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ABSTRACT In this paper, a low-dimensional hidden nonlinear system is constructed by replacing two linear
resistors of a simple integrating circuit with two active memristors. The system was analyzed in detail by
using the Lyapunov exponent, 0-1 Test, Poincaré map, phase diagram, power spectral density diagram, time-
domain waveform, and chaotic characteristic diagram. The results show that the system can oscillate by itself
under zero initial conditions, and there are various transient transition behaviors, such as from chaos to limit
cycle, chaos to quasi-periodic, quasi-periodic to another quasi-periodic transition, quasi-periodic to periodic
transition. Besides, these transient processes themselves include 2, 3, 4, and 5 different states respectively,
showing multiple transient transitions behavior, which are not reported in the related literature. It is also
found that the initial states of these transition states have rich symmetrical attractors and the stable state
is multistability. In addition, the global entropy analysis method is adopted to test the universal existence
of transient behaviors, which demonstrates that the system has rich nonlinear characteristics. Finally, the
memristive circuit verifies the system’s physical feasibility and enriches the application of memristors in
circuit theory.

INDEX TERMS Active memristor, hidden attractor, multiple transient transitions, chaos, simple integrating

circuit.

I. INTRODUCTION

As a new type of element, the memristor has richer non-
linear properties than other linear components. The circuit
system composed of a memristor is different from ordinary
circuits. It may become an important factor affecting system
performance, which has attracted many scholars’ interest.
At present, memristor has been widely used in many fields,
such as artificial neural networks, secure communication,
new memory and so on, and some research results have
been obtained [1]-[5]. In the past decade, some researchers
have designed many kinds of memristive chaotic circuits by
replacing Chua’s circuit with memristors or standardizing
Chua’s diode in Chua’s circuit [6]-[15]. In addition to Chua’s
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circuit, few studies have explored memristive chaotic systems
based on various filter circuit systems [16]-[19]. Moreover,
to increase the non-linear characteristics of the system, some
researchers have introduced the memristor model into the
original chaotic mathematical model by the means of adding
nonlinear feedback terms [20]-[24], changing the circuit
branch, adding feedback branches for the typical circuit sys-
tem, replacing the linear resistance of the circuit, changing the
topological structure of the circuit, so various new memristive
chaotic systems are proposed [11], [18], [25]-[32]. Most of
these memristive circuit systems belong to high-dimensional
non-linear systems with a dimension of 4 or more, their
circuit composition is complex and there are always many
components. Only a few studies have reduced the dimension
of the memristor chaotic system [19], [33]—[35]. In this paper,
two memristors are used to replace the two linear resistors
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in the simple integrating circuit. The circuit structure of the
memristive system is relatively simple, and the number of
components is less. Moreover, the mathematical model of
the circuit system is simple and has only three dimensions.
To date, there have been no attempts to study the integrating
circuit composed of a single ideal operational amplifier. So, it
is of great significance to obtain the memristive nonlinear
system with non-equilibrium by replacing linear resistance
in the integrating circuit.

Compared with the self-excited attractor system, the hid-
den chaotic system has some special nonlinear behaviors.
For example, the hidden system has numerous equilib-
rium points or has a stable equilibrium point or even no
equilibrium point, and the dynamic behavior of the hid-
den chaotic system is more dependent on the initial value.
These interesting phenomena have been found and reported
in many published studies [36]-[49]. Some hidden chaotic
systems also have the characteristic of multistability, which
is reported by many scholars [50]-[52]. Vaibhav Varshney
and S. Sabarathinam et al. found the hidden behavior due to
‘periodic line invariant’ and analyzed the causes of multi-
stable state in the reference [53]. Since the initial value is
one of the key factors that affect the state of memristor,
the sensitivity of the memristive chaotic system includes the
sensitivity to the initial value of the memristor itself. Most
of the systems composed of memristors have strong extreme
multistability, that is, the phenomenon that an infinite number
of attractors coexist [14], [28], [30], [54], [55]. Due to the
introduction of negative input resistance, the system has no
solution, the double memristive circuit system model based
on the integrating circuit proposed in this paper is a typical
hidden nonlinear system. More importantly, because the cir-
cuit system equation is mainly composed of two memristor
equations, this nonlinear system appears to be more sensitive
to the internal variables of the memristor. This makes the
stable state of the system also behave as multiple attractors
coexist at different initial values, the so-called multistability.

Transient transition behavior is a common nonlin-
ear dynamic phenomenon, which has been reported in
some existing literature. For example, Bao Han and
Ning Wang et al. found a little-known transient process from
cycle to chaos in the chaotic system that depends on ini-
tial conditions [25]. A. Ishaq Ahamed observed the chaotic
oscillation phenomenon from transient hyperchaos to stable
chaos in the model of MLC circuit [7]. Bocheng Bao and
Han Bao have discovered three kinds of transient behaviors
in a memristor hyperchaotic system. They are from transient
hyperchaos to stable periods, from one transient hyperchaos
attractor to another attractor with different dynamic ampli-
tudes, from transient hyperchaos to stable chaos [54]. In the
study of a multi-type quasi-periodic system with memristors,
Licai Liu et al. observed the transient behavior from a weak
chaotic state to a quasi-periodic limit cycle [55]. The transient
nonlinear behaviors found in these reports are representa-
tive, and similar reports on transients are abundant [56]-[74].
However, these studies have only found that the chaotic
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system has transient transition behavior under certain specific
parameters. In other words, this type of transient behavior is
a special state for the nonlinear system, rather than for other
parameters or most parameters. In addition, there are only
two kinds of transient state behavior reported in the existing
reports, namely, only the initial state and the final state. In this
paper, with the help of research methods such as a chaotic
characteristic diagram, phase diagram, the Lyapunov expo-
nent spectrum (LEs) and global entropy, it is proved that the
transient process of the three-dimensional double memristive
system has 2, 3, 4, and 5 different states respectively. And the
transient behavior of the system is universal under different
system parameters and initial values. The nonlinear system
proposed in this paper has a wide range of transient behavior
and reveals the existence of multiple transient transitions
phenomena for the first time.

