
SPECIAL SECTION ON BLOCKCHAIN-ENABLED TRUSTWORTHY SYSTEMS

Received March 4, 2020, accepted March 19, 2020, date of publication April 21, 2020, date of current version May 20, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989303

Leveraging N-1 Queues to Improve the Energy
Efficiency of Scalable Computing
CHENG HU 1, HUAN LUO 2, AND MINGDONG TANG1
1School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou 510006, China
2College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China

Corresponding authors: Huan Luo (hluo@fzu.edu.cn) and Mingdong Tang (mdtang@gdufs.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61976061, in part by the Science and
Technology Planning Project of Guangzhou under Grant 202002030239, and in part by the Characteristics and Technological Innovation
Project of Guangdong University of Foreign Studies under Grant 18TS21.

ABSTRACT The clusters in a blockchain computing system can be constructed to be elastic, thus supporting
scalable computing and improving energy efficiency. To form an elastic cluster, the service nodes are
dynamically divided into the working nodes and the reserved nodes. Specifically, the working nodes are
active to meet the computing requirements of workloads, while the reserved nodes are switched to a
low-power state for energy saving. Traditionally, workloads are distributed to working nodes in the mode
of N-N service queues. But in this mode, the Quality of Service (QoS) of different working nodes may
be diverse, because the requirements are various for the accumulated requests in different working nodes.
As a result, the overall system capability is not sufficiently utilized, and the overall system QoS is dragged
down. In this paper, we propose an N-1 queueing and on-demand resource provisioning method to process
workloads in the mode of N-1 service queues. Different from N-N service queues, N-1 service queues
prohibit the accumulation of requests in working nodes. Thereby, once there are idle working nodes, waiting
requests can immediately be delivered to them. As a result, all the working nodes are sufficiently utilized,
and the overall QoS is improved. Accordingly, after using the N-1 service queues, fewer working nodes
are enough to meet the same Service Level Agreement (SLA) on same workloads. In addition, by using a
resource demand monitor module, our method dynamically readjusts the number of working nodes to match
workload demand. Finally, the energy efficiency of an elastic cluster can be measurably improved, due to
that fewer working nodes are powered on while the same SLA can be met.

INDEX TERMS Blockchain computing systems, energy efficiency improvement, service queues, scalable
computing.

I. INTRODUCTION
Owing to the trust free nature of blockchain [1], [2],
the development of blockchain computing systems is greatly
promoted. Blockchain computing systems are now widely
applied in different research areas, such as establishing secure
data transmission in Internet of Things (IoT) [3], [4], building
conventional cloud exchange markets in cloud service [5],
[6], etc. The emergence of a large number of such applications
places a great demand on computing resources. [7]. Accord-
ingly, the scales of blockchain computing systems expand
quickly to meet the demands. Meanwhile, energy require-
ments are raised to sustain the large scale systems. The huge

The associate editor coordinating the review of this manuscript and

approving it for publication was Hong-Ning Dai .

requirements of energy supply bring not only the financial
problem but also an environmental pollution problem [8], [9].

To improve the system energy efficiency and reduce energy
waste, elastic clusters are introduced to provide scalable com-
puting for fluctuant workloads. An elastic cluster allows the
number of working nodes to be dynamically adjusted. Thus,
for saving energy in an elastic cluster, only partial nodes keep
working, and the others are maintained at a low-power state.
In general, a traditional elastic cluster system [10]–[12] can
be considered as a two-layer structure, where the first layer
is a manager (or several managers for large-scale systems),
and the second layer is working nodes. Because the man-
ager and working nodes can maintain their respective queues
to accumulate the requests which form system workloads,
the requests are generally queued and served in the mode of
N-N service queues (or called N-N queues for short). In this

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 86573

https://orcid.org/0000-0001-8465-181X
https://orcid.org/0000-0003-1855-2850
https://orcid.org/0000-0001-6165-4196


C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

mode, the requests can be accumulated in both of the two
layers.

However, the arrivals and the required service time of
requests are generally nonuniform. Therefore, even each
working node serves a same number of requests in the N-N
queues mode, the time needed to accomplish the requests is
different. The working nodes, which receive relatively uni-
formly distributed requests, tend to obtain a lower response
time than the ones with nonuniform distributed requests.
In addition, the requests received by some working nodes
probably require a low service time, thus these working nodes
can achieve a high service rate. As a result, some working
nodes have much idle time, while some other working nodes
might struggle for services. Different from N-N queues,
N-1 service queues mode (or called N-1 queues for short)
only allow the requests to be accumulated in the first layer,
and the requests can only be directly handled in the second
layer. Once a working node is idle, a waiting request is imme-
diately distributed by the managers to the node. Therefore,
the assigned workloads to each working node are more pro-
portional, when adopting N-1 queues instead of N-N queues.
As a result, after using N-1 queues, the overall QoS of a
cluster can be improved.

Therefore, this paper1 proposes an N-1 queueing and
On-Demand resource provisioning (N1OD) method for elas-
tic clusters. N1OD makes the queues in the manager and
working nodes follow the mode of N-1 queues. In con-
trast to the traditional N-N queues, the N-1 queues signif-
icantly improve the service efficiency of working nodes.
Consequently, to maintain the same Service Level Agree-
ments (SLA) under the sameworkloads, fewer working nodes
are needed when adopting N-1 queues. In addition, leverag-
ing some queueing theories related to N-1 queues, N1OD
dynamically provides suitable resources for workloads. Thus,
the energy usage wasted on supplying surplus working nodes
can be reduced. Ultimately, at the same service level, our
method can achieve notable improvement on the energy effi-
ciency of elastic clusters.

The main contributions of this paper are as follows:
1) We explore the two-layer structure of a traditional elas-

tic cluster which constitutes a blockchain computing
system, and perform analyses to compare the system
performances of the N-N queues and the N-1 queues.

2) We propose the N1OD method to replace the queues
mode with the N-1queues mode. In addition, we realize
a dynamical on-demand resource provision in N1OD,
with the help of some related queueing theories to
perceive the resource demand of workloads.

