
Received March 21, 2020, accepted April 12, 2020, date of publication April 22, 2020, date of current version May 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989430

Motion Recurring Pattern Analysis: A Lossless
Representation for Motion Capture Databases
PENGJIE WANG1, JIANG WANG2, XIAOMING WEI 1, JIANA MENG1, AND JING XUN 1
1School of Computer Science, Dalian Minzu University, Dalian 116600, China
2PYDDot Technology Company, Ltd., Shenzhen 518000, China

Corresponding author: Xiaoming Wei (xmwei@dlnu.edu.cn)

This work was supported in part by the Liaonig Innovative Talents Support Plan under Grant LR2016071, and in part by China
Postdoctoral Science Foundation under Grant 2014M561228.

ABSTRACT In this paper, we propose the motion recurring pattern analysis (MRPA) method for the lossless
representation of amotion database at the segment level instead of themotion degree of freedom (DOF) level.
First, we concatenate all the motions into a long sequence in the motion database, and we discover similar
posture paths by building a matching trellis structure based on the randomized k-d tree. Second, horizontal
segments of paths are suitably refined, based on a self-organizing map, to obtain the optimized segmentation
for maximum compression gains. Third, by using the path as a connection agent, these segments are clustered
into a forest of trees.With this forest structure, we obtain the prediction residuals (the differences between the
nonroot branches and their parents), and the differences between neighboring residuals are encoded under
floating-point compression. Relative to previous lossless compression methods, our approach can achieve a
higher compression ratio with comparable decompression time costs.

INDEX TERMS Motion capture, animation compression, lossless compression, character animation.

I. INTRODUCTION
With the development of motion capture techniques, human
motion data are widely used beyond the conventional fields of
games and animation. These data are used in fields such as the
automotive industry, arts, sports, virtual reality, and remote
interaction in augmented reality. As the vast collections of
motion capture data continue to grow, it becomes crucial
to efficiently store and transmit these data. Previous works
[1]–[20] on motion compression have focused on two types
of methods, namely, methods that reduce the redundancy of
the time domain and those that reduce the redundancy of the
space domain. However, in a large motion database, there is
a third way to reduce redundancy: the extraction of recur-
ring similar motion patterns across a large database. These
matched motion patterns can make coding more efficient.
However, few works have addressed motion compression
with motion pattern discovery and analysis.

Furthermore, although most state-of-the-art compression
methods have shown satisfactory compression performance,
they are based on lossy compression; hence, the original
data are modified, resulting in errors. These errors can
result in various perceptual artifacts, such as the well-known

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaoqing Pan .

foot-skating artifacts [21]. Although inverse kinematics (IK)
can be introduced to reduce these errors [1], [2], [14], [17],
the residual errors can still degrade the visual quality of the
motion data, particularly for motion files undergoing multi-
ple compression and decompression processes. Furthermore,
the time-consuming IK process greatly degrades the decom-
pression performance.

To address these problems, we propose in this paper a
lossless compressionmethod for amotion database by explor-
ing the recurring pattern analysis in the motion database.
Our method is composed of three steps. First, all motions in
the database are concatenated into a long sequence. Then,
for each node along this sequence, we search for its best
matches, such as its nearest neighbors, in the database based
on a randomized k-d tree. These matches are listed a column
below the node of this sequence row, and a matching trellis is
built. We then find continuous similar posture paths through
the path growing process in the matching trellis. Second,
a similar posture path can map two segments: a horizontal
and a vertical segment. All the horizontal segments consti-
tute a segmentation of the database sequence. However, this
segmentation is not optimal, and overlaps exist among them.
We propose a sequence segmentation method based on the
self-organizing map (SOM) using horizontal segments as the
input layer and equally split length segments as the output

78932 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-6788-4790
https://orcid.org/0000-0001-7995-5181
https://orcid.org/0000-0003-1390-399X

P. Wang et al.: MRPA: Lossless Representation for Motion Capture Databases

layer. Third, with this optimized segmentation, each segment
is either the root of a new tree or a descendant, a segment
that is assigned to one branch of a tree based on its similarity
with the existing trees. These trees constitute a forest. For
each tree, we take the father node as the prediction of its
descendants and obtain the prediction residuals as the differ-
ence between the prediction and real data. We then encode
the residual differences formaximum compression gains. The
contribution of our work can be summarized as follows:

• We propose a forest structure to best predict the motion
segments instead of the motion degrees of freedom
(DOFs). Then, the differences of the residuals are
encoded with floating-point compression.

• We introduce the randomized k-d tree to find the nearest
neighbor matches to improve the efficiency of the trellis
building process.

• Based on the SOM, we propose a motion segmentation
method that can suitably balance the similar posture
paths for maximum compression gains.

II. RELATED WORK
In this section, we briefly summarize existing works on ani-
mation compression and floating-point compression.

A. ANIMATION COMPRESSION
Animation data are high-dimensional data that often present
high spatial and temporal coherence. Nearly all animation
compression methods exploit these two types of coherence
to reduce the data size.

Previous works on animation compression have focused
mainly on compressing animated meshes [22]–[28]. These
works include [28], which adopted an octree to represent
motion capture data; [23], [26], which performed vertex-
wise motion prediction; [24], [25], which applied the prin-
cipal component analysis (PCA) technique; [22], which used
wavelet coding techniques; and [27], which encoded noniso-
morphic animated mesh sequences.

The compression of motion capture data is a relatively
new research area. Arican [1] used Bezier curves to represent
motion clips and then applied a clustered PCA to reduce
the dimensionality. Environmental contacts were encoded
separately based on discrete cosine transformation (DCT).
Khan et al. [9] proposed using themultidimensional quadratic
Bezier curve break-and-fit method to compress motion cap-
ture data. Hou et al. [29] first segmented motion data into
subsequences. Then, they exploited the strong low-rank char-
acteristics within and among the subsequences of motion cap-
ture data to achieve a compact representation. Liu et al. [16]
first segmented a motion sequence into subsequences of sim-
ple motions and then compressed each subsequence using
PCA approximation and further compressed the resulting
PCA data by selecting and storing only the keyframes.
Vasa et al. [18] proposed combining PCA with Lagrange
multipliers techniques to obtain a satisfactory balance of
precision and distortion.

