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ABSTRACT This paper studies the bipartite containment of multi-agent systems (MASs) subject to the
bounded disturbance. Different from the subsistent related works on this topic, the settling time irrespective
of initial value can be calculated in advance. Two distributed control algorithms are provided correspondingly
for the first-order systems and second-order systems. Based on algebraic theory, properties of the Laplacian
matrix and fixed-time stability theory, it shows that fixed-time bipartite containment can be achieved via the
presented control law. Simulations are eventually employed to prove the correctness and effectiveness of
theoretical results.

INDEX TERMS Fixed-time bipartite containment, multi-agent systems, disturbance.

I. INTRODUCTION
In recent years, the research of control systems has obtained
tremendous concern due to its wide application, especially
for network control systems [1]–[6] and multi-agent systems
[7]–[11]. Under circumstance of MASs, the agents could
decrease the effect of probable agent faults, reduce the energy
expenditure of the entire system and so on. Among various
study of MASs, consensus is a fundamental and significant
problem, which means agents can reach an agreement via
information exchange. Moreover, sufficient criteria are often
given to reach consensus by stability theories and other
mathematical theories [12]–[14]. According to the number
of leaders, consensus can be roughly divided into three cat-
egories, namely, leaderless consensus [15], leader-follower
consensus [16] and containment control [17].

Note that there might need multiple leaders to complete
complicated tasks in reality. For example, some robots must
enter into safety area when others are equipped with sensors
to detect the hazardous obstacle in practical applications.
Naturally, the containment control comes into existence,
where followers will converge into the dynamic convex hull
formed by leaders. Up to now, various control methods
have been developed to solve containment problem, such as
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adaptive control [18], feedback control [19], observer-based
approach [20] and so on. Yuan and Zeng [19] dealt with
output containment control, where sufficient criterions were
presented by linear algebraic equations and matrix inequali-
ties. Han et al. [20] used an observer-based control approach
to handle the containment control for MASs with exogenous
disturbances.

Noticeably, the interaction topology between agents
quoted above is just collaborative network. Actually, com-
petition is as common and important as cooperation.
Thus, the relation of agents must be directly denoted as
signed digraphs with positive/negative weights signifying
trust/distrust. By taking advantage of signed graph [21],
Meng [22] extended containment control to bipartite contain-
ment control. It was shown that followers can enter the convex
hull formed by each leader’s pathway and its symmetric one.
Indeed, there have been some connected outcomes on the
bipartite containment lately. Based on the feedback control,
Zuo et al. [23] solved bipartite containment for heterogeneous
multi-agent systems on signed digraphs. He indicated that
the output-feedback control was more practical than the state
feedback case if the full state information of agents was hard
to obtain in applications. Meng and Gao [24] investigated
the high-order bipartite containment tracking in time-varying
cooperation-competition topology. Zhou et al. [25] proposed
an observer-based event-triggered controller to solve bipartite
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containment of MASs with input quantization, where a non-
linear decomposition approach was applied to build a relation
between the actual control signal and the quantized one.

However, the bipartite containment is asymptotically
reached in the previous results. Remarkably, convergence rate
is a vital index for evaluating the performance of the control
algorithms. Thus, the finite-time control algorithm [26], [27]
is developed and it has the merits of faster convergence
and better disturbance rejection. Regrettably, the finite-time
control is strongly correlative with the initial value, that is,
the setting time changes dramatically with the initial value.
Therefore, it is of enormous necessity to research fixed-
time control due to the mentioned superiorities above. Up to
now, there have been abundant literatures about fixed-time
control, such as fixed-time synchronization [28], fixed-time
formation control [29], fixed-time consensus [30], and fixed-
time flocking [31].

Inspired by the foregoing researches, we make an endeavor
to work out the fixed-time bipartite containment by fixed-
time stability theory [32], as far as we know, no one has
studied yet. The main contributions of the paper can be
summarized as follows: (i) In the paper, the proposed fixed-
time control law guarantee all agents reach the bipartite con-
tainment whatever there’s a disturbance or not. (ii) Compared
with asymptotic bipartite containment [22]–[25], the con-
troller is designed based on fixed-time stability theory such
that the convergence time of the system is independent of
starting value in the paper. Therefore, the settle time can
be speculated accurately, in turn, it can be set at any arbi-
trary value in advance by adjusting the control parameters.
(iii) In fact, external disturbances are inevitably generated
and their influence can not be ignored. In comparison to
first-order bipartite containment control [22], we further take
into account the disturbances in the first-order dynamics of
agents and extend it to second-order systems with distur-
bances. It is more practical and meaningful in theory and
application.