3) We perform extensive experiments to attest the effec-
tiveness of our method. For comparison, our method
along with other three state of the art methods are tested
in the experiments. Finally, we carefully evaluate all

1A preliminary version of this paper [13] appears in Proceedings of the
2020 International Conference on Blockchain and Trustworthy Systems
(BlockSys’2020).

these methods, with full discussions on the experimen-
tal results.

The rest of this paper is structured as follows. Section II
discusses the related work. Section III introduces the archi-
tecture of a traditional elastic cluster, and Section IV pro-
poses the models and related analysis for the elastic cluster.
Section V introduces our proposed method N1OD in detail.
SectionVI carries out the experimental evaluation to attest the
effectiveness of our method. Finally, Section VII concludes
this paper.

II. RELATED WORK
Elastic clusters are proposed by many researchers to dynam-
ically adjust the number of working nodes, thus cutting
down the system energy cost and improving the system
energy efficiency. Hameed et al. survey several resource pro-
vision/allocation studies in their literature [14]. They point
out that, leveraging scalable designs to support on-demand
resource provision/allocation, is an efficient way to save
system energy cost and improve system energy efficiency.
The scalable designs can be achieved by various methods,
such as resource allocation adaption policy [15], objective
function [16] and so on.

The relatedwork is introduced in two categories. In the first
category, the energy cost of system is cut down by providing
service resources elastically. However, the provided service
resources should meet the requirements of workloads, thus
satisfying a premise that the system QoS should be guar-
anteed. If the system service efficiency can be improved,
fewer service resources are required by a same workload to
obtain an equivalent QoS. Therefore, in the second category,
the involved studies further improve the service efficiency
of system, thus the system energy efficiency can be further
improved.

A. THE FIRST CATEGORY
With scalable computing resources in the form of virtual
machine (VM) instances to run jobs, Xu et al. [17] pro-
pose a heterogeneity and interference-aware VM provision-
ing framework, Heifer. Heifer can predict the performance
of MapReduce applications by a lightweight performance
model which regards both the online-measured resource uti-
lization and VM interference. Accordingly, Heifer gears the
number of VM instances to provide a fitting capability for
tenant applications. With extensive prototype experiments,
they show that Heifer can guarantee the job performance
while saving the job budget for tenants. In other words,
the energy efficiency of computing resources is improved,
due to the reduction on the energy cost for a same work-
load. Smart et al. [18] use a multi-objective goal attainment
algorithm to improve the energy efficiency of the storage
drives in a custom built storage cluster. The cluster contains
multiple drives, and the goal of the algorithm is to opti-
mally assign individual commands to drives thus minimiz-
ing the command energy usage. In this work, rather than
working nodes, the service units are mainly regard as the

86574 VOLUME 8, 2020



C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

storage drives. The power of idle storage drives is much lower
than that of active ones. Thus, with a minimal number of
drives to execute commands, the energy efficiency can be
significantly improved.

B. THE SECOND CATEGORY
To improve the system service efficiency, many researchers
make a great deal of efforts. Lu et al. [19], [20] notice that
the bursts of workloads greatly increase the system burden,
so they propose a decomposingmethod to improve the system
service efficiency on the bursts. In the method, the work-
loads in the bursts are first decomposed. Specifically, the I/O
requests, which are out of the service limit, are extracted from
the workloads. Then, the extracted requests are postponed,
and finally recombined into the slack of later workloads.
However, the method does not work on normal workloads.
In other words, the service efficiency on normal workloads
remains the same without improvement. Mardukhi et al. [21]
use a genetic algorithm to select the optimal service for
tasks. Their algorithm can decompose the global constraints
into local constraints, and finally select an optimal service
through a simple linear search. Because the tasks are opti-
mally assigned to appropriate services, the service efficiency
is improved to achieve a shorter computation time for work-
loads. Zhang et al. [22] propose a service curve-based QoS
algorithm to support three types of applications in a same
storage system. Specifically, three scheduling queues with
different priorities are adopted to schedule the I/O requests
respectively in latency guarantee applications, IOPS guar-
antee applications and best-effort applications. By using
the service curve-based QoS algorithm, the scheduling can
take account of the urgency status of I/O requests. Besides,
to avoid failures on QoS targets, the algorithm can reschedule
certain requests from the fairness queue, by migrating them
to other appropriate queue.

In our earlier work [13], we notice that the service queues
in traditional elastic clusters are with the mode of N-N
queues. But the overall service capability is not sufficiently
utilized under the N-N queues. Therefore, in the earlier
work, we realize an N-1 queueing method to improve the
service efficiency of elastic clusters. By comparison, this
paper makes significant extensions on the earlier work. The
extensions include: adding more details and analyses to elab-
orate the N-1 queues; proposing the new N1OD method
rather than the preliminary method; improving the experi-
mental evaluation with new elaborate experiments, etc. In our
N1OD method, the N-1 queues are handy and with univer-
sal applicability to improve the system service efficiency
on general workloads. In addition, N1OD can dynamically
provide advisable resources for fluctuant workloads, lever-
aging queueing theorems to obtain the perception on the
resource demand of workloads. What’s more, in our exper-
iments, real-world IO trace logs are replayed to produce
approximateworkload conditions as in blockchain computing
systems.

FIGURE 1. The structure of a blockchain computing system.

III. SYSTEM ARCHITECTURE
Figure 1 shows a blockchain computing system which sup-
ports scalable computing. As shown in Figure 1, the system
can be divided into two layers. The first layer is the applica-
tion layer which consists of managers, and the second layer
is the blockchain data service layer which consists of work-
ing nodes. When clients send transactions via the Internet
to the blockchain computing system, these transactions are
first received by the managers. Then, the managers either
update existing blockchain data or create new blockchain
data, according to the requirements of the transactions. The
blockchain data are maintained in the second layer, so the
operations of updating existing blockchain data and creating
new blockchain data are implemented in the second layer.

As shown in Figure 1, the blockchain computing system
can be regarded as a traditional elastic cluster structure. The
structure contains two layers including the application layer
and the blockchain data service layer. In the first application
layer, the transactions received are translated into several
data manipulation requests. These requests are first accumu-
lated in the managers, and then distributed by the managers
to appropriate working nodes. Therefore, no matter what
blockchain applications are deployed to the blockchain com-
puting system, the system workloads can be regard as these
requests.