Tournier et al. [17] used a principal geodesics analy-
sis (PGA) to build a descriptive model of pose data, keeping
only the leading principal geodesics. This model was then
used in an IK system to synthesize poses that very closely
matched the end-joint constraints and the interior joint posi-
tions to the input data. Given this pose model, only the com-
pressed end-joint trajectories and the position and orientation
of the root joint need to be stored to recover the motion using
IK. Zhu et al. [20] precompressed the motion data using the
method proposed by Tournier et al. [17] to compress motion
data. Then, they proposed a quaternion space sparse decom-
positionmodel that decomposes the rotational motion into the
dictionary part and the weight part. Finally, these data were
encoded with arithmetic coding. Hou et al. [8] proposed a
human motion capture data tailored transform coding method
by computing a set of data-dependent orthogonal bases, while
Kruger et al. [12] and Hou et al. [30] proposedmethods based
on tensor decomposition.

Beaudoin et al. [2] adapted standard wavelet compression
on joint angles by considering the process of selecting
wavelet coefficients to be a discrete optimization prob-
lem within a tractable search space adapted to the nature
of the data. For contacts with the environment, they used
optimized wavelet-based compression and IK correction.
This algorithm focuses on short and recomposable anima-
tion clips. Lee et al. [13] proposed a human motion com-
pression framework based on a multiresolution wavelet.
Firouzmanesh et al. [5] proposed the perceptually guided
compression method, which incorporates wavelets with
attention stimulating factors.

Chattopadhyay et al. [3] proposed a power-aware algo-
rithm for mobile devices, which exploits the motion data
indexing concept. They derived each floating number index
from the statistical distribution of the floating-point num-
bers in the motion matrix. Since this integer index num-
ber takes much fewer data bits, the motion capture data
can be significantly compressed. Han et al. [7] presented a
motion capture compression method based on simple polyno-
mial curve-fitting techniques to efficiently store and transfer
motion databases with mobile phones.

Gu et al. [6] proposed a method for compressing human
motion capture data based on hierarchical structure con-
struction and motion pattern indexing. They first organized
the 3D markers as a hierarchy in which each node cor-
responds to a meaningful part of the human body and
is therefore coded separately. For each meaningful part,
the motion pattern database is built, and the sequence of
the motion capture data can be efficiently represented as
a series of motion pattern indices. Park [31] presented a
motion rearrangement method that shares a similar concept
with the method proposed by Gu et al. Chew et al. [32]
presented a fuzzy clustering algorithm for virtual char-
acter animation representation. They proposed mapping a
virtual character animation as an image and using a mod-
ified motion filter to minimize the visual discontinuity and
distortion.

VOLUME 8, 2020 78933

P. Wang et al.: MRPA: Lossless Representation for Motion Capture Databases

Kwak et al. [10] presented their version of low-delay
motion capture compression using a reordered data frame and
then made predictions from both long-term and short-term
reference frames. In 2017, Kwak et al. [11] improved
their method by proposing bit allocation to long-term and
short-term reference frames and postprocessing of tempo-
ral low-pass filtering. Based on the parallelogram predictor
[33], [34] in geometric compression, Wang et al. [19], [35]
proposed an alpha parallelogram predictor for effectively
predicting the DOFs of motion capture data. They stored the
alpha parameters with a carefully designed lookup table and
the prediction residuals were then encoded using the adapted
floating-point compression method [36].

Lin et al. [14] proposed the repeat motion analysis method
to achieve a compact representation of motion capture data.
Based on the self-distance metric of the match web [37], they
extracted primary clips and repeated clips and they also fit the
trajectories of the projected coefficient or coefficient differ-
ences using Catmull-Rom splines. Because the spline-based
approximation at the subspace might not suitably preserve
high-frequency motions, such as a foot contacting with the
floor, these contact trajectories were recorded separately for
subsequent motion decompression with IK.

B. FLOAT-POINT COMPRESSION
Many kinds of data sets are often represented in floating-point
format. If floating-point numbers can be compressed effec-
tively, a higher compression ratio can be achieved. A vari-
ety of methods have been developed for compressing and
transmitting such numbers in the context of images [38],
[39], large-dimensional scientific data [40], audio [41], 3D
geometric data [36] and linear streams [42]–[44].

Isenburg et al. [36] proposed a lossless algorithm to encode
the floating-point geometry of triangular meshes. In this
method, a new position is first predicted by using the par-
allelogram predictor. The predicted and actual floating-point
values are broken into their signs, exponents, and mantissas
and then their corrections are then compressed separately
with context-based arithmetic coding. Since the prediction
quality varies with the exponent, the exponent is used to
select different arithmetic contexts. Lindstrom et al. [40]
proposed a fast and efficient compression algorithm for
large-dimension floating-point data. In this approach, after
the predicted position is obtained using the Lorenzo predic-
tor [45], the predicted and the actual floating-point values are
mapped to unsigned integers. The correction is then calcu-
lated and encoded with an arithmetic coder. Burtscher and
Ratanaworabhan [42], [43] and Ratanaworabhan et al. [44]
proposed methods for the effective and lossless compres-
sion of sequences of 64-bit floating-point data. They first
sequentially predicted each value of the data sequence and
then performed bitwise operations between the actual and
predicted values. These methods are very fast and can
meet the high-throughput demands of scientific computing
environments.

Our method is fundamentally different from all of the
above methods in that we develop a completely loss-
less compact representation by mining similar segments
across a motion database. Our method is mainly inspired
by [46] and [6] but is different from those methods in
four aspects. First, we propose a forest structure for best
predicting motion segments, and encode the residual seg-
ments with floating-point compression. Second, we propose
a SOM-based motion segmentation method that can suitably
balance the similar posture paths for maximum compres-
sion gains. Third, instead of searching in the self-distance
matrix or locality-sensitive hashing tree, our method intro-
duces randomized k-d trees to accelerate the process. Fourth,
our method is completely lossless. Without time-consuming
IK during decompression, which occurs with the method pro-
posed by [6], our method can decompress motion segments
in real time.