The remainder of this article is made up of several parts.
In Section II, necessary preliminaries as well as problem for-
mulations are introduced briefly. In Section III, we drive the
protocol to solve fixed-time bipartite containment for first-
order systems with disturbance. In addition, another fixed-
time protocol was proposed so as to deal with the bipartite
containment problem of second-order multiagent systems.
The simulations and summings-up are provided in Section IV
and Section V, respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. NOTATIONS
Throughout this article, let R, Rl and Rh×l be the real
number, the l−dimensional Euclidean space and the set
of all h × l real matrices, respectively. 1 represents the
vector with all the entries being one, meanwhile, I repre-
sents the identity matrix with the appropriate dimensions.
A ⊗ B denotes the Kronecker product of matrices A and B.

Moreover, AT , λmin(A), λmax(A) correspondingly denote the
transpose, minimum eigenvalue and maximum eigenvalue
for a given matrix A. diag (η) = diag (η1, η2, . . . , ηl) is
a diagonal matrix with diagonal elements η1, η2, . . . , ηl .
In addition, for p > 0 and for a vector x = [x1, x2, . . . , xl]T ,

we define ‖x‖p = (
l∑
i=1
|xi|p)1/p and sigp (x) =

[sign (x1) |x1|p, sign (x2) |x2|p, . . . , sign (xl) |xl |p]T , where
sign(·) is the standard sign function.

B. GRAPH THEORY AND SOME LEMMAS
Consider h leaders and l followers with cooperative-
antagonistic connections G here. Regard F = {1, 2, . . . , l},
L = {l+1, l+2, . . . , l+h} as the sets of followers and lead-
ers. Gf (v, ε) contains the whole relations between followers,
where v = {1, 2, . . . , l} and ε ⊂ v × v stand for the finite,
nonempty vertex set and link set, accordingly.We assume that
aij > 0 indicates the cooperative interaction from follower
j to follower i, and aij < 0 means the competitive interac-
tion, otherwise aij = 0. Undirected graphs Gf is taken into
account, and evidently AT = A. D = diag (d1, d2, . . . , dl) is

the in-degree matrix with di =
l∑
j=1

∣∣aij∣∣, i ∈ F , meanwhile,

the Laplacian matrix Ls of graph Gf is defined as

lij =


l∑

k=1

|aik |, j = i,

−aij, j 6= i.

Additionally,Gr = diag(gri ) ∈ R
l×l, i ∈ F, r ∈ L signifies

the information transmission from leader r to follower i.
gri 6= 0 if the ith follower can obtain information from the rth
leader, and gri = 0, otherwise. Hence, Ḡr = diag(

∣∣gri ∣∣), ϕr =
1
hL

s
+ Ḡr .

Assumption 1: For every follower i ∈ F in the signed
digraph G, there is at least one leader r ∈ L which has a
directed path from this leader to the follower. And the graph
G is structural balance.
Lemma 1 [22]: Under Assumptions 1, define

ψ̄k =
1
m
L̄ + Ḡk , ψ s

k =
1
m
Ls + Ḡk ,

then, ψ s
k and

n+m∑
k=n+1

ψ s
k are positive-definite and non-singular

M-matrices. That is,

(i) The eigenvalues of ψ s
k and

n+m∑
k=n+1

ψ s
k have positive real

parts;

(ii)(ψ s
k )
−1 and (

n+m∑
k=n+1

ψ s
k )
−1 exist and both are nonnega-

tive.
Remark 1: Assumption 1 in this study is the condition of

Lemma 1, therefore it is listed in assumptions.
Lemma 2 [33]: Let x ∈ RN and q > p > 0, then ‖·‖q ≤

‖·‖p ≤ N
1
p−

1
q ‖·‖q.
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Lemma 3 [32]: If there exists a continuous radially
unbounded and positive definite function V (x) such that
V̇ (x) ≤ −aV p (x) − βV q (x) for some a, β > 0, p > 1,
0 < q < 1, then the system is globally fixed-time stable and
the settling time function T can be estimated by

T ≤ Tmax =
1

a (p− 1)
+

1
β (1− q)

.