In general, in the managers, the accumulated requests are
queued in a First In First Out (FIFO) way. Therefore, no mat-
ter how many managers the system has, we can assume that
only one queue is maintained by the managers. In addition,
the requests are evenly distributed to the second layer with
a specific manner, e.g., a round-robin manner. In the sec-
ond layer, only the working nodes provide services for the
requests. When requests are accumulated in a working node,
these requests are queued and served by the working node in
the FIFO way. The number of working nodes can either be
decreased by switching some working nodes to a low-power
state as reserved nodes, or be increased by resuming some
reserved nodes from the low-power state as working nodes.
Because reserved nodes should first be resumed as working
nodes for service, they are not shown in Figure 1.

VOLUME 8, 2020 86575



C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

FIGURE 2. Illustrations for the N-N and N-1 queues modes.

Because both the two layers can maintain their respective
queues to accumulate the requests, such mode of handling
requests is represented as the N-N queues mode. The first ‘N’
means that, when requests are first received by the cluster
managers, multiple requests can be queued in the service
queue maintained by the managers. The second ‘N’ means
that, when requests are then delivered by the managers to
appropriate working nodes, the service queues of the working
nodes can also queue multiple requests. If the requests are
only allowed to be accumulated in the first layer, and can
only be directly handled in the second layer. The N-N queues
mode is changed into the N-1 queues mode. In the N-1 queues
mode, once a working node is idle, a waiting request in the
manager is immediately distributed to the working node.

IV. SYSTEM MODEL AND THEORETICAL ANALYSIS
A. SYSTEM MODEL
According to queueing theory [23], a queueing system can
work with different service queue modes. Among these ser-
vice queue mode, the multiple single-server queues mode
corresponds to the previously mentioned N-N queues mode.
In addition, the multi-servers queue mode corresponds to the
N-1 queues mode. Two subfigures are presented in Figure 2
to show the N-N queues mode and the N-1 queues mode.
As shown in Figure 2a, each of the working nodes has its
own single-server queue, thus there are multiple single-server
queues. While, as shown in Figure 2b, the N queue main-
tained by the managers is a common multi-servers queue,
which are served by all the working nodes.

Therefore, a traditional elastic cluster can be modeled as
a queueing system works with the multiple single-server
queues mode. In this queueing system, requests are evenly
distributed by the managers to servers. Therefore, each server
theoretically receives the same number of requests. However,
the arrivals and the required service time of requests are
generally nonuniform. Therefore, although each server serves
the same number of requests, the time needed to finish the
requests is different. The servers, which receive relatively uni-
formly distributed requests, tend to obtain a lower response
time than the ones with nonuniform distributed requests.
In addition, the requests received by some servers probably
require a low service time, thus these servers can achieve a

high service rate. As a result, some servers have much idle
time, while some other servers might struggle for services.

If requests are prohibited to be accumulated in working
nodes, the traditional elastic cluster’s N-N queues mode is
changed into the N-1 queues mode. After changed into the
N-1 queues mode, the elastic cluster can instead be modeled
as a queueing system works with the multi-servers queue
mode. In this queueing system, no requests can be accumu-
lated in the servers. Once a server is idle, a waiting request is
immediately distributed to the server.

Generally, request arrivals are seen as a Poisson process,
and request service time is regarded as an exponential dis-
tribution [24]. According to Kendall’s notation2 [24], [25],
an elastic cluster system with the N-N queues mode can be
modeled as multiple M/M/1 queueing models, each model
represents a working node. Besides, an elastic cluster system
with the N-1 queues mode can be modeled as an M/M/n
queueing model, where, n working nodes serve the common
queue.

B. THEORETICAL ANALYSIS
Based on the existing research on queueing theory [23]–[25],
two formulas can be used to analyze the performances of the
multiple M/M/1 queueing models and the M/M/n queueing
model. The related notations are summarized in Table 1. The
first formula is for the multiple M/M/1 queueing models.
For the models, because requests are evenly distributed to
working node, each model has the same request arrival rate.
Assume that the request arrival rate in each model is equal
to λ, the mean waiting time of requests in each model is

W =
ρ

µ− λ
. (1)

The other formula is for the N-1 queues. For the N-1 queues,
with the same assumption, if there are n working nodes,
the whole arrival rate is nλ. In this case, the mean waiting

2With Kendall’s notation, three factors written as the form of A/S/c
are used to represent a queueing model. In that form, ‘‘A’’ refers to the
distribution of inter-arrival time, ‘‘S’’ refers to the distribution of service time
and ‘‘c’’ refers to the number of service servers. If the request arrivals follow
a Poisson process (or called random process), or the service time required
follow an exponential distribution, the notation ‘M’ is used.

86576 VOLUME 8, 2020



C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

TABLE 1. Notation descriptions.

time of requests can also be calculated as follows,

W =
C(n, ρ)

n
×

S
1− ρ

. (2)

To give an intuitive illustration, we assume that the whole
arrival rate of requests is 400 per second, and themean service
time of requests S is 5 milliseconds. In addition, there are
4 working nodes (the λ of each node is 400/4) in the system.
With this assumption, if all the working node can be modeled
as 4 M/M/1 queueing models, we can theoretically calculate
the mean waiting time of requests, by leveraging (1),

W =
ρ

µ− λ

=

400
4 × 0.005
1

0.005 −
400
4

= 0.005 seconds.

While, if the system can be modeled as an M/M/4 queueing
model. We can also theoretically calculate the mean waiting
time of requests through (2),

W =
C(n, ρ)

n
×

S
1− ρ

=

C(4, 400
4× 1

0.005
)

4
×

0.005

1− 400
4× 1

0.005

≈ 0.00043 seconds.