III. COMPRESSION PIPELINE
Our compression pipeline consists of four steps: trellis
building and motion path discovery, SOM-based database
sequence segmentation refining, forest construction and
encoding of forest structure and residuals.

A. TRELLIS BUILDING AND MOTION PATH DISCOVERY
Our goal is to find continuous paths through an efficient
tree-growing process to effectively exploit the recurring pat-
terns in a motion database. Furthermore, we need an efficient
k-nearest neighbor search method for trellis building. Based
on this trellis structure, we can start the process of motion
path discovery.

As defined in [47], there are two forms of the nearest
neighbor search based on the randomized k-d tree structure:
the k-nearest neighbor search and the radius nearest neigh-
bor search. The former returns the predefined k neighboring
frames, while the latter returns the neighboring frames where
the distance is smaller than a predefined threshold radius.
Because we wish to obtain the nearest neighbors that are
similar within a predefined threshold, we adopt the radius
nearest neighbor method and the Manhattan distance similar
to that presented in [47], as shown in Equation (1).

RNN {m,M ,R} = {n|n ∈ M ,Dis(m, n) < R}, (1)

where Dis(m, n) is the distance between frame m and n,
as shown in Equation (2):

Dis(m, n) =
J∑

k=1

wk ||mk − nk ||, (2)

where J = 32 in our test set. Similar to the approach taken
in [48], wk is set to 0.7 for important joints, such as the hip,
lower back, upper back, humerus, radius and femur, whereas
wk is set to 0.3 for supplementary joints, such as toes, feet,
and fingers.

Based on the randomized k-d tree structure and frame
distance definition, a trellis structure is built. In this structure,

78934 VOLUME 8, 2020

P. Wang et al.: MRPA: Lossless Representation for Motion Capture Databases

FIGURE 1. Trellis building and path growing.

the top row is the database sequence, while the columns
are their best matches found in the database by using the
randomized k-d tree nearest neighbor searching method [47].
In the following text, we call the top row of the trellis top row
and the columns of the trellis columns.
Tree growth initiates at the 1st column of the trellis. One

node i in the column can find the nodes of the neighboring
columns within the interval [i, i+2]. As shown in Figure 1,
the same-color continuous solid arrows constitute a path,
while the dotted-line arrows indicate invalid paths, which
are either not long enough or do not have the least average
distance. Each path is described by root, depth, path distance,
where the path distance is the accumulated distances of the
matched pairs in the path; the root is the path start frame
number, which corresponds to a node in the columns of the
trellis; and the depth is the path length along the top row.
This path information is stored in the current leaf nodes of the
growing tree and passed to their descendants with the updated
values. In Figure 1, the red path {560, 60, 980} is stored
in 617. Then, this information is passed to 618 (the second
column) and further to 619 or 618 (the third column). We can
obtain the updated path information as {560, 62, 1080} and
{560, 62, 1106}.

Different from the previous method presented in [46],
the path distance is added to the path information to evaluate
the average distances for paths that share the same start
frame number. For these paths, we keep only the ones with
the least average distance and the largest depth. As shown
in Figure 1, for two red paths {560, 62, 1080} and {560, 62,
1106}, the former has the lower average distance and is kept.

Another example is the two paths starting from 120. One
is the purple path with {120, 5, 180}, and the other is the light
blue path with {120, 5, 220}. The purple one has the lower
average distance in the current situation. However, since the
two paths might extend beyond frame 685 along the top row,
we cannot determine which one should be kept at this stage.

After the path growing process, we keep only valid paths,
which are the paths whose depth values are greater or equal
to the threshold ValidPathThr. We collect all the paths from
the database sequence into a path set as follows:

P = (p1, p2, . . . , pn)T , (3)

where pi = (hi, vi), hi = (hi1, hi2) and vi = (vi1, vi2). hi1
and hi2 are temporal indices from the nodes of the top row of

FIGURE 2. Example of a path set. The horizontal lines are h-segments,
and the vertical lines are v-segments.

the trellis, as shown in Figure 1. They denote the start and
end frame of a segment of the ith paths. We call this kind
of segment an h-segment, which corresponds to each of the
horizontal lines in Figure 2. Moreover, vi1 and vi2 are the
counterpart temporal indices from the nodes of the columns of
the trellis in Figure 1. They denote the start and end frame of a
segment of ith paths.We call this kind of segment a v-segment,
which corresponds to each of the vertical lines in Figure 2.

Different from the previous method, in our path growing
process, we follow the rule that the h-segment hi and the
v-segment vi cannot overlap. That is, either hi2 < vi1 or
vi2 > hi1. Assuming that the red path in Figure 1 represents
the ith paths in the database, we obtain hi1 = 682−62 = 620,
hi2 = 682, vi1 = 560, and vi2 = 619. Node 619 in the
third column has the descendant 620. However, this sequence
stops extending to the next column because such an extension
would violate the rule that the h-segment and the v-segment
cannot overlap.