Furthermore, if p = 1 + 1
u and q = 1 − 1

u with u > 1 are
selected, the settling time function T can be estimated by a
less conservative bound

Tmax =
πu

2
√
aβ
.

Lemma 4: For structurally balanced graph G, a Lapla-
cian candidate function and state error is accordingly
expressed as

V (t) =
1
2
ξT (t)

 l+h∑
v=l+1

(ϕv ⊗ I )

 ξ (t),
e(t) =

 l+h∑
v=l+1

(ϕv ⊗ I )

 ξ (t),
where

l+h∑
v=l+1

(ϕv ⊗ I ) is a positive matrix and ξ =

[ξ1, ξ2, . . . , ξl]T , afterwards there satisfies

2V (t)

λmax((
l+h∑

v=l+1
(ϕv ⊗ I ))

−1

)

≤ ‖e(t)‖22

≤
2V (t)

λmin((
l+h∑

v=l+1
(ϕv ⊗ I ))

−1

)

.

Proof: See the Appendix.

C. PROBLEM FORMULATION
In this section, the first-order systems and second-order sys-
tems with bounded disturbance will be discussed.

1) BIPARTITE CONTAINMENT FOR FIRST-ORDER
SYSTEMS WITH DISTURBANCE
Consider the systems with l + h agents, in which there are
l followers tagged as i = 1, 2, . . . , l and h leaders tagged as
r = l+1, l+2, . . . , l+h. The dynamics of the leader-follower
agents is given by

Followers:

ẋi(t) = ui(t)+ wi(t), (1)

Leaders:

ẋr (t) = wr (t), (2)

where xi, ui,wi represent respectively state, control input and
disturbance of the follower i, and xr ,wr represent respec-
tively state and disturbance of the leader r . Besides, |wi| ≤ c
and |wr | ≤ c are all permitted.
Assumption 2: For the external bounded disturbance,

it satisfies ‖wi‖
i∈F∪L

≤ c, in which c is a positive constant.

Define the consensus error as the following.

eix(t) =
l∑
j=1

aij
(
sign

(
aij
)
xi (t)− xj (t)

)
+

l+h∑
r=l+1

gri (sign
(
gri
)
xi (t)− xr (t)).

Definition 1: For multi-agent dynamics (1) and (2),
the fixed-time bipartite containment control is addressed if
there is a controller ui and a fixed-time T > 0 regardless of
the initial value, such that the states of followers enter into the
convex hulls co (Xh), where

co (Xh) = {
l+h∑
i=l+1

(αixi − βixi) |αi ≥ 0,βi ≥ 0,

l+h∑
i=l+1

(αi + βi) = 1}.

Lemma 5: Under Assumptions 1 and 2, for first-order
dynamics (1) and (2), the bipartite containment control intro-
duced in definition 1 is figured out if lim

t→t1
eix(t) = 0 and

eix(t) = 0 for ∀t ≥ t1.
Proof: The process of proof is similar to lemma 3 in [22]

and therefore it is omitted here.

2) BIPARTITE CONTAINMENT OF SECOND-ORDER
SYSTEMS WITH DISTURBANCE
A group of l + h agents is considered, in which there are l
followers tagged as i = 1, 2, . . . , l and h leaders tagged as
r = l + 1, l + 2, . . . , l + h. The dynamics of the leader-
follower agents is given by

Followers:

ẋi(t) = vi(t),

v̇i(t) = ui(t)+ wi(t), (3)

Leaders:

ẋr (t) = vr (t),

v̇r (t) = wr (t), (4)

where xi, vi, ui,wi represent respectively position, velocity,
control input and disturbance of the agent i, and xr , vr ,wr
represent respectively position, velocity, and disturbance of
the leader r . Besides, |wi| ≤ c and |wr | ≤ c are all
permitted.
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Assumption 3: For the external bounded disturbance,
it satisfies ‖wi‖

i∈F∪L
≤ c, in which c is a positive constant.