Even the number of working nodes is reduced to 3, the mean
waiting time is 0.002̇ seconds.
Therefore, if the actual and theoretical conditions are con-

sistent, with the same hardware conditions and the same
workloads, the service efficiency of N-1 queues is much
higher than that of N-N queues. In other words, with
N-1 queues, fewer working nodes are required to maintain
the same SLA. However, the actual situations can be more

complex. For example, if S > 10ms in the above illustration,
the value of ρ will be equal to or larger than 1, and zero
or minus will appear in the denominators. This means that,
working nodes are not adequate to handle requests, and the
number of waiting requests will increase infinitely.

V. METHOD IMPLEMENTATION
In this paper, we propose the N1OD method to makes the
queues of traditional elastic clusters follow the form of
N-1 queues. Thus, the service efficiency of traditional elastic
clusters can be improved to a great extent. In addition, N1OD
maintains a Resource Demand Monitor Module (RDMM)
which keeps tracking the current workload demand on the
number of working nodes. Accordingly, owing to RDMM,
N1OD is capable of providing suitable resources for work-
loads. Finally, with fewer but adequate working nodes, N1OD
can significantly improve the energy efficiency of traditional
elastic clusters.

A. FORM THE N-1 QUEUES
The key of transforming N-N queues to N-1 queues is to
restrict the working nodes to directly execute requests with-
out accumulating. Therefore, for an elastic cluster, N1OD
method is implemented in managers. Specifically, as shown
in Figure 2b, requests are first received by managers, and
each time managers distribute a request to a working node
which is idle (that is no request waiting or being executed
in the node). If all the working nodes are not idle, managers
accumulate new arrival requests and keep tracing the state of
working nodes. Once any working node is detected to be idle,
managers distribute the accumulated requests one by one.
In this way, the traditional N-N queues of an elastic clusters
are transformed to N-1 queues.

B. IMPLEMENT THE RDMM
To implement RDMM, we first propose an adaptive model.
With this model, a good estimation on the resource demand
of workloads can be made. According to the theoretical anal-
ysis in Section IV-B, N-1 queues can be modeled as M/M/n
queueing model. In addition, we set an SLA that the waiting
time of at least p% requests cannot be higher than an expected
value Mw(p), due to the reason that waiting time well reflect
the QoS of a system [28]–[30]. By the way, distinguishing
from Mw(p), mW (p) is the maximum waiting time which is
satisfied by p% requests.
Based on the existing research on queueing

theory [23]–[25], the maximum waiting time which is sat-
isfied by p% requests can be theoretically calculated for
N-1 queues as follows:

mw(p) =
S

n(1− ρ)
× ln(

C(n, ρ)
100− p

). (3)

Because ρ = λ/µ = λS/n, the above equation can further be
transformed to,

mw(p) =
S

n(1− λS/n)
× ln(

C(n, λS/n)
100− p

). (4)

VOLUME 8, 2020 86577



C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

Therefore, the number of working nodes required to satisfy
the SLA, nr , can be obtained, by substituting the actual
values into (4) and solving out n. Notice that, (4) is for the
M/M/n queueing model. Because the actual environments are
changeable [15], to adapt to the actual situations, we add an
accommodation coefficient θ into the formula,

mw(p) = θ [
S

n(1− λS/n)
× ln(

C(n, λS/n)
100− p

)]. (5)

The actual situations of workloads might be variable, thus θ
should be continuously updated.

FIGURE 3. The workflow of RDMM.

We present a workflow in Figure 3 to clarify the process of
RDMM. As shown:

1) when a new request arrives or a request in service
is accomplished, RDMM checks whether a new time
period comes. Here, all time periods (or just called
period) are set with the same length of time.

2) If current time is still in the same period as before (the
process labeled with letter ’N’), RDMM just updates
the workload features S and λ in current period.

3) While, if current time is in a new period, RDMM
calculates the latest accommodation coefficient θ with
(5), by substituting the actual values of S, λ, n and
mW (p) in the previous period.

4) Next, RDDM estimates the resource demand of cur-
rent workload, nr , by calculating n with (5) (setting
mW (p) = Mw(p) ).

5) Finally, RDMM adjusts the number of working nodes
base on the estimated value.

VI. EXPERIMENTAL EVALUATION
A. EXPERIMENT SETUP
In the evaluation, we conduct simulation experiments to
demonstrate the effectiveness of our method. In the elastic
cluster, there are 20 nodes. The involved simulation parame-
ters for the cluster are set according to the parameters mea-
sured on the typical cluster nodes [31]. Concretely, these
parameters include the power of a working node in different
states, the time delay and energy consumption of switch-
ing a working node to a low power state (or vice versa).
The details for these parameters are shown in our previous
work [32].

The system workloads are generated from a real-word IO
trace, where the service time of a request depend on the IO
type and the length of the required data. Specifically, we use
the ‘‘K5cloud’’ [33], [34] trace, which captures the IO access

logs in the FUJITSUK5 cloud service. The reason we choose
the K5cloud trace is because the FUJITSU K5 cloud service
covers a large number of large-scale parallel systems, includ-
ing lots of data centers and business systems. Such service
scenario is in line with our research scenario. To produce
quantities of requests, only the daytime records in weekdays
are used.

Different SLAs are set for evaluation, that the value of
Mw(p) are respectively set to 10, 20, 40, 60, 80, 100 mil-
liseconds and p is set to 98. Among these values of Mw(p),
100 milliseconds are a widely used value [9], such as used
for determining whether the network delay for playing online
games is tolerable [35]. The high value of p, 98%, can help to
reflect the maximum system service capability with different
methods. Accordingly, the system QoS is poor, when the
actual value of mw(p) is larger than Mw(p), i.e., the SLA is
not satisfied. Otherwise, if the actual value of mw(p) is lower
thanMw(p)×20%3, surplus working nodesmight be provided
thus the SLA is excessively satisfied.

In our experiments, other three methods are hand-picked
for comparison. Along with our N1OD method, all the meth-
ods are summarized as follows.
• Baseline: The baseline method works with the tradi-
tional N-N queues. To sufficiently utilize the capacity
of working nodes, each time a request is distributed
to the working node with the shortest queue length.
In addition, when the SLA is not satisfied or excessively
satisfied as we discussed in the previous paragraph,
this method immediately adjusts the number of working
nodes. In this way, one working node is added when
the SLA is not satisfied and reserved when the SLA is
excessively satisfied.