The structure of this paper is as follows. Section II gives
a memristive circuit system model based on a simple inte-
grating circuit and a new memristive hidden nonlinear system
mathematical model. At the same time, using MATLAB to
perform numerical simulation on the new system. Specifi-
cally, by analyzing the chaotic characteristic diagram, the ini-
tial state of the system is given as the system parameters and
the initial value of the system change, and take 4 x 10* sec-
onds simulation time as the system stable state. In Section III,
it is proved that the transient transition behavior of the system
is universal through some specific simulation examples. The
existence of the transient transition behavior is confirmed
by comparing the differences of the attractors in the two-
dimensional phase plane projection diagram. In Section IV,
four specific transient transition processes are introduced,
which proves the existence of multiple transient transitions
behavior. Since the system has different stable states under
different initial value conditions, Section V declares that the
system is multistable. In Section VI, the SE value of the
system is analyzed from the perspective of global entropy.
It further confirms that the transient transition behavior of the
system is universal. In Section VII, the design process of the
system’s memristive unit circuit is given, and the memristive
circuit is simulated and verified using Multisim software
under specific system parameters. Section VIII summarizes
the main research contents of this paper.

Il. DOUBLE MEMRISTOR’s HIDDEN NONLINEAR SYSTEM
The common simple integrating circuit is shown in Fig. 1(a).
In Fig. 1(a), the component A is an operational amplifier,
z and u are the input signals of the linear resistance R; and R3
respectively, C is the integrating capacitance, and u, is the
output signal of the integrator. According to Kirchhoff’s cur-
rent law, Equation (1) holds.

dup _ 1(1 1 1 o
@~ Cc\RTTRYTR"

When the value of the linear resistance Ry = Ry = R3,

d;‘to = —RLC (z + u, + u). Here, 7z is used as the input sig-

nal, and it is also used as the independent variable of the
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FIGURE 1. Circuit schematic: (a) simple integrating circuit; (b) double
memristors circuit.

memductance values function W5 (.) for some flux-controlled
memristor. It can be obtained Wa)(z). Using W(z) and
flux-controlled memristor Wi(x) to replace R; and R»
in Fig. 1(a), respectively, the double memristors circuit as
shown in Fig. 1(b) is obtained. At this time, the output signal
of the integrating circuit is

du,,_ 1 W W 1 )
{dl __E< 1(x)z+ z(z)uo+R—3u> 2

where Wi(x) and W5(z) both use the memristive model in
reference [75], so there are Equation (3) and Equation (4), in
which the coefficients of equations m, n, p, g are all positive
real numbers. Then Equation (5) can be obtained.

i1=Wiz=(Cm+nlx|)z

dx_ (3)
i c
ih =W @ u, =(—p+qlzDu,
d _ “
d~°
dx_
arc
Do _ 1 Comnlxl) 24 (opg Izl o+~
=——= | (—m+n|x — U, +—u
dt C z PTqIZ1) Uo R3
dz
“_
"’
)
Lety:uo,é':—ci&#O’ez%’azg’bzs’

g= %, c=F,d= %, and y, A > 0, we can get the equation
of the system as shown in Equation (6). Interestingly, the new
system is a coupling of two flux-controlled Wy (x), W2 (2)
memristors proposed in reference [25]. In Equation (6), a, b,
¢, and d are constant coefficients; x and z are the internal
variables of the memristor; y is the state variable; the cor-
responding mathematical expressions of Wy, (x) and Wy, (2)
are Equation (7) and Equation (8), respectively.

xX=z
y=e(a—blx)z+glc—dlz)y+§& (6)
z=y
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FIGURE 2. Two memristor model curve, W; (x) (red), W,,; (x) (green):
(a) charge — flux; (b) voltage — current.

i =Wy (x)z=(a—blx[)z

dx @)
E =2

ir =Wg(@)y=(—dlz])y

dz (8)
==

Whenm = p =a =c¢c = l,andn = ¢ = b =
d = 0.1, comparing the memristive model represented by
Equation (3) and Equation (4) with the memristive model
represented by Equation (7) and Equation (8), we can get
Equation (9) and Equation (10). The characteristic curves of
the memristive model represented by Equations (9) and (10)
are plotted in Fig. 2. In Fig. 2, x is the flux and q is the charge,
the red curve corresponds to Equation (9) and the green curve
corresponds to Equation (10). The input signal in Fig. 2 uses
a sine wave voltage with an amplitude of 2V, the frequency
of the voltage is 0.3334Hz, the initial value xo = 10 V. It can
be seen from Fig. 2 that the characteristic curve of the two
memristor model is strictly symmetric, which is consistent
with their mathematical models. Besides, when m = p =
a=c>0andn=¢g=>b=d > 0, there is an interval that
the memductance values of both memristors are less than 0,
as shown in Fig. 2(a), so W; and W,; (i = 1,2) belong to
the active memristor. Comparing Equation (5) and (6), we
will find an interesting phenomenon in the process of deriving
the state equation of the system, that is, the active memristor
introduced into the circuit evolves into another active memris-
tor in the system state equation. This transformation method
has never been reported in the relevant literature.