Define the consensus errors as the following

eix(t) =
l∑
j=1

aij
(
sign

(
aij
)
xi (t)− xj (t)

)
+

l+h∑
r=l+1

gri (sign
(
gri
)
xi (t)− xr (t)),

eiv(t) =
l∑
j=1

aij
(
sign

(
aij
)
vi (t)− vj (t)

)
+

l+h∑
r=l+1

gri (sign
(
gri
)
vi (t)− vr (t)).

Definition 2: For multi-agent dynamics (3) and (4),
the fixed-time bipartite containment control is solved if there
is a controller ui and a fixed-time T > 0 independent of
the initial value, such that the positions and velocities of
followers respectively enter into the convex hulls co (Xh) and
co (Vh), where

co (Xh) = {
l+h∑
i=l+1

(αixi − βixi) |αi ≥ 0,βi ≥ 0,

l+h∑
i=l+1

(αi + βi) = 1},

co (Vh) = {
l+h∑
i=l+1

(αivi − βivi) |αi ≥ 0,βi ≥ 0,

l+h∑
i=l+1

(αi + βi) = 1}.

Lemma 6: Under Assumptions 1 and 3, considering
second-order dynamics (3) and (4), the bipartite containment
problem introduced in definition 2 is solved if lim

t→t2
eix(t) =

0, lim
t→t2

eiv(t) = 0 and eix(t) = eiv(t) = 0 for ∀t ≥ t2.

Proof: The proof process is similar to lemma 3 in [22]
and therefore it is omitted here.

III. MAIN RESULTS
In this part, two control inputs will be respectively raised
in order to address the first-order/second-order fixed-time
bipartite containment with bounded disturbance.

A. BIPARTITE CONTAINMENT FOR FIRST-ORDER
SYSTEMS WITH DISTURBANCE
For systems (1) and (2), we proposed the protocol based only
on relative states as follows

ui(t) = −sig(eix(t))2−
1
d − gsig(eix(t))

1
d − f sign(eix(t)), (5)

where g > 0,d > 1, d is a positive odd integer and f is
designed later.

Theorem 1: Assume that Assumption 1 and 2 hold. For the
multi-agent systems (1) and (2) with the control input (5), in

which f ≥ c +

∥∥∥∥∥( l+h∑
k=l+1

(ϕk ⊗ I ))
−1 l+h∑

r=l+1
(Gr ⊗ I )

∥∥∥∥∥
1

c, the

bipartite containment can be addressed in fixed time

T1 ≤
dπ l

d−1
4d

2
√
g(d − 1)

λmax((
l+h∑

r=l+1

(ϕr ⊗ I ))−1).

Proof: The tracking error can be expressed in a compact
form

ex(t) =
((
D̄− A

)
⊗ I

)
x(t)+

l+h∑
r=l+1

(
Ḡr ⊗ I

)
x(t)

−

l+h∑
r=l+1

(Gr ⊗ I ) (1⊗ xr (t))

=

l+h∑
r=l+1

(ϕr ⊗ I )x(t)−
l+h∑

r=l+1

(Gr ⊗ I )x̄r (t)

=

l+h∑
v=l+1

(ϕv ⊗ I )(x(t)−

 l+h∑
k=l+1

(ϕk ⊗ I )

−1

×

l+h∑
r=l+1

(Gr ⊗ I )x̄r (t)),

where x = [x1, x2, . . . , xl]T and x̄r = 1⊗xr . Remark δ = x−(
l+h∑

k=l+1
(ϕk ⊗ I )

)−1
l+h∑

r=l+1
(Gr ⊗ I )x̄r . So the tracking error

equations can be equivalently described by

ex(t) =
l+h∑

v=l+1

(ϕv ⊗ I )δ(t).

Differentiate δ(t) as follows

δ̇(t) = −sig(ex(t))2−
1
d − gsig(ex(t))

1
d
− f sign(ex(t))

+W1(t)− (
l+h∑

k=l+1

(ϕk ⊗ I ))−1
l+h∑

r=l+1

(Gr ⊗ I )W̄r (t),

where W1 = [w1,w2, . . . ,wl]T , W̄r = 1 ⊗ wr . From
Lemma 4, one derives

V̇ (t) = δT (t)
l+h∑

v=l+1

(ϕv ⊗ I )δ̇(t)

= exT (t)(−sig(ex(t))2−
1
d − gsig(ex(t))

1
d − f sign(ex(t))