• EN-N: The Energy-saving N-N queueing (EN-N)
method works like the baseline method, but the timing
for adjusting the number of working nodes is different.
In order to constrain the energy penalty brought by
resource scaling [32], EN-N performs a resource scaling
operation every 30 seconds [36], [37]. As a result, this
method can save more energy than the baseline method.
Considering the QoS in each time span of 30 seconds,
EN-N uses the mean waiting time to determine whether
the SLA is satisfied. Specifically, every 30 seconds,
EN-N calculates the mean waiting time of the requests
which are accomplished during the time span. If the
mean waiting time is higher than Mw(p) or lower than
Mw(p)× 20%, this method adjusts the number of work-
ing nodes.

• N-N2: In this method [19], [20], each working node
maintains two-level N queues. Generally, when the wait-
ing time of accumulated requests satisfy the SLA, only
the high level queue is used. To maintain a good QoS,
when the SLA is not satisfied, the upper limit of the high

3Due to the reason that the average server utilization in most data centers
is 20% [30]

86578 VOLUME 8, 2020



C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

level queue length (ul) is limited to bMw(p)
S c

4 [9]. If the
length of the high level queue reaches the upper limit,
the low level queue is used to receive the excess requests.
Because there are two N queues in each working node,
this method is referred as N-N2. Compared with the
baseline method, N-N2 can mitigate the service conges-
tion and maintain a good QoS for partial workloads.
Therefore, N-N2 can improve the system QoS under
heavy workloads. Its timing and the way to adjust the
number of working nodes are the same as those of the
baseline method.

• N1OD: This method is the one we proposed in this
paper. Due to the high service efficiency of N-1 queues
to handle requests, N1OD can achieve a better efficiency
than other methods. As a consequence, compared with
other methods, N1OD tends to meet the same SLA with
fewer working nodes. In addition, compared with other
methods, N1OD can obtain a better QoS with the help of
RDMM that continuously tracks the resource demand of
workloads.

B. FUNDAMENTAL EVALUATION
As indicated in Section IV-B, the actual situations can be
more complex than the theoretical scenario. When the system
models’ utilization ρ reaches 100% but still cannot satisfy the
requirement, the mean waiting time W cannot be calculated
out through the two equations anymore. The reason is that,
the value of ρ should be less than 1 for theoretical analyses,
but a value equals to or greater than 1 might obtained when
calculating ρ in actual situations. So in this section, we first
conduct a basic experiment to evaluate N-N queues and
N-1 queues. In this experiment, the workloads are produced
by arbitrarily replaying 15 minutes K5cloud weekday trace
between 8:00 and 10:00. In addition, the evaluations are
performed many times by increasing the number of working
nodes from 1 to 20, and the values ofW are recorded. We plot
the curves that the values of W vary with the number of
working nodes in Figure 4. As shown in Figure 4, the dots,
which represent the mean waiting time of the requests of N-N
and N-1 queues, are located very close when the number of
working nodes ranges from 1 to 10. To show the actual values
of these close dots clearly, we recorded their corresponding
mean waiting time of requests in the table which is provided
in Figure 4.

As shown in Figure 4, when the number of working nodes
is less than 7, the mean waiting time with N-1 queues is very
close but a little lower than that with N-N queues. The reason
is that the difference between N-1 queues and N-N queues
are quite small, when the number of working nodes is few.
Especially when there is only 1 working node, for both the
N-1 and N-N queues, the requests are served in a First Come

4According to the Theorem 1 and Corollary 2 in our study, with this
upper limit ul, the response time of all the requests in the high level queue
can theoretically be less than Mw(p), besides, the actual value of p can be
ul/td+1/S

λ/n .

FIGURE 4. The results of practical tests.

First Service (FCFS) way. In this case, there is no difference
to serve requests for both queues, except that waiting requests
may accumulated in different queues. In addition, the high
values of the mean waiting time imply that, the workloads
are heavy for such numbers of working nodes. Accordingly,
the working nodes are already tired of handling the work-
loads, thus the improvement can be achieved byN-1 queues is
greatly limited. However, the difference is remarkable when
the number of working nodes is more than 10. In this case,
as the number of working nodes grows, themeanwaiting time
of N-1 queues is increasingly less than that of the N-N queues,
and the reduction can be more than 50%. In conclusion,
the service efficiency of N-1 queues is higher than that of the
N-N queues, when there are multiple working nodes.

C. COMPREHENSIVE EVALUATION
Further, to attest the effectiveness of our method, we make
a comprehensive evaluation with extensive experiments.
To conduct experiments efficiently, the comparison methods
along with our method, N1OD, are concurrently evaluated,
using an arbitrarily sliced one-hour trace segment. Ten sec-
onds are used as the time length of a period. In addition,
each experiment is repeated 10 times, and each time another
arbitrarily sliced one-hour trace segment is used. Finally,
a comprehensive experimental result data are recorded. With
full discussions on the experimental results, this subsection
carefully evaluates our method along with all the comparison
methods.

1) SERVICE EFFICIENCY
To evaluate the service efficiency of different methods, under
the condition that the SLA is satisfied with the least working
nodes, we record the throughput under different methods.
With the least number of working nodes to satisfy the SLA
(100%), the throughput (tpm) is calculated as 1

nr
× 100%.

Accordingly, the fewer working nodes required to satisfy the
SLA, the higher throughput tpm a working node can achieve.

The experimental results are shown in Figure 5. As shown,
the results of Baseline and ENN are always the same,

VOLUME 8, 2020 86579



C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

FIGURE 5. tpm.

therefore their results are presented use a same curve with the
legend ‘‘Baseline / EN-N’’. The reason is that Baseline and
ENNwork with the sameN-N queues and no resource scaling
is performed. In addition, we can observe that the values of
tpm for N-N are the same as that of Baseline and EN-N.
This is because although N-N2 can mitigate the workload
jam [19], [20] and maintain a good QoS for partial requests,
98% requests is an exacting proportion for maintaining their
good QoS. As a result, the working nodes required by N-N2

to satisfy the SLA are still the same as that required by
Baseline and EN-N. By contrast, N1OD always achieves the
highest values of tpm. Especially when the SLA is strict,
that the MW (98) is set less than 60 milliseconds, the values
of tpm of N1OD are far higher than that of the other three
methods. This result is in accordance with the analysis made
in Section IV-B, that the service efficiency of N-1 queues is
higher than that of N-N queues.