B. SOM-BASED DATABASE SEQUENCE SEGMENTATION
In the preceding section, we obtained the path set for
the database sequence. However, overlaps exist among
h-segments, resulting in increased memory overhead. Fur-
thermore, overlaps mean that we did not obtain the best
segmentation that can balance all paths. Figure 2 shows
an example of a path set, where h-segments [63-183],
[133-193], [110-196] and [134-194] overlap. We seek an
optimal segmentation based on these h-segments to achieve
the maximum compression gains. We propose refining the
motion sequence segmentation based on the SOM by taking
all h-segments as the input layer and an evenly segmented
segmentation as the output layer. In Figure 2, the horizon-
tal lines are the h-segments and the vertical lines are the
v-segments. The dotted lines are major segment points in
the horizontal direction. Here, we use evenly tilted lines to

VOLUME 8, 2020 78935

P. Wang et al.: MRPA: Lossless Representation for Motion Capture Databases

indicate different paths. First, we find the longest segment
among the h-segments and denote its segment number as t.
The database sequence is then equally divided into m seg-
ments as Equation (4) shows.

m = d
l

ht2 − ht1 + 1
e, (4)

where l is the size of the database (i.e., the total number of
frames of this database). We designate this segment set as
follows:

S = (s1, s2, . . . , sm)T , (5)

where sj = (sj1,sj2) and sj1, sj2 are the start and end frame
numbers of the jth segment, respectively.
Second, for each h-segment hi from P, we search for a

segment sj from S that has the largest IoU (intersection over
union) with hi. This IoU is a similarity metric as shown in
Equation (6).

IoU (hi, sj) =
overlap(hi, sj)

hi2 − hi1+1+sj2 − sj1+1− overlap(hi, sj)
.

(6)

Here, the overlap is defined as follows:

overlap(xi, yj)

=

xi2 − xi1 + 1, when xi1 ≥ yj1 and xi2 ≤ yj2
xi2 − xj1 + 1, when xi1 < yj1 and xi2 ≤ yj2
xj2 − xi1 + 1, when xi1 ≥ yj1 and xi2 > yj2
xj2 − xj1 + 1, when xi1 < yj1 and xi2 > yj2.

Third, we adjust the length of the segment of the output layer
by moving its start and end point. That is,

sj = sj + k × (hi − sj). (7)

In Figure 3, because hi2 − sj2 is negative, sj2 decreases.
A new segment is formed with frames from updated sj2 + 1
to s(j+1)1 − 1. If the length of this segment, s(j+1)1 − sj2 − 1,
is larger than or equal to a threshold LengthThr, then the
segment is added to S as a new segment. Otherwise, it is
combined into sj+1. Moreover, if hi2 − sj2 is positive, then
segment sj+1 decreases. If s(j+1)2− s(j+1)1+1 is less than the
threshold LengthThr, this segment is combined into sj+2.

We iterate the second and third steps through all
h-segments. We decrease the learning rate adaptively for
more iterations until k is equal to or smaller than zero, and
we obtain the optimal refined segmentation set S.

C. FOREST CONSTRUCTION
For efficiently exploiting the recurring patterns among the
paths in the path set, we need to cluster the h-segments in
S from the SOM into many trees. Typically, each tree has a
primary segment (the root) and many similar segments (the
branches). Since each path has an h-segment and a v-segment,
we use the path as a connection agent for organizing these
segments into a forest structure.

First, we insert the longest h-segment into F, and this
segment becomes the root of the first tree in F. Second,

FIGURE 3. Sequence segmentation refining with a SOM.

FIGURE 4. Forest construction process where the paths in set P act as
connection agents.

assuming that F already contains trees, as Figure 4 shows,
for a specific h-segment sj in S, we either insert it into one
tree of F, or take it as the root of a new tree, as indicated by
the blue arrow in Figure 4. We iterate the second step for each
h-segment in S until all segments of S are processed. In the
final step, we evaluate the tree similarity according to Equa-
tion (6) between any pair segments and merge the trees when
there is a pair whose similarity values are larger than the
threshold IoUThr.
In this paragraph, we will provided the detailed process

of the second step. For an h-segment si in F, we obtain an
h-segment hj, which has the largest IoU(hj, si) with h-segment
si, according to Equation (6). Then, the counterpart segment
of hj, e.g., the v-segment vm, is obtained by looking up the
path set P (as indicated by the green arrow in Figure 4).
The same process is applied to sj in S, as Figure 4 shows,
and the counterpart segment is noted as vn. We can obtain
the similarity metric between vm and vn as IoU(vm, vn) from
Equation (6).

We iterate all the nodes in F and evaluate their similarity
with sj and keep the node that has the largest IoU(vm, vn).
We denote this h-segment as s max. If the largest IoU(vm, vn)
is larger than or equal to the threshold IoUThr, sj is inserted
into the tree that s max belongs to as a descendant segment.
Otherwise, sj forms the root of a new tree.

D. ENCODING OF THE FOREST STRUCTURE
AND RESIDUALS
After the above tree construction process, we obtain a
forest structure. Based on this forest structure, we obtain
the prediction residuals (the differences between the non-
root branches and their parents). Finally, the differences

78936 VOLUME 8, 2020

P. Wang et al.: MRPA: Lossless Representation for Motion Capture Databases

between neighboring residuals are encoded by introducing
a floating-point compression method [36]. The root frame
data are encoded by employing a nonprediction mode of
float-point compression. For the tree structure, we just save
the temporal frame indices of the h-segment, the number of
the trees children for the nonleaf node and frame indices for
leaf nodes according to the width-first policy.

IV. RESULTS AND DISCUSSION
In this section, we present the experimental results to demon-
strate the performance of the proposed method. Our focus is
to show the relationships between compression ratios under
different parameter values. We also demonstrate the compar-
ison results with previous studies. In this paper, we define
the compression ratio as the original file size divided by the
compressed file size.

All the data in our experiment are from the CMU Graphics
Lab Motion Capture Database, which has 2605 trials in 6
categories and 23 subcategories. We use the five motion
database (run, modern dance, jumping, salsa dance, various
activities) and three steps Climb and Walk on uneven terrain.
Before we present our results, we first define some terms
that we used for evaluation. The first term is the compression
ratio, which is defined as the original file size before compres-
sion divided by the compressed file size, including motion
data and index data. The second term is the predicted frame
number, which is defined as the number of frames predicted
in the hierarchal tree structure. The last term is the index entry
number, which is defined as the number of parent/child pair
indices need to be saved to maintain the tree structure. For the
best compression gains, we expect a larger predicted frame
number and a smaller index number for better compression
performance.