+W1(t)− (
l+h∑

k=l+1

(ϕk ⊗ I ))−1
l+h∑

r=l+1

((Gr ⊗ I )W̄r (t)))

≤ −‖ex(t)‖
3− 1

d

3− 1
d
− g ‖ex(t)‖

1+ 1
d

1+ 1
d
− ‖ex(t)‖ (f − c

−

∥∥∥∥∥∥(
l+h∑

k=l+1

(ϕk ⊗ I ))

−1 l+h∑
r=l+1

(Gr ⊗ I )

∥∥∥∥∥∥
1

c)
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≤ −
l
1−d
2d 2

3d−1
2d

λ
3d−1
2d

max
((

l+h∑
k=l+1

(ϕk ⊗ I ))
−1

)

(V (t))
3d−1
2d

−
2
d+1
2d g

λ
d+1
2d

max
((

l+h∑
k=l+1

(ϕk ⊗ I ))
−1

)

(V (t))
d+1
2d . (6)

Here, the above inequality is realized by Lemma 2. Based
on (6) and Lemma 3, it comes to a conclusion that V (t)
achieves zero in fixed time, which means the sliding mode
ex = 0 will be kept in fixed time. Obviously, the fixed-time
bipartite containment is realised according to Lemma 5. The
rigorous proof is completed.
Corollary 1: If assumption 1 holds, considering the spe-

cial case wi
i∈F∪L

= 0 for the systems (1) and (2), the bipartite

containment will be also achieved under the controller (5).
Proof: To avoid being tedious, the proof can refer to

Theorem 1, thus is omitted.

B. BIPARTITE CONTAINMENT FOR SECOND-ORDER
SYSTEMS WITH DISTURBANCE
Next, we focus on bipartite containment for second-order sys-
tems (3) and (4). The process is composed of two parts. First,
in view of state error and velocity error, a terminal sliding
mode vector is developed. Second, we propose a distributed
control protocol based on fixed-time stability theory.

The tracking error can be described by a matrix

ex(t) =
l+h∑

v=l+1

(ϕv ⊗ I )(x(t)−

 l+h∑
k=l+1

(ϕk ⊗ I )

−1

×

l+h∑
r=l+1

(Gr ⊗ I )x̄r (t)),

ev(t) =
l+h∑

v=l+1

(ϕv ⊗ I )(v(t)−

 l+h∑
k=l+1

(ϕk ⊗ I )

−1

×

l+h∑
r=l+1

(Gr ⊗ I )v̄r (t)),

where x = [x1, x2, . . . , xl]T , v = [v1, v2, . . . , , vl]T , x̄r =
1⊗ xr and v̄r = 1⊗ vr .
Note

ξ (t) = x(t)−

 l+h∑
k=l+1

(ϕk ⊗ I )

−1 l+h∑
r=l+1

(Gr ⊗ I )x̄r (t),

η(t) = v(t)−

 l+h∑
k=l+1

(ϕk ⊗ I )

−1 l+h∑
r=l+1

(Gr ⊗ I )v̄r (t),

for convenience. So the tracking error equations can be equiv-
alently expressed by

ex(t) =

 l+h∑
v=l+1

(ϕv ⊗ I )

 ξ (t),
ev(t) =

 l+h∑
v=l+1

(ϕv ⊗ I )

 η(t). (7)

Based on above discussion, with the help of fixed-time sta-
bility theory, we construct a sliding mode for each follower
agent as

s(t) = η(t)+ sige(ex(t)), (8)

where 0 < e < 1. To reach the aforementioned bipartite
containment problem of second-order multi-agents, the fol-
lowing control input is represented as

u(t) = −e|ex(t)|e−1 − sig
2− 1

g (s(t))

−νsig
1
g (s(t))− bsign(s(t)), (9)

where ν > 0, g > 1, g is positive odd integer and b is
designed later.
Theorem 2: Assume that Assumption 1 and 3 hold. For the

multi-agent systems (3) and (4) with the control input (9), in

which b ≥ c+

∥∥∥∥∥∥
(

l+h∑
k=l+1

(ϕk ⊗ I )

)−1
l+h∑

r=l+1
(Gr ⊗ I )

∥∥∥∥∥∥
1

c, the

bipartite containment can be addressed in fixed time

T3 ≤ T2 + 2

(0.5ξT (T2)(
l+h∑

v=l+1
(ϕv ⊗ I ))ξ (T2))

1−e
2

(1− e)


√√√√2/λmax((

l+h∑
r=l+1

(ϕr ⊗ I ))
−1

))

e+1 ,

where T2 =
gπ l

g−1
4g

2
√
v(g−1)λmax((

l+h∑
r=l+1

(ϕr ⊗ I ))−1).