FIGURE 6. mw (p).

In addition, using the nr of the Baseline method as the
benchmark, the values of mW (98) and W under different
methods are evaluated to further reveal the methods’ dif-
ferences in service efficiency. The experimental results are
shown in Figure 6 and Figure 7. The two figures reveal the
similar situation. Firstly, benefited from the high service effi-
ciency of N-1 queues, N1OD always obtains lower mW (98)
and W than Baseline and EN-N. Secondly, N-N2 sometimes
obtains lower mW (98) and W than other three methods. This
is because service congestion can be mitigated by the low

FIGURE 7. W .

level queue used by N-N2 in working nodes, and such miti-
gation makes some contributions to the improvement of QoS.
While, such contributions are insufficient under a strict SLA,
and N1OD obtains lower mW (98) and W than N-N2 when
MW (98) is set less than 60 milliseconds.

2) PERIODIC PERFORMANCE
To further explore the performance of each method in dif-
ferent periods, we perform experiments to record the mw(98)
during each period. Because each experiment is performed
with one-hour trace segment, there are 360 periods in each
experiment. At the beginning of each experiment, all the
20 nodes are working. The former 90 periods are used as
the initialization phase, thus enough time is provided to each
method for initially adjusting the number of working nodes.
We draw the curves that periodic performance varies with
different values of Mw(98) in Figure 8. In each subfigure,
the horizontal x-axis shows the period number varies from
90 to 360. As shown, the values of mw(98) for EN-N are the
highest. This is because EN-N scales the number of working
nodes every 30 seconds (3 times the length of a period).
Moreover, EN-N uses mean waiting time to detect whether
current working nodes are adequate. The curves of Baseline,
N-N2 and N1OD are close, and are centered around the cor-
responding values of Mw(98). This indicates that, compared
with EN-N, the other methods are all more aware of the SLA.
For each method, there are several time periods in which the
SLA is not satisfied. The reason is that, a time delay is needed
to scale resources [32], and the resource demand of requests
sometimes cannot be timely met. The situation of EN-N is the
worst, for mean waiting time is used by EN-N to reflect QoS,
and the time span of re-scaling resources is long.

Due to the low capability provision, EN-N consumes
the lowest energy than other methods. We plot Figure 9
to show the energy consumption of all the methods dur-
ing each period. As shown in Figure 9, the total energy
consumption of EN-N is much lower than other methods.
While, the mw(98) of EN-N is unsatisfactory as indicated
previously. The total energy consumption of N1OD is lower
than that of Baseline and N-N2, especially when MW (98)
is small. When MW (98) = 10 (Figure 9a), MW (98) = 20

86580 VOLUME 8, 2020



C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

FIGURE 8. Periodic performance for mw (98) under different values of Mw (98).

FIGURE 9. Periodic and overall system energy consumption under different values of Mw (98).

(Figure 9b) and MW (98) = 40 (Figure 9c), the total energy
consumption of Baseline is 106.44%, 114.81% and 110.3%
of that of N1OD respectively. In addition, the total energy

consumption of N-N2 is 106.87%, 115.87% and 112.12% of
that of N1OD respectively. The reason is that, the service
efficiency of N1OD is higher than that of Baseline and N-N2,

VOLUME 8, 2020 86581



C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

FIGURE 10. The waiting time of each request under different values of Mw (98).

especially when MW (98) is small, i.e., under a strict SLA.
Furthermore, attribute to the using of RDMM, advisable
number of working nodes are provided to satisfy the SLA.
As a result, fewer working nodes are required by N1OD to
satisfy a same SLA. Accordingly, the quantity of working
nodes need to be readjusted is small. That’s the reason that
the energy consumption during the periods is steadier for
N1OD than other methods, and this is also the reason for
the low energy consumption of N1OD. Moreover, the total
energy consumption of N-N2 is slightly higher than that of
Baseline. This is because two-level N queues are contained
in each working node for the N-N2 methods, and the timing
for a working node entering the low-power state is deferred
by the unaccomplished requests in the low level N queue.

3) OVERALL PERFORMANCE
To evaluate the systemQoS under differentmethods, thewait-
ing time w of all accomplished requests is evaluated and
recorded. We sort the requests in the ascending order of w
and the results are shown in Figure 10. The figure shows
the maximum values of w and the cumulative percentage
of requests whose w is lower than the corresponding value
of Mw(98). Here, the value set for Mw(98) is used as the
SLA, e.g., Mw(98) = 10 means the SLA is set as that there
should be more than 98% requests whose w is lower than
10 milliseconds. As shown in each subfigure, the values of w
for EN-N grow faster than that for other methods. As a result,
the cumulative percentage for EN-N in each subfigure is
lower than that for other methods, and is lower than 98%.

In other words, the system QoS under EN-N cannot meet
the SLA. While, except in the case that Mw(98) = 10ms,
the SLA can be satisfied by Baseline and N-N2. In con-
trast, the SLA can always be satisfied by N1OD in all the
cases, that the cumulative percentages for N1OD are always
higher than 98%.

More concretely, the EN-N provides the fewest working
nodes than other methods, thus it saves the most energy
cost while obtains the worst QoS. The energy consumption
and QoS of Baseline and N-N2 are similar. The two-level N
queues in N-N2 can improve the service efficiency on busty
workloads [19], [20], thus the cumulative percentages of
N-N2 are slightly higher than that of Baseline. However, since
the two-level N queues delay the scheduling of some requests,
the maximum values of w for N-N2 are higher than that of
Baseline. Due to the high service efficiency of N-1 queues,
the maximum values of w for N1OD are always the lowest,
and the cumulative percentages of N1OD are nearly always
the highest.