Wi (x) = —m+nlx|

9
{q(x) = [ Wi () dr ©
Wy1 () =a—bx]

10
:q(x) = [T Wt (1) d 1o

The equilibrium points of system equation (6) can be
obtained by solving Equation (11). Because £ # 0, it can
be seen that there is no solution for Equation (11), the system
belongs to the hidden system without equilibrium point. The
LEs could quantitatively determine the nonlinear behavior of
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the system. Jacobian matrix (12) is needed to solve the LEs
of the system by using the Wolf method [76].

z=0
e@—DblxDz+glc—dlzDy+§=0 (11)
y=20
J
0 0 1
=|—bez - sign(x) glc—dlz|l] ela—Dbl|x|]—dgy-sign (2)
0 1 0

12)

For the system equation (6), select the system and sim-
ulation parameters: ¢ = 20,a = 1, b = 0.1, g = 20,
c =1,d = 0.1, £ = 0.01, the initial value of the system
Yo = (x0, Y0, 20) = (0, 0, 0), the simulation step is 0.01, the
simulation time is ¢, and the unit is second, ¢ € (0, 40000).
The 3D phase diagram of the system (6) and its projections
are shown in Fig. 3. The red curve is a phase diagram in
three dimensions, and the color map is its projections on
three coordinate planes. It can be seen from the figure that
the system can form a novel attractor with a certain shape by
self-excitation even under zero initial condition Yy, which is
different from other chaotic systems. Fig. 4 shows the time-
domain waveform and power spectral density of the state
variable x, respectively. Fig. 4 illustrates the state variable x
meets the conditions of forming a chaotic attractor. Let’s con-
tinue to analyze the nonlinear characteristics of the system (6)
in terms of the 0-1 test, Poincaré map, and the LEs. The
graph of 0-1 test distribution in Fig. 5(a) is unbounded, which
meets the condition of forming an attractor. Fig. 5(b) is the
Poincaré map on z — y plane when x = 0. The Poincaré
map is composed of a dense set of points, showing that the
system is chaotic. At this time, The LEs of the system is

LE, = 0.11475, LE, ~ 0, LE; = —11.7323. In addition
to having a zero LEs, there is also a positive and a negative
3

LEs, and ) LE; < 0, which further confirms that the system
i=1
is chaotic.
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FIGURE 3. 3D-phase diagram and its projections of the system (6).
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FIGURE 4. The time-domain waveform and power spectral density of
variable x: (a) time-domain waveform; (b) power spectral density.
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FIGURE 5. 0-1 test and Poincaré map of the system (6): (a) 0-1 test
distribution; (b) Poincaré map.

IIl. TRANSIENT TRANSITION BEHAVIORS

Transient chaos is a unique phenomenon in nonlinear sys-
tems, and it appears in many studies. However, these reports
only show that some systems only have one or two transient
processes or transient transition under certain parameters, and
the existence of transients is not universal. This section will
focus on the transient transition that exists over a wide range
in the proposed system, and discuss the transient transition
phenomena with the changes of the system parameters and
the initial value.

A. TRANSIENT TRANSITION WHEN PARAMETERS
CHANGE

To fully reflect the system’s rich transient transition behavior,
calculate the chaotic characteristic diagram of the system (6).
We fixed parameters a = ¢ = 1, b = d = 0.1,
& = 0.01, changed e and g, let e € (0,50), g € (0,50),
set the initial value Yy = (0, 0, 0), and the simulation time
t = 2000 seconds. Fig. 6 shows the chaotic characteris-
tic diagram of the Largest Lyapunov exponent (LLE) as a
function of the system parameters e¢ and g. From the color
distribution in Fig. 6, it can be seen that the LLE values
of the system are different under the change of e and g,
which reflects the law of LLE increasing values with the
increase of parameters e and g. This means that for dif-
ferent values of e and g, their LEs are quite different.
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FIGURE 6. The 3D chaotic characteristic diagram of the system (6),
a=c=1,b=d=0.1,Y0=(0,0,0), £ =0.01, e < (0, 50), g < (0, 50).

In the chaotic characteristic diagram, all colors are the ones
with LLE greater than or equal to zero, which indicates
that the initial state of the system is chaotic, and there are
quasi-periodic and periodic behaviors under certain values
of e and g. Therefore, when discussing the LEs, the judg-
ment of the positive and negative of LEsi(i = 1,2,3) is only
meaningful when the e and g is determined. More impor-
tantly, this LLE trend with parameters also implies that the
system (6) may have rich dynamic behaviors. To compare
the initial state and the stable state of the system, in our
work, let t € (0,2000) as the system’s initial state, and
t € (3.9 x 10%, 4 x 10%) is the system stable state.