A. COMPRESSION PERFORMANCE WITH DIFFERENT
PARAMETERS
Our algorithm has three associated parameters: ValidPathThr,
LengthThr and IoUThr. ValidPathThr is a threshold for deter-
mining whether a path is collected into a path set as defined
in subsection III-A. LengthThr is a threshold for determining
whether a new interval can be a new segment or combined
into a neighboring segment, as defined in subsection III-B.
Finally, IoUThr is a threshold for determining whether a seg-
ment will form the root of a new tree or contribute branches
to an existing tree, as defined in subsection III-C. We discuss
the trade-off between these parameters and show the results
of the compression ratio under different parameter value
combinations.

1) COMPRESSION PERFORMANCE UNDER DIFFERENT
ValidPathThr
If ValidPathThr is smaller, then there will be more paths and,
hence, more segments in the input layer of the SOM. This
condition will lead to a tree with more branches. In contrast,
if ValidPathThr is larger, then there will be fewer paths, and
therefore, we will obtain a tree with fewer branches.

TABLE 1. Number of input segments and predicted frames with
parameter ValidPathThr.

FIGURE 5. Predicted frame number and index entry number with
parameter ValidPathThr.

FIGURE 6. Compression ratio against the parameter ValidPathThr.

Clearly, the prediction performance is poor with a very
small ValidPathThr because we cannot fully exploit the recur-
ring similar motion patterns in the motion database. The
smallest value of ValidPathThr is 1. In this case, the com-
pression method cannot find the recurring patterns in the
motion database at all. However, if we have a very large
ValidPathThr, then we cannot obtain enough paths for the tree
structure; hence, the predicted frames will be unsatisfactory.
Furthermore, ValidPathThr is inversely proportional to the
number of input segments of the SOM. We give an example
of 344 frames of walking motion in Table 1. A larger number
of input segments of the SOM typically implies a larger tree.
Figure 5 shows the index entry number for ValidPathThr.
The index entry number decreases withValidPathThr because
larger parameter values are associated with more branches in
the tree. Figure 5 also shows the predicted frames number
against the parameter ValidPathThr. The relationship is con-
sistent with our discussion above. For the trade-off, the best
value for ValidPathThrmight fall in the interval of 55-60. The
curve of the compression ratio with the parameter supports
our choice, as shown in Figure 6.

2) ANALYSIS AND DISCUSSION FOR LengthThr
In our experiment, we find that the parameter LengthThr
has little impact on the compression performance as shown
in Table 2, because the reason is that the main segment set
remains the same regardless of what value we set for Length-
Thr. Table 2 shows the resulting segments for different values
for LengthThr for 343 frames of walking motion. The input

VOLUME 8, 2020 78937

P. Wang et al.: MRPA: Lossless Representation for Motion Capture Databases

TABLE 2. Segment number with parameter LengthThr.

TABLE 3. Compression ratio with different LengthThr values.

FIGURE 7. Predicted frame number against parameter IoUThr.

FIGURE 8. Compression ratio with parameter IoUThr.

layer mainly determines the resulting segment set, although
the value of LengthThrmight result in little change. However,
this change has nearly no influence on the compression ratio
as shown in Table 3. In this paper, we set LengthThr to 30 to
reduce the computation costs.

3) COMPRESSION PERFORMANCE
UNDER DIFFERENT IoUThr
For the third parameter, IoUThr, a smaller IoUThr value
might result in a tree having more branches. However, a very
small IoUThr might result in collecting segments that are
not very similar. This condition leads to poor compression
performance. On the other hand, a significantly larger IoUThr
will cause the tree to have significantly fewer branches,
and the predicted frame number will be small, which also
results in poor compression performance. Figure 7 shows the
curve of the predicted frame with different IoUThr values.
Figure 8 shows the relation between the compression ratio
and IoUThr. A value of 0.6 is very favorable for IoUThr.
Note that IoUThr has no impact on the index size, which

is mainly determined by ValidPathThr. Therefore, we did not
characterize its relationship with its index entry number as
ValidPathThr.

TABLE 4. Compression ratios of six compression schemes.

B. COMPARISON WITH OTHER LOSSLESS
COMPRESSION METHODS
In this section, we compare the performance of our MRPA
method with the previous lossless compression method alpha
parallelogram predictor (APP) [19] and selected widely used
compression tools, namely, Gzip and Rar. We also com-
pare our method with the method that uses our compres-
sion pipeline without the SOM-based segmentation (non-
SOM) and a lossless deep-learning based image compression
method (L3C) [49] by adapting our data to their imple-
mentation accordingly. Table 4 compares the six lossless
schemes in terms of their compression ratios using differ-
ent motion databases. Each database has a concatenation of
many motions from the CMU motion capture database. Each
database is mainly composed of motions labeled by their
names. The database ‘‘run’’ has 12 motions, ‘‘modern dance’’
has 20 motions, ‘‘salsa dance’’ has 15 motions, ‘‘jump’’ has
32 motions, and ‘‘various activities’’ has 15 motions of dif-
ferent activities, such as walking, jumping, squatting, sitting,
and punching. Table 4 demonstrates that our method outper-
forms the APP method, Non-SOM method, L3C method and
conventional compression tools in terms of the compression
ratio due to the reduction in redundancy at the segment level
and the establishment of an efficient index structure.

Although L3C outperforms our method in term of com-
pression ratio, the decompression time of their method is
about two order of magnitude more than that of our method,
which hinder its use in real-time applications. Please note
that experiments on L3C were performed on a PC with Core
i7 CPU and 16 GB RAM, while experiments on other meth-
ods were performed on a PC with i5 CPU and 8 GB RAM.
Motion databases are typically used in computer games, vir-
tual reality, and computer animation, among other applica-
tions. In these applications, motion databases are typically
stored and transmitted in a compressed form and are decom-
pressed on demand in real time when needed. Therefore, for
a compression scheme, the decompression efficiency is much
more important than the compression time. From 2011 to
2016, we received successive funding for the development
of a compression system for the popular computer game QQ
Dance, which has more than 100 million players. All the
character motions of this game are from motion capture data.
Usually, one player picks a song and the game chooses a cou-
ple of dance segments from a compressed motion database
and concatenates them into a motion that matches the song.
In this application scenario, the decompression time is very

78938 VOLUME 8, 2020

P. Wang et al.: MRPA: Lossless Representation for Motion Capture Databases

TABLE 5. Decompression and compression times of five compression schemes.

important for a smooth experience. Moreover, 33 frames have
to be played within one second for a smooth experience. That
is, each frame is 33 ms, including data decompression, and
decompression must occur in real time. In the game, at most
there are 100 characters dancing in the same scene. This
maximum scene of a frame has to be decompressed within 3
ms for real-time experience. The decompression rate of our
method is 0.022 ms/frame on average, according to Table 5,
and can meet the requirement of this kind of system.

