d

1
E

(Pi − ηib
Mi + 1

)2
 · r−2α · rdr

(b)
= πλβb · 2P2 · E

[(
1

Mi + 1

)2
]

+πλβb · 2P2 · E

[(
1

Mi + 1

)2
]
·
1− d−(2α−2)

α − 1

= πλβb · 2P2 · E

[(
1

Mi + 1

)2
]
·
α − d−(2α−2)

α − 1
,

(24)

where (a) follows from [20], and (b) follows from the fact that

E
[(
Pi − ηib

)2]
= E

∫ ∞
ηib

(
Pi − ηib

)2
·

1
Pe
−
Pi
P

e−
ηib
P

dPi


= 2P2. (25)
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It is worth noting that

E

[(
1

Mi + 1

)2
]
=

∞∑
Mi=0

λ
Mi
m e−λm

Mi!
·

(
1

Mi + 1

)2

=
1
λm

∞∑
Mi=0

λ
Mi+1
m e−λm

(Mi + 1)!
·

1
Mi + 1

=
1
λm

∞∑
M̂i=1

λ
M̂i
m e−λm

M̂i!
·
1

M̂i

(a)
∼=

1
λm
·
(
1− e−λm

)
·
s(1, 1)
λm

(b)
=

(
1− e−λm

)
λ2m

, (26)

where λm = λ (1− βb) πd2, (a) follows from [21], s(n, k)
denotes the Stirling numbers of the first kind as

s(n, k) = (−1)n−k
[
n
k

]
,

and (b) follows from the fact that s(1, 1) = 1. Then, with (24)
and (26), (8) is immediately obtained. This thus completes
the proof of Lemma 2. �

APPENDIX C
PROOF OF LEMMA 4.1

Proof: For cellular networks with energy harvesting and
MPT-based power sharing, given that the power targets for
different BSs are equal to the same constant ηb, it can be
easily verified that

βb = Pr
{
Pj ≥ ηb

}
=

∫
∞

ηb

1
P
· e−

Pj
P dPj

= e−
ηb
P . (27)

This thus completes the proof of Lemma 3. �

APPENDIX D
PROOF OF LEMMA 4.2

Proof: For cellular networks with energy harvesting and
MPT-based power sharing, given that the power targets for
different BSs are equal to the same constant ηb, it can be
easily verified that for E

[
Sj
]
≥ ηb,

1 ≥ Pr
{
Sj ≥ ηb

}
= Pr

{
Sj − E

[
Sj
]
≥ ηb − E

[
Sj
]}

(a)
≥ 1−

Var
[
Sj
]

Var
[
Sj
]
+
(
ηb − E

[
Sj
])2 ,

(28)

while for E
[
Sj
]
< ηb,

0 ≤ Pr
{
Sj ≥ ηb

}
= Pr

{
Sj − E

[
Sj
]
≥ ηb − E

[
Sj
]}

(b)
≤

Var
[
Sj
]

Var
[
Sj
]
+
(
ηb − E

[
Sj
])2 , (29)

where (a) and (b) follow from the Cantelli’s inequality [22]
that

Pr {X − E [X ] ≥ A}
{
≥ 1− Var[X ]

Var[X ]+A2 , if A ≤ 0,

≤
Var[X ]

Var[X ]+A2 , if A > 0.

This thus completes the proof of Lemma 4. �

APPENDIX E
PROOF OF LEMMA 4.3

Proof: For cellular networks with energy harvesting and
MPT-based power sharing, given that the power targets for
different BSs are equal to the same constant ηb, it can be
easily verified from (10) and Lemma 4 that for E

[
Sj
]
≥ ηb,

1 ≥ ϕb ≥ Pr
{
Sj ≥ ηb

}
≥ 1− ε. (30)

On the other hand, for E
[
Sj
]
< ηb, we have

Pr
{
Pj + Sj ≥ ηb

∣∣∣Pj < ηb,Sj < ηb

}
= E

∫ ηb

ηb−Sj

1
P
·

e−
Pj
P

1− e−
ηb
P

dPj
∣∣∣Sj < ηb


= E

eSj
P − 1

e
ηb
P − 1

∣∣∣Sj < ηb


=

1

e
ηb
P − 1

·

(∫ ηb

0
e
Sj
P ·

f (Sj)
Pr
{
Sj < ηb

}dSj − 1

)
(a)
≤

1

e
ηb
P − 1

·

(∫ ηb

0

(
ηb − Sj
ηb

· e
0
P +

Sj
ηb
· e

ηb
P

)
×

f (Sj)
Pr
{
Sj < ηb

}dSj − 1

)