VII. CONCLUSION
Considering the energy efficiency of blockchain computing
systems, elastic clusters can be adopted as the infrastructures
to provide scalable computing. In this paper, we reveal that
the service efficiency of traditional N-N service queues is
lower than that of N-1 service queues. Therefore, if traditional
N-N service queues in an elastic cluster are transformed to
N-1 service queues, fewer working nodes will be needed to
meet the same SLA. Thus, the energy consumption of an

86582 VOLUME 8, 2020



C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

elastic cluster can be reduced, while still maintaining a similar
service level. Therefore, to implement this transformation
and further improve the energy efficiency of elastic clusters,
we propose the N1OD method. In addition, N1OD realizes
the RDMM module which can dynamically readjusts the
number of working nodes to match the workload demand.
To demonstrate the effectiveness of our method, we conduct
extensive experiments under different SLAs with different
values ofMw(98), on a simulator which simulates a traditional
elastic cluster. Experimental results indicate that, our method
not only satisfies the overall SLAs, but also achieves a low
energy consumption.

REFERENCES
[1] T. Aste, P. Tasca, and T. DiMatteo, ‘‘Blockchain technologies: The foresee-

able impact on society and industry,’’ Computer, vol. 50, no. 9, pp. 18–28,
2017.

[2] Z. Zheng, S. Xie, H.-N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
‘‘An overview on smart contracts: Challenges, advances and platforms,’’
Future Gener. Comput. Syst., vol. 105, pp. 475–491, Apr. 2020.

[3] H.-N. Dai, Z. Zheng, and Y. Zhang, ‘‘Blockchain for Internet of Things: A
survey,’’ IEEE Internet Things J., vol. 6, no. 5, pp. 8076–8094, Oct. 2019.

[4] W. Liang, M. Tang, J. Long, X. Peng, J. Xu, and K.-C. Li, ‘‘A secure FaB-
ric blockchain-based data transmission technique for industrial Internet-
of-Things,’’ IEEE Trans. Ind. Informat., vol. 15, no. 6, pp. 3582–3592,
Jun. 2019.

[5] S. Xie, Z. Zheng, W. Chen, J. Wu, H.-N. Dai, and M. Imran, ‘‘Blockchain
for cloud exchange: A survey,’’ Comput. Electr. Eng., vol. 81, Jan. 2020,
Art. no. 106526.

[6] Z. Li, Z. Yang, and S. Xie, ‘‘Computing resource trading for Edge-
Cloud-Assisted Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 15,
no. 6, pp. 3661–3669, Jun. 2019.

[7] A. Zhou, Q. Sun, and J. Li, ‘‘Bcedge: Blockchain-based resource man-
agement in d2d-assisted mobile edge computing,’’ Softw., Pract. Exper.,
Oct. 2019, doi: 10.1002/spe.2758.

[8] L. Yang, Y. Deng, L. T. Yang, and R. Lin, ‘‘Reducing the cooling power
of data centers by intelligently assigning tasks,’’ IEEE Internet Things J.,
vol. 5, no. 3, pp. 1667–1678, Jun. 2018.

[9] C. Hu, Y. Deng, G. Min, P. Huang, and X. Qin, ‘‘QoS pro-
motion in energy-efficient datacenters through peak load schedul-
ing,’’ IEEE Trans. Cloud Comput., early access, Dec. 12, 2018, doi:
10.1109/TCC.2018.2886187.

[10] Y. Deng, Y. Hu, X. Meng, Y. Zhu, Z. Zhang, and J. Han, ‘‘Predictively
booting nodes tominimize performance degradation of a power-awareWeb
cluster,’’ Cluster Comput., vol. 17, no. 4, pp. 1309–1322, Dec. 2014.

[11] I. Anagnostopoulos, S. Zeadally, and E. Exposito, ‘‘Handling big data:
Research challenges and future directions,’’ J. Supercomput., vol. 72, no. 4,
pp. 1494–1516, Apr. 2016.

[12] A. Detti, L. Bracciale, P. Loreti, G. Rossi, and N. B. Melazzi, ‘‘A
cluster-based scalable router for information centric networks,’’ Comput.
Netw., vol. 142, pp. 24–32, Sep. 2018.

[13] C. Hu andM. Tang, ‘‘Reduce the energy cost of elastic clusters by queueing
workloads with N-1 queues,’’ in Proc. Int. Conf. Blockchain Trustworthy
Syst. BlockSys, Z. Zheng, H.-N. Dai,M. Tang, andX. Chen, eds. Singapore:
Springer, 2020, pp. 275–287.

[14] A. Hameed, A. Khoshkbarforoushha, R. Ranjan, P. P. Jayaraman,
J. Kolodziej, P. Balaji, S. Zeadally, Q. M. Malluhi, N. Tziritas, A. Vishnu,
S. U. Khan, and A. Zomaya, ‘‘A survey and taxonomy on energy efficient
resource allocation techniques for cloud computing systems,’’ Computing,
vol. 98, no. 7, pp. 751–774, Jul. 2016.

[15] X. Qiu, L. Liu, W. Chen, Z. Hong, and Z. Zheng, ‘‘Online deep rein-
forcement learning for computation offloading in blockchain-empowered
mobile edge computing,’’ IEEE Trans. Veh. Technol., vol. 68, no. 8,
pp. 8050–8062, Aug. 2019.

[16] A. Zhou, S. Wang, X. Ma, and S. S. Yau, ‘‘Towards service compo-
sition aware virtual machine migration approach in the cloud,’’ IEEE
Trans. Services Comput., early access, Dec. 24, 2020, doi: 10.1109/TSC.
2019.2962128.

[17] F. Xu, F. Liu, and H. Jin, ‘‘Heterogeneity and interference-aware virtual
machine provisioning for predictable performance in the cloud,’’ IEEE
Trans. Comput., vol. 65, no. 8, pp. 2470–2483, Aug. 2016.

[18] E. Smart, D. Brown, K. Toumi Borges, and N. Granger-Brown, ‘‘Reduc-
ing energy usage in drive storage clusters through intelligent alloca-
tion of incoming commands,’’ Appl. Soft Comput., vol. 52, pp. 673–686,
Mar. 2017.