Proof: Step 1: Substituting dynamics (3) and (4) into (9),
one generates

η̇(t) = −e|ex(t)|e−1 − sig
2− 1

g (s(t))− νsig
1
g (s(t))

−bsign(s(t))+W1(t)− (
l+h∑

k=l+1

(ϕk ⊗ I ))−1

×

l+h∑
r=l+1

(Gr ⊗ I )W̄r (t),

where W1 = [w1,w2, . . . ,wl]T , W̄r = 1⊗ wr .
Set up the Lyapunov function V1(t) = 1

2 s
T (t)s(t). From

Lemma 5, it deduces

V̇1(t)

= sT (t)ṡ(t)

= sT (t)(−sig2−
1
g (s(t))− vsig

1
g (s(t))− bsign(s(t))
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FIGURE 1. Diagraph with six agents.

FIGURE 2. States and state errors of first-order MASs with disturbance.

+W1(t)−

 l+h∑
k=l+1

(ϕk ⊗ I )

−1 l+h∑
r=l+1

(Gr ⊗ I )W̄r (t))

≤ −‖s(t)‖
3− 1

g

3− 1
g
− v ‖s(t)‖

1+ 1
g

1+ 1
g
− ‖s(t)‖ (b− c

−

∥∥∥∥∥∥∥
 l+h∑
k=l+1

(ϕk ⊗ I )

−1 l+h∑
r=l+1

(Gr ⊗ I )

∥∥∥∥∥∥∥
1

c)

FIGURE 3. States and state errors of first-order MASs without disturbance.

≤ −l
1−g
2g ‖s(t)‖

3g−1
g

2 − v ‖s(t)‖
1+ 1

g
2

≤ −
l
1−g
2g 2

3g−1
2g

λ
3g−1
2g

max
(

(
l+h∑

k=l+1
(ϕk ⊗ I )

)−1
)

V1(t)
3g−1
2g

−
2
g+1
2g v

λ
g+1
2g

max
(

(
l+h∑

k=l+1
(ϕk ⊗ I )

)−1
)

V1(t)
g+1
2g . (10)

Here, the above inequality is realized by Lemma 2. Evidently,
it follows from (10) and Lemma 3 that V1 (t) achieves zero in
fixed time, which means that the sliding mode s (t) = 0 will
be kept in fixed time. Its upper bound is

T2 =
gπ l

g−1
4g

2
√
v(g− 1)

λmax((
l+h∑

r=l+1

(ϕr ⊗ I ))−1).

Step 2: On the basis of above detailed analysis, if the
sliding mode surface s(t) = 0 meets, it is easy to reach that
η(t) = −sige(ex(t)) as i = 1, 2, . . . , l. For the purpose of
making (ex(t), ev(t)) converge to (0, 0), Lyapunov function
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FIGURE 4. Positions and position errors of second-order MASs with
disturbance.

candidate is elected as

V2(t) =
1
2
ξT (t)

 l+h∑
v=l+1

(ϕv ⊗ I )

 ξ (t).
One yields the time derivative of V2(t)

V̇2(t) = ξT (t)

 l+h∑
v=l+1

(ϕv ⊗ I )

 η(t)
= −exT (t)sige(ex(t))

≤ −‖ex(t)‖
e+1
2

≤ −
2
e+1
2

λ
e+1
2

max
(

(
l+h∑

k=l+1
(ϕk ⊗ I )

)−1
)

V2(t)
e+1
2
. (11)

Together with lemma 3, it indicates that ξ (t) can come up
to zero. Due to (7) and (11), it draws a conclusion that
the equilibrium point (eix(t), eiv(t)) can achieve (0, 0) in

FIGURE 5. Velocities and velocity errors of second-order MASs with
disturbance.

finite time. The upper bound of settlement time satisfies

T3 ≤ T2 + 2

(0.5ξT (T2)(
l+h∑

v=l+1
(ϕv ⊗ I ))ξ (T2))

1−e
2

(1− e)


√√√√2/λmax((

l+h∑
r=l+1

(ϕr ⊗ I ))
−1

))

e+1 .