=
1

e
ηb
P − 1

·

∫ ηb

0

Sj
ηb
·

f (Sj)
Pr
{
Sj < ηb

}dSj · (e ηbP − 1
)

=

∫ ηb

0

Sj
ηb
·

f (Sj)
Pr
{
Sj < ηb

}dSj, (31)

where (a) follows from the property of convex functions that

e
Sj
P = e

1
P ·

(
ηb−Sj
ηb
·0+

Sj
ηb
·ηb

)

≤
ηb − Sj
ηb

· e
0
P +

Sj
ηb
· e

ηb
P . (32)

Then, for E
[
Sj
]
< ηb, based on (10) and Lemma 4, it can be

easily verified that

ϕb = Pr
{
Pj + Sj ≥ ηb

∣∣∣Pj < ηb,Sj < ηb

}
×Pr

{
Sj < ηb

}
+ Pr

{
Sj ≥ ηb

}
≤

∫ ηb

0

Sj
ηb
·

f (Sj)
Pr
{
Sj < ηb

}dSj · Pr {Sj < ηb
}

+Pr
{
Sj ≥ ηb

}
=

∫ ηb

0

Sj
ηb
· f (Sj)dSj + Pr

{
Sj ≥ ηb

}
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(a)
≤

E
[
Sj
]

ηb
· Pr

{
Sj < ηb

}
+ Pr

{
Sj ≥ ηb

}
=

E
[
Sj
]

ηb
·
(
1− Pr

{
Sj ≥ ηb

})
+ Pr

{
Sj ≥ ηb

}
=

E
[
Sj
]

ηb
+

(
1−

E
[
Sj
]

ηb

)
· Pr

{
Sj ≥ ηb

}
≤

E
[
Sj
]

ηb
+

(
1−

E
[
Sj
]

ηb

)
· ε,

where (a) follows from the fact that∫ ηb

0
Sj · f (Sj)dSj = E

[
Sj
]
−

∫
∞

ηb

Sj · f (Sj)dSj

≤ E
[
Sj
]
− E

[
Sj
] ∫ ∞

ηb

f (Sj)dSj

= E
[
Sj
]
· Pr

{
Sj < ηb

}
.

This thus completes the proof of Lemma 5. �

APPENDIX F
PROOF OF COROLLARY 4.1

Proof: Based on Lemmas 1 and 2, for ηb ≤ E
[
Sj
]
, it can

be easily verified that

lim
λ→∞

ε =
Var

[
Sj
]

Var
[
Sj
]
+
(
ηb − E

[
Sj
])2

= 0. (33)

Thus, with Theorem 1, for ηb ≤ E
[
Sj
]
, we obtain that

1 ≥ lim
λ→∞

τ ≥ (1− ε) ·
(
1− e−

ηb
P

)
+ e−

ηb
P

= 1. (34)

On the other hand, for ηb > E
[
Sj
]
, based on Lemma 4,

we have

0 ≤ lim
λ→∞

Pr
{
Sj ≥ ηb

}
≤ lim

λ→∞
ε

= 0. (35)

As such, for ηb > E
[
Sj
]
, it follows that

lim
λ→∞

Pr
{
Sj < ηb

}
= 1. (36)

Further, based on the proof of Lemma 5, it can be easily
verified that

lim
λ→∞

Pr
{
Pj + Sj ≥ ηb

∣∣∣Pj < ηb,Sj < ηb

}
= lim

λ→∞
E

eSj
P − 1

e
ηb
P − 1

∣∣∣Sj < ηb


(a)
= lim

Sj→µc
E

eSj
P − 1

e
ηb
P − 1

∣∣∣Sj < ηb


=

e
µc
P − 1

e
ηb
P − 1

, (37)

where (a) follows from Lemma 2 that

lim
λ→∞

Var
[
Sj
]
= lim

λ→∞
E
[(
Sj − E

[
Sj
])2]

= lim
λ→∞

E
[(
Sj − µc

)2]
= 0. (38)

As such, with (9), (10) and (37), we obtain that

lim
λ→∞

τ =
e
µc
P − 1

e
ηb
P − 1

·

(
1− e−

ηb
P

)
+ e−

ηb
P

= e−
ηb
P · e

µc
P . (39)

This thus completes the proof of Corollary 1. �
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