The decompression times of our method (MRPA) are
comparable to that of the APP and the conventional com-
pression tool Gzip. Please note that we optimized the decom-
pression of the APP method in terms of I/O for a fair
comparison. The decompression pipeline of our method is
much simpler than the compression pipeline because there
are no time-consuming processes, such as path discovery,
SOM-based segmentation and the clustering process of the
compression process, which is why our decompression is
much more efficient than compression.

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a compact representation for a
motion database by employing effective recurring pattern
discovery and analysis. We have shown that by using our
MRPA method, we can reorganize the motion database at the
segment level into a forest structure; moreover, the prediction
process can be more efficient at this segment level along
the tree than prediction processes using conventional DOF
prediction methods.

This increased efficiency is one reason why we can fea-
ture a very small index size and less decompression time
relative to the previous method [19]. We have demonstrated
that our method outperforms the APP method, Non-SOM
method and conventional compression tools (in terms of the
compression ratio) due to the reduction in redundancy at the
segment level and the establishment of an efficient index
structure. Our method is lossless, while current compression
methods are primarily lossy and distort the motion data.
We have demonstrated that our method outperforms conven-
tional compression tools in terms of the compression ratio.
The decompression complexity of our method is also low,
thus resulting in decompression times comparable to those
of previous methods.

The compression times of our method are outperformed by
that of the previous method because our compression pipeline
has to undergo trellis building, the path discovery process

and the SOM-based segmentation process. Although we
have introduced randomized k-d trees for finding the nearest
neighbors instead of the time-consuming self-distance matrix
method [14] and the space-consuming locality-sensitive
hashing (LSH) method [46], the time complexity of our
method is still higher than that of the previous method [19].
The adoption of a more time-efficient SOM method, such
as the parallel SOM on a graphic processing unit (GPU)
[50]–[52], will be necessary. We plan to explore this issue
in the future.

ACKNOWLEDGMENTS
Our work is supported by CCF-Tencent Open Fund, Liaoning
Innovative Talents Support Plan (Grant No. LR2016071),
China Postdoctoral Science Foundation (No. 2014M561228)
and successive funding from Beijing Yonghang Co., Ltd.

REFERENCES
[1] O. Arikan, ‘‘Compression of motion capture databases,’’ ACM Trans.

Graph., vol. 25, no. 3, pp. 890–897, Jul. 2006.
[2] P. Beaudoin, P. Poulin, and M. van de Panne, ‘‘Adapting wavelet compres-

sion to human motion capture clips,’’ in Proc. Graph. Interface (GI), 2007,
pp. 313–318.

[3] S. Chattopadhyay, S. M. Bhandarkar, and K. Li, ‘‘Human motion capture
data compression by model-based indexing: A power aware approach,’’
IEEE Trans. Vis. Comput. Graphics, vol. 13, no. 1, pp. 5–14, Jan. 2007.

[4] B.-S. Chew, L.-P. Chau, and K.-H. Yap, ‘‘Progressive transmission of
motion capture data for scalable virtual character animation,’’ in Proc.
IEEE Int. Symp. Circuits Syst., May 2009, pp. 1461–1464.

[5] A. Firouzmanesh, I. Cheng, and A. Basu, ‘‘Perceptually guided fast com-
pression of 3-D motion capture data,’’ IEEE Trans. Multimedia, vol. 13,
no. 4, pp. 829–834, Aug. 2011.

[6] Q. Gu, J. Peng, and Z. Deng, ‘‘Compression of human motion capture data
using motion pattern indexing,’’ Comput. Graph. Forum, vol. 28, no. 1,
pp. 1–12, Mar. 2009.

[7] Y. Han, ‘‘Computer animation in mobile phones using a motion cap-
ture database compressed by polynomial curve-fitting techniques,’’ IEEE
Trans. Consum. Electron., vol. 54, no. 3, pp. 1008–1016, Aug. 2008.

[8] J. Hou, L.-P. Chau, N. Magnenat-Thalmann, and Y. He, ‘‘Human motion
capture data tailored transform coding,’’ IEEE Trans. Vis. Comput. Graph-
ics, vol. 21, no. 7, pp. 848–859, Jul. 2015.

[9] M. A. Khan, ‘‘An efficient algorithm for compression of motion cap-
ture signal using multidimensional quadratic Bézier curve break-and-
fit method,’’ Multidimensional Syst. Signal Process., vol. 27, no. 1,
pp. 121–143, Jan. 2016.

[10] C.-H. Kwak and I. V. Bajic, ‘‘Hybrid low-delay compression of motion
capture data,’’ in Proc. IEEE Int. Conf. Multimedia Expo, Jul. 2011,
pp. 1–6.

[11] C.-H. Kwak and I. V. Bajia, ‘‘Online MoCap data coding with bit allo-
cation, rate control, and motion-adaptive post-processing,’’ IEEE Trans.
Multimedia, vol. 19, no. 6, pp. 1127–1141, Jun. 2017.

[12] B. Krüger, J. Tautges, and A. Weber, ‘‘Multi-mode representation of
motion data,’’ in Proc. GRAPP (AS/IE), 2007, pp. 21–29.

[13] C. Lee and J. Lasenby, ‘‘An efficient wavelet-based framework for artic-
ulated human motion compression,’’ in Proc. Int. Symp. Vis. Comput., in
Lecture Notes in Computer Science, vol. 5358, 2008, pp. 75–86.