Obviously, the fixed-time bipartite containment is realised
according to Lemma 6. The rigorous proof is completed.
Remark 2: Since the initial time T2 of ξ (T2) in the afore-

mentioned formula is independent of the initial condition, that
is to mean, the settling time of the entire multiagent systems
is also irrespective of the starting condition.
Corollary 2: If assumption 1 holds, considering the spe-

cial case wi
i∈F∪L

= 0 for the system (3) and (4), the bipartite

containment will be achieved under the control protocol (9).
Proof: To avoid being tedious, the proof can refer to

Theorem 2, thus is omitted.

IV. ILLUSTRATIVE EXAMPLE
We study a multiagent system including two leaders
labelled as 5-6 and four followers labelled as 1-4 with the
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FIGURE 6. Positions and position errors of second-order MASs without
disturbance.

communication topology FIGURE.1. Four simulation exam-
ples will be introduced to prove the correctness and the
validity of the theoretical results.
Example 1 (First-Order Systems): In this example, the con-

trol law (5) is utilized to explain fixed-time bipartite contain-
ment for the system (1) and (2). The original value is designed
as x(0) = [−1,−0.8, 2.3, 0,−0.8,−0.65]T .
Case 1 (Without Disturbance): wi = 0, i = 1, 2, . . . , 6,

g = 1, d = 3, f = 6.
Case 2 (With Disturbance): wi = 2 cos(10t), i =

1, 2, . . . 6, g = 5, d = 3, f = 0.
The state trajectory and state error is shown in

FIGURE.2 with disturbance while the state trajectory and
state error is shown in FIGURE.3 without disturbance.
Example 2 (Second-Order Systems): In this example,

considering the system (3) and (4) under the protocol (9),
the simulation results are presented in FIGURE.4-7. The
starting information and parameters are designed as
Case 1 (Without Disturbance):

x(0) = [6, 2.2, 0.35,−3, 2, 0.4]T ,

v(0) = [0, 1.52,−1, 5, 1.5,−1.8]T ,

g = 6, e = 0.95, v = 3, b = 0.

FIGURE 7. Velocities and velocity errors of second-order MASs without
disturbance.

Case 2 (With Disturbance):

x(0) = [3, 0.3, 2,−0.3, 1.1, 0.04]T ,

v(0) = [−10, 1.8,−1, 5,−0.05,−1.8]T , g = 2, e = 0.483,

v = 6, b = 6.

Additionally, wi = 2arccos(1.5t), i = 1, 2, . . . , 6 in
case 2. The simulations are shown in FIGURE.4-5 with dis-
turbance while the simulations are shown in FIGURE.6-7
without disturbance.

V. CONCLUSION
In this study, two bipartite containment protocols are respec-
tively put forward for the first-order/second-order systems
on the basis of Lyapunov function and fixed-time stability
theory. We can find that the settling time is not associated
with starting state but only to rely on parameters and net-
work connectivity. The availability of correlative theory has
been demonstrated via simulations. Besides, some parame-
ter estimation approaches [34]–[38] can be combined with
the method in this article for network time-delay systems
[39]–[43] with unknown parameters.
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Future works will be on the bipartite containment in
the hybrid cases such as with switching topology or with
impulse [44], [45].

APPENDIX
Proof of Lemma 4:According to the definition of a Laplacian
candidate function and state error above, it deduces

V (t) =
1
2
eT (t)(

l+h∑
v=l+1

(ϕv ⊗ I ))−1e(t)

≥
1
2
λmin((

l+h∑
v=l+1

(ϕv ⊗ I ))−1)eT (t)e(t)

=
1
2
λmin((

l+h∑
v=l+1

(ϕv ⊗ I ))−1) ‖e(t)‖22 .

Therefore,

‖e(t)‖22 ≤
2V (t)

λmin((
l+h∑

v=l+1
(ϕv ⊗ I ))

−1

)

.

Similarly, ‖e(t)‖22 ≥
2V (t)

λmax((
l+h∑
v=l+1

(ϕv⊗I ))
−1

)

is obtained.
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