In Section III-A, it is assumed that the initial value
of the system Yy (0,0, 0). Different values ¢ and g
correspond to different values of the system. The ith

system parameter combination is recorded as Yool
(e,g),i=1,2,---,N), where N is a positive integer and
represents the number of different parameter values of the
system. The following will describe 6 typical transient behav-
iors for Yeei = (e,8), (i=1,2,---,6). The phase diagram,
dynamic behavior, and LEs and other parameters under dif-
ferent parameters are plotted in Table 1 And Fig. 7 displays
the projection of the phase diagram under different param-
eters on the y — z plane. It can be observed from Table 1
and Fig. 7 that the projections of initial and stable states are
different under various parameter combinations. Specifically,
under the conditions of Y2 and Y4, the system exhibits the
initial chaos to the stable quasi-periodic; both Y1 and Y,,3
show that the initial state is a quasi-period, and the stable
state is another quasi-period that is different from the initial
state; for Y,.5, the attractor undergoes from a chaos to a
periodic limit cycle; for Y6, the attractor moves from a
quasi-periodic to a stable periodic state.

Only the six combinations of parameter values are dis-
cussed here due to the limitation of the length of the article.
The method of spectral entropy SE will be used in the follow-
ing to demonstrate that there are still rich transient behaviors
for other parameters. The above analysis fully shows that
during the process of parameter changes, the system has rich
transient forms, which has never been reported in previous
literature.

B. TRANSIENT TRANSITION WHEN THE INITIAL CHANGE

To discuss the rich transient behavior when the initial value
of the system changes, it is necessary to compare the initial
state with a stable state. In this section, the simulation time
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FIGURE 7. Phase diagrams of attractor projection on the y — z plane for initial and stable states undera=c=1,b=d =0.1,£ = 0.01, Yy = (0,0, 0),
and different Yegi = (e,g), (i =1,2,---,6): (a) Yeg1; (b) Yeg2; (c) Yeg3; (d) Yeg4: (e) Yeq5: (f) Yeg®.
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TABLE 1. System status under different Yegi = (e,g), (i =1,2,---,6).

Yegt (e, 9) Status LEs Color  Phase diagram
Vol sy mewmTomc  G0anesmm g
Vap o) 0 0HOM TN gy
TR e e SR 1 for B TS
Y i WL L ST
VS (000 RIS 000005 000565 wa 7O
Vo Gomy MR ot s
Quasi-periodic Period Chaos

t = 2000 seconds and r = 4 x 10* seconds were chosen as the
initial state and stable state, respectively. When fixing e = 1,
a=c=1,¢g=0.1,b =d = 0.1, £ = 0.01, and varying
initial value Yo = (xo, Yo, 2x0), where x9 € (=50, 50) and
yo € (=50, 50), Fig. 8 shows the dynamic behavior of the
initial and stable state.

The color distribution in Fig. 8(a) indicates that the initial
state of the system is mostly chaotic and quasi-periodic, and
the shape of color distribution shows a certain regularity. It is
odd symmetrical in general. At the same time, in addition
to a small strip-shaped area near the center, the color points
representing the quasi-periodic state are mainly regularly dis-
tributed in two triangular areas where the absolute values of
coordinate (xp, yo) are large. Such distribution characteristics
also suggest that there may be symmetrical attractors in the
initial state of the system. Fig. 8(b) shows that the stable
state of the system is a quasi-periodic behavior. Comparing
Fig. 8(a) and (b), it can be seen that the corresponding posi-
tion of the color distribution region representing the chaos
in Fig. 8(a) changes into a quasi-periodic state in Fig. 8(b),
indicating that the system has a lot of transient behaviors.
It should be noted that although the quasi-periodic region
in Fig. 8(a) still the quasi-periodic state in the corresponding
area in Fig. 8(b), this does not mean that there is no transient
behavior, and they are maybe two different quasi-periodic
attractors. The same is true for the transient process from
chaos to a quasi-periodic state. The different chaotic attrac-
tors in Fig. 8(a) may correspond to the same quasi-periodic
attractor in the stable state.

In order to further investigate the transient behavior when
the initial value changes Y0; = (xo,y0,2x0),( = 1,2,
-+, 10), the initial values, phase diagram color, states, and
LEs are plotted in Table 2. According to the parameters
in Table 2, the phase diagram of the system projected on the
y — z plane is shown in Fig. 9.

Fig. 9(a) shows the phase diagrams of the initial values
Y07 and Y0, respectively, and Fig. 9(b) corresponds to the
phase diagrams of the initial values Y 03 and Y 04 respectively.
It can be seen from Fig. 9(a) and (b) that the shape attractors
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FIGURE 8. Dynamic behavior diagram of the system (6) for
Yo = (X0, Yo, 2Xg), Where xq € (—50, 50), and y, € (-50, 50):
(a) initial state; (b) stable state.

are symmetrical at the initial state, and the stable states
are quasi-periodic attractors, which is consistent with the
color distribution of the dynamic behavior diagram of Fig. 8.
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TABLE 2. System status under different Y0; = (xo, yg, 2Xg), (i = 1,2, -, 10).