VOLUME 8, 2020 78939

P. Wang et al.: MRPA: Lossless Representation for Motion Capture Databases

[14] I.-C. Lin, J.-Y. Peng, C.-C. Lin, and M.-H. Tsai, ‘‘Adaptive motion data
representation with repeated motion analysis,’’ IEEE Trans. Vis. Comput.
Graphics, vol. 17, no. 4, pp. 527–538, Apr. 2011.

[15] Y. Lin and M. D. McCool, ‘‘Nonuniform segment-based compression
of motion capture data,’’ in Proc. Int. Symp. Vis. Comput. Berlin,
Germany: Springer, 2007, pp. 56–65.

[16] G. Liu and L. McMillan, ‘‘Segment-based human motion compres-
sion,’’ in Proc. ACM SIGGRAPH/Eurograph. Symp. Comput. Animation.
Aire-la-Ville, Switzerland: Eurographics Association, 2006, pp. 127–135.

[17] M. Tournier, X. Wu, N. Courty, E. Arnaud, and L. Revéret, ‘‘Motion
compression using principal geodesics analysis,’’ Comput. Graph. Forum,
vol. 28, no. 2, pp. 355–364, Apr. 2009.

[18] L. Váša and G. Brunnett, ‘‘Rate-distortion optimized compression of
motion capture data,’’ Comput. Graph. Forum, vol. 33, no. 2, pp. 283–292,
May 2014.

[19] P. Wang, Z. Pan, M. Zhang, R. W. H. Lau, and H. Song, ‘‘The alpha par-
allelogram predictor: A lossless compression method for motion capture
data,’’ Inf. Sci., vol. 232, pp. 1–10, May 2013.

[20] M. Zhu, H. Sun, and Z. Deng, ‘‘Quaternion space sparse decomposi-
tion for motion compression and retrieval,’’ in Proc. 11th ACM SIG-
GRAPH/Eurograph. Conf. Comput. Animation. Aire-la-Ville, Switzerland:
Eurographics Association, 2012, pp. 183–192.

[21] L. Kovar, J. Schreiner, and M. Gleicher, ‘‘Footskate cleanup for motion
capture editing,’’ in Proc. ACM SIGGRAPH/Eurograph. Symp. Comput.
Animation (SCA), 2002, pp. 97–104.

[22] I. Guskov and A. Khodakovsky, ‘‘Wavelet compression of parametrically
coherent mesh sequences,’’ in Proc. ACM SIGGRAPH/Eurograph. Symp.
Comput. Animation (SCA). Aire-la-Ville, Switzerland: Eurographics Asso-
ciation, 2004, pp. 183–192.

[23] L. Ibarria and J. Rossignac, ‘‘Dynapack: Space-time compression of the
3D animations of triangle meshes with fixed connectivity,’’ in Proc.
ACM SIGGRAPH/Eurograph. Symp. Comput. Animation. Aire-la-Ville,
Switzerland: Eurographics Association, 2003, pp. 126–135.

[24] Z. Karni and C. Gotsman, ‘‘Compression of soft-body animation
sequences,’’ Comput. Graph., vol. 28, no. 1, pp. 25–34, Feb. 2004.

[25] M. Sattler, R. Sarlette, and R. Klein, ‘‘Simple and efficient compression
of animation sequences,’’ in Proc. ACM SIGGRAPH/Eurograph. Symp.
Comput. Animation (SCA), 2005, pp. 209–217.

[26] J.-H. Yang, C.-S. Kim, and S.-U. Lee, ‘‘Compression of 3-D triangle mesh
sequences based on vertex-wise motion vector prediction,’’ IEEE Trans.
Circuits Syst. Video Technol., vol. 12, no. 12, pp. 1178–1184, Dec. 2002.

[27] J.-H. Yang, C.-S. Kim, and S.-U. Lee, ‘‘Semi-regular representation and
progressive compression of 3-D dynamic mesh sequences,’’ IEEE Trans.
Image Process., vol. 15, no. 9, pp. 2531–2544, Sep. 2006.

[28] J. Zhang and C. Owen, ‘‘Octree-based animated geometry compression,’’
in Proc. Data Compress. Conf. (DCC), 2004, pp. 508–517.

[29] J. Hou, L.-P. Chau, Y. He, and N. Magnenat-Thalmann, ‘‘Low-rank based
compact representation of motion capture data,’’ in Proc. IEEE Int. Conf.
Image Process. (ICIP), Oct. 2014, pp. 1480–1484.

[30] J. Hou, L.-P. Chau, N.Magnenat-Thalmann, andY.He, ‘‘Scalable and com-
pact representation for motion capture data using tensor decomposition,’’
IEEE Signal Process. Lett., vol. 21, no. 3, pp. 255–259, Mar. 2014.

[31] J. P. Park, K. H. Lee, and J. Lee, ‘‘Finding syntactic structures from human
motion data,’’ Comput. Graph. Forum, vol. 30, no. 8, pp. 2183–2193,
Dec. 2011.

[32] B.-S. Chew, L.-P. Chau, and K.-H. Yap, ‘‘A fuzzy clustering algorithm
for virtual character animation representation,’’ IEEE Trans. Multimedia,
vol. 13, no. 1, pp. 40–49, Feb. 2011.

[33] M. Isenburg and P. Alliez, ‘‘Compressing polygon mesh geometry
with parallelogram prediction,’’ in Proc. IEEE Vis. (VIS), Oct. 2002,
pp. 141–146.

[34] C. Touma and C. Gotsman, ‘‘Triangle mesh compression,’’ in Proc. Graph.
Interface. Mississauga, ON, Canada: Canadian Information Processing
Society, 1998, pp. 26–34.

[35] P. Wang, R. W. H. Lau, M. Zhang, J. Wang, H. Song, and Z. Pan, ‘‘A real-
time database architecture for motion capture data,’’ in Proc. 19th ACM
Int. Conf. Multimedia (MM), 2011, pp. 1337–1340.