YO0; (z0,Y0,2x0) Status LEs Color  Phase diagram
initial:chaos 0.02314, -0.01693, -0.05599  green
Y0, (4.5,-15.5,9) stable:quasi-periodic 0, 0, -0.05072 blue .
Fig 9(a)
initial:chaos 0.02194, -0.01988, -0.05002 cyan
Y0, (=5,-3,~-10) stable:quasi-periodic 0, 0, -0.05043 red
initial:chaos 0.01390, -0.02065, -0.04892  green
Y03 (—15,—15,-30) (mtal:chaos - : :
stable:quasi-periodic 0, 0, -0.05045 blue Fig .9(b)
=10 initial:chaos 0.01260, -0.01240, -0.05534 cyan
Y04 (12'5’ 10 ’ 25) stable:quasi-periodic 0, 0, -0.05068 red
_ initial:quasi-periodic 0,0, -0.05077 green .
Y05 (4.5001, —15.5,9.0002) stable:quasi-periodic 0, 0, -0.04989 red Fig ()
1n—10 initial:quasi-periodic 0, 0, -0.05403 green .
Y06 (10’ 10 ’ 20) stable:quasi-periodic 0, 0, -0.05010 red Fig .9(d)
initial:chaos 0.01152, -0.01900, -0.04725 blue .
Y07 (0.5,-5,1) stable:quasi-periodic 0,0, -0.05030 red Fig 9(¢)
initial:chaos 0.01429, -0.01506, -0.05314  blue .
Y0s (4,-5,8) stable:quasi-periodic 0, 0, -0.05063 red Fig .9(H)
initial:chaos 0.01483, -0.01527, -0.04447 blue .
Y09 (5, -5,10) stable:quasi-periodic 0,0, -0.05045 red Fig 9(g)
initial:chaos 0.01009, -0.01569, -0.05024 blue .
Y010 (5,-3,10) stable:quasi-periodic 0, 0, -0.05051 red Fig 9(h)

Combined with table 2, we could find that the initial state
has symmetric chaotic attractors for Y0; and Y0,, but has
completely different quasi-periodic limit cycles in the stable
state; when the initial values are Y03 and Y04, the initial
state shows symmetric chaotic attractors, but the stable state
shows the same shape of the quasi-periodic limit cycle. This
indicates that the system is sensitive to the change of the
initial value, and the transient phenomenon is very complex.

The phase diagrams corresponding to the initial values
Y0s and Y0g are shown in Fig. 9(c) and (d), respectively.
The phase diagrams under these two initial values have in
common that the initial state is a quasi-periodic attractor,
while the stable state is another quasi-periodic limit cycle
different from the initial state. It shows that under different
initial conditions, the state of the system can transit from
one quasi-periodic state to another quasi-periodic state shown
in Fig. 8.

Table 2 shows that for four different initial values
Y0;, i=17,8,9, 10), the initial states are chaotic, and the
stable states are quasi-periodic. Fig. 9(e)-(h) are phase dia-
grams corresponding to these different initial values. The
phase diagrams reveal that under these four initial values,
the initial states are different chaotic attractors, but the stable
state coincides with the same shape of the quasi-periodic limit
cycle. This confirms the hypothesis mentioned earlier does
exist, that is, different chaotic attractor regions can evolve into
the same quasi-periodic attractor.

In summary, it was found that during the change of the
initial value, the initial state of the system includes symmetric
attractors, different states of quasi-periodic limit cycles, and
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different hidden chaotic attractors. However, there are few
types of quasi-periodic attractors displayed in the stable state.
This is because the dynamic behavior of the memristive
system is more sensitive to the initial value, which makes
the transient transition behavior induced by the change of the
initial more abundant. On the other hand, it shows that the
transition behaviors displayed are different under different
initial values, suggesting that the system has complex tran-
sient transition behavior. Such a rich and complex transient
behavior has never been reported in the existing literature.

IV. ANALYSIS OF MULTIPLE TRANSIENT TRANSITION
BEHAVIOR

In the above analysis, the chaos characteristic diagram and
phase diagram are used to show that the transient transition
behavior of the system is universal from the perspective of
changing the parameter or initial value. However, there is
no detailed study on the evolution from the initial state to
the stable state. In this section, several specific examples
are given to illustrate the process of the transient transition
behavior, and multiple transient transitions phenomena are
identified for the new memristive system.

A. TRANSITION FROM CHAOTIC STATE TO PERIODIC STATE
Set the system parameters e = 4,a = 1,b = 0.1, g =
0.001, ¢ = 1,d = 0.1, & = 0.01, the initial value Yy =
(x0, Y0, 20) = (0, 0, 0), the simulation parameters simulation
stepis 0.01, and the simulation time ¢ € (0, 40000). The time-
domain wave and phase diagram of the state variable y are
shown in Fig. 10. When ¢ € (0, 2871) shown in Fig. 10(a),
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FIGURE 9. Phase diagrams of attractor projection on the y — z plane for initial and stable states undere=1,a=c=1,b=d =0.1,g=0.1, £ = 0.01,
and different Y, = (xq, g, 2Xg), where x¢ € (—50, 50), yg € (—50, 50): (a) Y0, and YO0,; (b) Y03 and Y0,; (c) Y05; (d) YOg; (e) YO7; (f) YOg; (8) YOq;

(h) YOy,.

the time-domain wave is aperiodic. At this time, LE; =
0.0037436, LE, ~ 0, and LE3 = —0.0046961, so the system
is chaotic during this period; when ¢ € (2871, 40000), the
time-domain wave displays a clear periodicity. Therefore, the
transient transition occurs, and the y — z plane phase diagram
in Fig. 10(b) also shows the corresponding transient transition
state.

B. THREE TRANSITION STATES

Only change the system simulation initial value, let Yy =
(x0, Y0, 20) = (=1, =5, —10), keep the other system and sim-
ulation parameters used in Section IV-A unchanged. Continue
to do the simulation about the time-domain wave and phase
diagram of variable y, as shown in Fig. 11. Fig. 11(a) indicates
that the time-domain waveform is divided into three stages.
Specifically, the curve marked in blue has no periodicity,
when ¢ € (0, 1200); the red gradually changes from disor-
der to order when ¢ € (1200, 8331); the magenta changes
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() (b)

FIGURE 10. The time-domain waveform and phase diagram of variable y,
blue (t < (0, 2871)), magenta (t € (2871, 40000)): (a) time-domain
waveform; (b) phase diagram.

regularly when ¢t € (8331,40000). The phase diagrams
on the y — z plane corresponding to the three stages are
shown in Fig. 11(b), (c), and (d), respectively. As shown

76649



IEEE Access

C. Du et al.: Multiple Transient Transitions Behavior Analysis of a Double Memristor’s Hidden System and Its Circuit

-8 -60 40 20 0 20 40 -60 -40 20 0 20 40
y y

(c) (@)

FIGURE 11. The time-domain waveform and phase diagram of variable y,
blue (t € (0, 1200)), red(t € (1200, 8331)), magenta (t € (8331, 40000)):
(a) time-domain waveform; (b) phase diagram (t € (0, 1200)); (c) phase
diagram (t € (1200, 8331)); (d) phase diagram (t € (8331, 40000)).

in Fig. 11(b), a strange attractor with a specific shape is
formed during ¢+ € (0, 1200). During this period, LE; =
0.0070777, LE; =~ 0, LEz = —0.0078112, and the system
behaves as a chaotic state. When ¢ € (1200, 8331), LE; =
0.0017679, LE, ~ 0, LEz = —0.0016252. It seems like
that the LEs satisfies to the charactg:ristics of chaos and can

form attractors. However, due to Y LE; > 0, the system

=1
is in an unstable state, as shown iIll Fig. 11(c). In the range
of t € (8331, 40000), the time-domain wave shows obvious
3

periodicity. And because Y LE; < 0, at this time, the system

is in a stable limit cycle sltzltle shown in Fig. 11(d).

It can be seen that under the above parameters, the sys-
tem (6) transits from a chaotic state to an unstable two-
dimensional torus, and finally stabilizes in the periodic state.
There are three states from the beginning to the stable state,
which is different from the transient transition behaviors
reported in the existing data. This study reveals for the first
time that the number of transition states could be equal
to three.

C. FOUR TRANSITION STATES

Now, the transient transition process is studied from the

perspective of two variables. When the system parameters

alce = l,a = 1,b = 01,g = 01, ¢c = 1,
0.1, & = 0.01, the initial value of the system

Yo = (x0,¥0,20) = (—1.5,10.5, —3), the simulation step

© (d)

FIGURE 12. The time-domain waveform and phase diagram of variables,
blue (t € (0, 1131)), red(t € (1131, 9600)), green (t < (9600, 18940)), dark
green (t € (18940, 40000)): (a) time-domain waveform of x;

(b) time-domain waveform of y; (c) phase diagram on x — z;

(d) phase diagramon y —z.

is 0.01, and the simulation time ¢t € (0, 40000), the time-
domain waves of the state variable x and y are shown
in Fig. 12 (a) and (b). In the four-time periods of ¢ €
0, 1131), + € (1131,9600), t € (9600, 18940), and ¢ €
(18940, 40000), the time-domain waveform of the system has
different changing rules, which determines that the system
is in different states in these periods. In the time-domain
waveform diagrams, the blue, red, green, and dark green
curves are used to correspond to these four-time periods,
respectively, and the same is true for the phase diagrams
12(c) and (d). When ¢t € (0,1131), LE; = 30.0056637,

LE, = —0.0040208, LEs = —0.048771, and )_ LE; < 0,

observing the time-domain waveform and phaselc_lilagram, we
can see that the initial state of the system is similar to a
two-dimensional torus. When ¢ € (1131, 9600) the time-
domain wave reflects the quasi-periodic change. At this time,
LE; = LE, =~ 0, LE3 = —0.049328, the system is in a
quasi-periodic limit cycle state. When ¢t € (9600, 18940),
it can be seen from the time-domain wave that the absolute
value of the state variable increases significantly to a bounded
value as time increases. Combined with the phase diagram,
we find that the attractor formed at this time is a bounded
two-dimensional torus. When ¢ € (18940, 40000), both the
time-domain waveform and the phase diagram show that the
system was in a quasi-period limit cycle. Due to the obvious
time-domain boundary of the variable, the system experi-
enced two different transient processes from the initial to the
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FIGURE 13. The time-domain waveform and phase diagram of variables, blue (t € (0, 1131)), red (t € (1131, 2481)), green (t < (2481, 12290)),
magenta (t € (12290, 21130)), dark green (t € (21130, 40000)): (a) time-domain waveform of x; (b) time-domain waveform of y; (c) phase diagram on
y —z,t € (0,1131); (d) phase diagram on y — z, t € (1131, 2481); (e) phase diagram on y — z, t (2481, 12290); (f) phase diagram ony -z,

t € (12290, 21130); (g) phase diagram on y — z, t € (21130, 40000); (h) phase diagram on x — z, t (0, 40000); (i) phase diagramon y — z,

t € (0, 40000).

stable state. This makes the process of system evolution more
complicated and brings challenges to better understanding of
memristive systems.