[36] M. Isenburg, P. Lindstrom, and J. Snoeyink, ‘‘Lossless compression of
predicted floating-point geometry,’’ Comput.-Aided Des., vol. 37, no. 8,
pp. 869–877, Jul. 2005.

[37] L. Kovar and M. Gleicher, ‘‘Automated extraction and parameterization
of motions in large data sets,’’ ACM Trans. Graph., vol. 23, no. 3,
pp. 559–568, Aug. 2004.

[38] B. E. Usevitch, ‘‘JPEG2000 extensions for bit plane coding of floating
point data,’’ in Proc. Data Compress. Conf. (DCC), 2003, p. 451.

[39] B. E. Usevitch, ‘‘JPEG2000 compatible lossless coding of floating-point
data,’’ EURASIP J. Image Video Process., vol. 2007, no. 1, p. 22, 2007.

[40] P. Lindstrom and M. Isenburg, ‘‘Fast and efficient compression of
floating-point data,’’ IEEE Trans. Vis. Comput. Graphics, vol. 12, no. 5,
pp. 1245–1250, Sep. 2006.

[41] F. Ghido, ‘‘An efficient algorithm for lossless compression of IEEE float
audio,’’ in Proc. Data Compress. Conf. (DCC), 2004, pp. 429–438.

[42] M. Burtscher and P. Ratanaworabhan, ‘‘High throughput compression
of double-precision floating-point data,’’ in Proc. Data Compress. Conf.
(DCC), 2007, pp. 293–302.

[43] M. Burtscher and P. Ratanaworabhan, ‘‘FPC: A high-speed compressor for
double-precision floating-point data,’’ IEEE Trans. Comput., vol. 58, no. 1,
pp. 18–31, Jan. 2009.

[44] P. Ratanaworabhan, J. Ke, and M. Burtscher, ‘‘Fast lossless compression
of scientific floating-point data,’’ in Proc. Data Compress. Conf. (DCC),
2006, pp. 133–142.

[45] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, ‘‘Out-of-core
compression and decompression of large n-dimensional scalar fields,’’
Comput. Graph. Forum, vol. 22, no. 3, pp. 343–348, Sep. 2003.

[46] J. Meng, J. Yuan, M. Hans, and Y. Wu, ‘‘Mining motifs from human
motion,’’ in Eurographics (Short Papers), K. Mania and E. Reinhard, Eds.
The Eurographics Association, 2008.

[47] M. Muja and D. G. Lowe, ‘‘Scalable nearest neighbor algorithms for high
dimensional data,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 11,
pp. 2227–2240, Nov. 2014.

[48] J. Lee, J. Chai, P. S. A. Reitsma, J. K. Hodgins, and N. S. Pollard,
‘‘Interactive control of avatars animated with human motion data,’’ ACM
Trans. Graph., vol. 21, no. 3, pp. 491–500, Jul. 2002.

[49] F. Mentzer, E. Agustsson, M. Tschannen, R. Timofte, and L. Van Gool,
‘‘Practical full resolution learned lossless image compression,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 10629–10638.

[50] N. E. B. A. Khalid, M. F. B. Mustapha, A. B. Ismail, and M. B. Manaf,
‘‘Parallel self-organizing map using shared virtual memory buffers,’’ in
Advanced Topics in Intelligent Information and Database Systems. 2017,
p. 49.

[51] S. Q. Khan and M. A. Ismail, ‘‘Design and implementation of parallel
SOMmodel on GPGPU,’’ inProc. 5th Int. Conf. Comput. Sci. Inf. Technol.,
Mar. 2013, pp. 233–237.

[52] M. F. Mustapha, N. E. A. Khalid, M. Manaf, and A. Ismail, ‘‘Evaluating
parallel self-organizing map processing using graphic processing unit,’’
Adv. Sci. Lett., vol. 23, no. 6, pp. 5232–5236, Jun. 2017.

PENGJIE WANG is currently a Professor with
the School of Computer Science, Dalian Minzu
University, Dalian, China. His research interests
include computer vision, computer graphics, and
data compression.

JIANG WANG received the degree from the
School of Computer Science, Dalian Minzu
University, Dalian, China. He is currently a
Co-Founder of PYDDot Technology Company,
Ltd., Guiyang, China. His research interests
include big data, the IoT, and computer vision.

78940 VOLUME 8, 2020

P. Wang et al.: MRPA: Lossless Representation for Motion Capture Databases

XIAOMING WEI is currently a Professor with
the School of Computer Science, Dalian Minzu
University, Dalian, China. His research interests
include computer vision, collaborative design, and
so on.

JIANA MENG is currently a Professor with
the School of Computer Science, Dalian Minzu
University, Dalian, China. Her research interests
include computer vision and natural language
processing.

JING XUN is currently pursuing the master’s
degree with the School of Computer Science,
Dalian Minzu University, Dalian, China. Her
research interests include computer vision and data
compression.

VOLUME 8, 2020 78941

	INTRODUCTION
	RELATED WORK
	ANIMATION COMPRESSION
	FLOAT-POINT COMPRESSION

	COMPRESSION PIPELINE
	TRELLIS BUILDING AND MOTION PATH DISCOVERY
	SOM-BASED DATABASE SEQUENCE SEGMENTATION
	FOREST CONSTRUCTION
	ENCODING OF THE FOREST STRUCTURE AND RESIDUALS

	RESULTS AND DISCUSSION
	COMPRESSION PERFORMANCE WITH DIFFERENT PARAMETERS
	COMPRESSION PERFORMANCE UNDER DIFFERENT ValidPathThr
	ANALYSIS AND DISCUSSION FOR LengthThr
	COMPRESSION PERFORMANCE UNDER DIFFERENT IoUThr

	COMPARISON WITH OTHER LOSSLESS COMPRESSION METHODS

	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	PENGJIE WANG
	JIANG WANG
	XIAOMING WEI
	JIANA MENG
	JING XUN