D. FIVE TRANSITION STATES

Under the parameters of Section IV-C, change the initial value
Yo = (x0,y0,20) = (0,0,0), and continue to study the
transient transition state of the system (6) through the time-
domain waveform and phase diagram of two variables. The
time-domain diagrams of the state variables x and y are shown
in Fig. 13(a) and (b). The time-domain waveforms point out
that there are five-time period boundaries ¢t € (0, 1131),
t € (1131,2481), t € (2481, 12290), r € (12290, 21130),
and r € (21130, 40000), which means that the system has
five different transient transition states. In Fig. 13, the time-
domain waveforms and two-dimensional phase diagrams of
the five-time periods are represented by blue, red, green,
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magenta, and dark green, respectively. When ¢ € (0, 1131),
at this time, LE] = 0.0066518, LE, ~ 0, LE3; = —0.056851,
combined with Fig. 13(c), it can be seen that the initial state
of the system is chaotic. When ¢ € (1131, 2481), LE; =

0.0077506, LE, = —0.0046288, LE; = —0.051616, and
3

> LE; < 0, there is a positive LEs, so the system can form

la_%)ounded attractor. Fig. 13(d) also shows that the system
attractor is a two-dimensional torus at this time. When ¢ €
(2481, 12290), it can be seen that the variable has a certain
periodicity on the time-domain diagram, and the phase dia-
gram in Fig. 13(e) shows that the system is in a quasi-periodic
state. When ¢ € (12290, 21130), there is a positive LEs, and
the phase diagram Fig. 13(f) shows that the attractor is in a
bounded two-dimensional torus. When ¢ € (21130, 40000),
the time-domain waveform is periodic, and Fig. 13(g) indi-
cates that the system is in the quasi-periodic limit cycle state.
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The projection phase diagram on x — z and y — z plane during
the whole time, ¢ € (0, 40000), is shown in Fig. 13(h) and (i)
where, fully reflects the complex process of the transient
transition behaviors. Compared with the situation described
in Section IV-C, under the new initial conditions, a chaotic
state is added to the initial state. It shows that the nonlinear
dynamic characteristics of the system (6) are very compli-
cated. There are another three transient processes from the
initial state to the stable state. Such a variety of transient
states greatly increases the complexity of the system and
provides more options for the engineering application of
memristors.

To sum it up, this section mainly describes the transition
state behavior of the system from the initial state to a stable
state with several examples. The evolution of time-domain
waveforms about variables and attractor phase diagrams are
given in detail. It is worth pointing out that there are innu-
merable types of transition behaviors, which will not be
fully studied here. This section reveals for the first time the
existence of multiple transient transitions behavior. These
studies will bring a lot of new thinking about the theory and
application of memristors in circuit research.

V. MULTISTABILITY STATE

Under the same system parameters and different initial val-
ues, the system has a different stable state, which can reflect
the existence of a multistability state. Going back to the
examples given at the 3 Section, we know that when the
system parameters are e = 1,a = 1, b = 0.1, g = 0.1,
c=1,d =0.1,& = 0.01, the initial value Yo = (xg, Yo, 2x0),
xp € (=50, 50),y0 € (—50, 50). Specifically, the initial value
Y0;, (i =1, 2,5), The stable state of the system has attractors
with different shapes, so it is proved that the system has a
multistability state phenomenon.

VI. COMPLEXITY ANALYSIS

In this section, SE algorithm [52], [77] which can describe
the global complexity of the system is used to analyze the
system. Fixed system parameters,a = 1, b = 0.1, g = 0.1,
c=1,d = 0.1, € = 0.01. Fig. 14 shows the changes of

0.4 04

03 0.3

SE
SE

02

0.1

0
0 ) 50 -40 30 20 <10 0 10 20 30 40 50
X
e 0

(a) (b)

FIGURE 14. SE varies with parameters and initial values, blue (initial),
red(stable): (a) Yy = (0, 0, 0), e € (0, 50); (b) e = 1, Yy = (Xg, Xg, 2Xp),
Xo € (—50, 50).
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SE with system parameters e and initial value, respectively.
Fig. 14 compares the SE change between the initial and
stable state. The blue curve represents the simulation time is
2000 seconds, which represents the initial state of the system;
the red curve represents the simulation time is 40000 seconds,
which represents the stable state of the system.

In Fig. 14(a), the system initial value Yy = (0,0, 0),
SE is a function that changes with the system parameter e.
In the range of e € (0, 50), except for a few values, the red
curve is mostly located below the blue, indicating that the
complexity in the stable state is less than the initial state. The
transition of complexity from high to low reveals that there
must be some transition states during parameter changes.
SE is a function that changes with the system’s initial value
Yo = (x0, x0, 2x0), xo € (—50, 50) illustrated in Fig. 14(b),
where the SE fluctuates greatly, reflecting that the system
is sensitive to the initial value. At the same time, the blue
curve is always above the red curve, reflecting the different
complexity of the initial and final states, which also reflects
that the system has a transition state behavior when the initial
value changes. From the high complexity of the initial state
to the low complexity of the stable state, it can be inferred
that the system transitioned from a chaotic or a high-density
two-dimensional torus state to a quasi-periodic limit cycle or
periodic state, which is consistent with the previous analysis
results. It further confirms that the system generally has a
transition state behavior.

VII. CIRCUIT DESIGN

In this section, the specific circuit is designed for the sys-
tem in which there are five transition behaviors discussed
in Section IV-D. Equation (13) can be obtained from (6),
(7) and (8). According to the range of phase diagrams of
numerical simulation, to realize the system through the ideal
operational amplifier, it is necessary to use Equation (14)
to carry out variable substitution. Substituting Equation (14)
into (13) gives Equation (15).

dx
? =Z
g—f = eWy1 (1) 2+ gWy2 () y + & (13)
z
ar =y
x = 10x’
y =10y (14)
z=107
dx'
d_t/ =z
‘% = eWy1 (10x") 2 4+ gWy (102') y' + 0.1& (15)
.
a y
Designing the circuit equation corresponding to

Equation (15), we could get Equation (16), where RC is the
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FIGURE 16. The circuit schematic of the memristor unit W5’ (uz) uy.

system time constant.

Rcdux
=u
dr ¢
duy
RCE = eWy1 (10uy) u;+gWyo (10u;) uy+ 0.1 (16)
RCduZ
— =u,
dt )

In the circuit equation of (16), set the parameters e = 1,
a=1,b=01,¢g=01,c=1,d = 0.1, £ = 0.01.
To complete the system circuit, the memristor model unit
must be designed first. From (16), there is

Wi'(uy) = eWy1(10u,) = ea — 10eb |uy| (17
Wz/(uz) = gWy2(10u;) = gc — 10gd |u,|

Performing the substitution of the parameter values, we
have
Wi (uy) = ea — 10eb luy| = 1 — |uy]| (18)
W2 (u;) = gc — 10gd |uz| = 0.1 — 0.1 |u|

Then the circuit of the memristor unit Wy’ (uy) u, could be
obtained in Fig. 15.

Assume that the time constant T = RC, take R = 10k,
then C; = C = 33nF. In the circuit schematic of Fig. 15,
absolute value circuit R, = R3 = 200k€2, TLOS2 is used in
op-amp, the multiplier uses AD633, the model of the diode
D1is IN4148, R4 = R5 =10k <2, the gain of multiplier g; =1.
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Then the memristive circuit equation will be

) u; g1 1 g
! (R,, Ry, quluz> (Rb R, '””) “ (19)

duy
RC = u,
dt
So there are R% =ca = 1, %‘ = 10eb = 1, we could
get R, = Ry, = 10kQ. The above completes the circuit

design of Wy’ (uy) u,. Similarly, the circuit of the memristor
unit Wy’ (i) uy is shown in Fig. 16.

In Fig. 16, Rg = 10k, C3 = C = 33nF, R; =
Rg = 200k<2, the op-amp uses TLOS2, the multiplier uses
ADG633, the diode type is IN4148, Rg = Rj9 = 10k, the
multiplier gain go = 1. So the memristive circuit equation is

1
iZR(ﬂ _&|”z|uv> =R<__g_2|”z|>uy
R; R, ; R; R. (20)

where £ = gc = 0.1, 82 = 10gd =
R. = R; = 100k 2.

The voltage signals uy and uz used in Fig. 15 and 16
are implemented by the inverter circuit shown in Fig. 17(a),
where Rip = Ri3 = 10kQ, C, = C; = C3 = 33nF,
R11 = 10k<2, DC voltage 0.1 = 0.001V. The current il
and i2 which is shown in Fig. 17(b) are the current outputs of
the memristor in Fig. 15 and Fig. 16, respectively.

The phase diagrams of the circuit system (16) are sim-
ulated by Multisim in Fig. 18. The power supply voltage
of the circuit system is £15V. The chaotic attractor shown

0.1, and
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(a)

FIGURE 17. Inverter and overall circuit schematic: (a) inverter circuit;
(b) overall connection.

FIGURE 18. The phase diagrams of the circuit system (18): (a) the initial
state on the uy — uz plane; (b) the stable state on the uy — uz plane;
(c) the attractor on the ux — uz plane; (d) the attractor on the

uy — uz plane.

in Fig. 18(a) is the initial state of the system on the uy — uz
plane, and Fig. 18(b) is its stable state. Fig. 18(c) and 18(d)
show the phase diagram of the system (16) on the ux — uz
and the uy — uz plane respectively. Compared with Fig. 18
and Fig. 13, it is found that the circuit simulation results
are highly consistent with the numerical simulation. So the
correctness of the numerical simulation results is verified, and
the system can be realized using off-the-shelf components.

VIIl. CONCLUSIONS

In this paper, two memristors are used to replace the two
linear resistors of a simple integrating circuit to obtain a
nonlinear system with hidden attractors. It is found that when
the parameters or initial values of the new system change,

76654

there are transient transition behaviors. From the perspective
of the chaotic characteristic diagram, phase diagram, and
complexity SE, it is confirmed that the system has a wide
range of transient transition behaviors. The process of spe-
cific transient transition behaviors is also analyzed. We know
that from the initial to the stable the system could include
two kinds, three kinds, four kinds, and five different kinds of
states. The system has multiple transient transitions behavior.
At the same time, under different initial conditions, the new
system also shows multistability. Finally, the memristor unit
circuit and the hidden system nonlinear circuit are designed
according to the specific parameters of the system. The
circuit simulation results are consistent with the numerical
simulation.

Through the research of this paper, we could find that
if the memristor, a newly born component, is applied to a
simple integrating circuit, it will produce complex nonlinear
behaviors. This behavior is due to the non-linear nature of
the memristor, which differs from linear elements. Numerical
simulations were made to reveal the existence of multiple
transient behaviors. However, the reasons (theoretical basis)
why there is such a rich transient behavior for this memristive
system, as well as other non-linear behaviors that are not
reflected in this paper, are still worthy of future research and
discussion.
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