[19] L. Lu, P. Varman, and K. Doshi, ‘‘Graduated QoS by decomposing bursts:
Don’t let the tail wag your server,’’ in Proc. 29th IEEE Int. Conf. Distrib.
Comput. Syst., Washington, DC, USA, Jun. 2009, pp. 12–21.

[20] L. Lu, P. J. Varman, and K. Doshi, ‘‘Decomposing workload bursts for
efficient storage resource management,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 5, pp. 860–873, May 2011.

[21] F.Mardukhi, N. NematBakhsh, K. Zamanifar, and A. Barati, ‘‘QoS decom-
position for service composition using genetic algorithm,’’ Appl. Soft
Comput., vol. 13, no. 7, pp. 3409–3421, Jul. 2013.

[22] Y. Zhang, Q. Wei, C. Chen, M. Xue, X. Yuan, and C. Wang, ‘‘Dynamic
scheduling with service curve for QoS guarantee of large-scale cloud
storage,’’ IEEE Trans. Comput., vol. 67, no. 4, pp. 457–468, Apr. 2018.

[23] W. Stallings, Operating Systems: Internals and Design Principles, 9th ed.
Upper Saddle River, NJ, USA: Pearson, 2017.

[24] C. Hu, Y. Deng, and L. T. Yang, ‘‘On-demand capacity provisioning in
storage clusters through workload pattern modeling,’’ IEEE Access, vol. 5,
pp. 24830–24841, 2017.

[25] D. G. Kendall, ‘‘Stochastic processes occurring in the theory of queues and
their analysis by the method of the imbedded Markov chain,’’ Ann. Math.
Statist., vol. 24, no. 3, pp. 338–354, Sep. 1953.

[26] L. Schrage, ‘‘Queueing systems, Volume I: Theory,’’ Proc. IEEE, vol. 65,
no. 6, pp. 990–991, Jun. 1977.

[27] Wikipedia. Erlang C Formula. Accessed: Oct. 25, 2019. [Online]. Avail-
able: https://en.wikipedia.org/wiki/Erlang_(unit)#Erlang_C_formula

[28] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, and R. Katz,
‘‘NapSAC: Design and implementation of a power-proportional Web clus-
ter,’’ACMSIGCOMMComput. Commun. Rev., vol. 41, no. 1, pp. 102–108,
Jan. 2011.

[29] A. Biondi, M. D. Natale, and G. Buttazzo, ‘‘Response-time analysis of
engine control applications under fixed-priority scheduling,’’ IEEE Trans.
Comput., vol. 67, no. 5, pp. 687–703, May 2018.

[30] C. Hu and Y. Deng, ‘‘Fast resource scaling in elastic clusters with an agile
method for demand estimation,’’ Sustain. Comput., Informat. Syst., vol. 19,
pp. 165–173, Sep. 2018.

[31] L. Zhang, Y. Deng, W. Zhu, J. Zhou, and F. Wang, ‘‘Skewly replicating
hot data to construct a power-efficient storage cluster,’’ J. Netw. Comput.
Appl., vol. 50, pp. 168–179, Apr. 2015.

[32] C. Hu and Y. Deng, ‘‘Aggregating correlated cold data to minimize the
performance degradation and power consumption of cold storage nodes,’’
J. Supercomput., vol. 75, no. 2, pp. 662–687, Feb. 2019.

[33] SNIA. SNIA IOTTA Repository. Accessed: Oct. 25, 2019. [Online]. Avail-
able: http://iotta.snia.org/tracetypes/4

[34] K. OE, K. Ogihara, and T. Honda, ‘‘Analysis of commercial cloud work-
load and study on how to apply cache methods,’’ IEICE Tech. Rep.,
vol. 118, no. 165, pp. 7–12, 2018. [Online]. Available: https://www.ieice.
org/ken/paper/20180730o1Fe/eng/

[35] F. Messaoudi, A. Ksentini, G. Simon, and P. Bertin, ‘‘Performance analysis
of game engines on mobile and fixed devices,’’ ACM Trans. Multimedia
Comput., Commun., Appl., vol. 13, no. 4, pp. 1–28, Oct. 2017.

[36] M. Iritani and H. Yokota, ‘‘Effects on performance and energy reduc-
tion by file relocation based on file-access correlations,’’ in Proc. Joint
EDBT/ICDT Workshops EDBT-ICDT, 2012, pp. 79–86.

[37] J. Entrialgo, R. Medrano, D. F. García, and J. García, ‘‘Autonomic power
management with self-healing in server clusters under QoS constraints,’’
Computing, vol. 98, no. 9, pp. 871–894, Sep. 2016.

CHENG HU received the B.E. degree in soft-
ware engineering from the School of Software,
Nanchang University, and the Ph.D. degree in
computer application technology from the Com-
puter Science Department, Jinan University. He is
currently a Teacher with the School of Information
Science and Technology, Guangdong University
of Foreign Studies. His current research interests
include parallel and distributed computing, data
center architecture, green computing, and cloud
storage.

VOLUME 8, 2020 86583

http://dx.doi.org/10.1002/spe.2758
http://dx.doi.org/10.1109/TCC.2018.2886187
http://dx.doi.org/10.1109/TSC.2019.2962128
http://dx.doi.org/10.1109/TSC.2019.2962128


C. Hu et al.: Leveraging N-1 Queues to Improve the Energy Efficiency of Scalable Computing

HUAN LUO received the B.Sc. degree in soft-
ware engineering from Nanchang University,
Nanchang, China, in 2009, and the Ph.D. degree
in computer science from Xiamen University,
Xiamen, China, in 2017. He is currently a Fac-
ulty Member with the College of Mathemat-
ics and Computer Science, Fuzhou University,
Fuzhou, China. His research interests include point
clouds processing, computer vision, and machine
learning.

MINGDONG TANG received the B.S. degree
in electrical engineering from Tianjin University,
Tianjin, China, in 2000, the M.S. degree in control
engineering from Shanghai University, Shanghai,
China, in 2003, and the Ph.D. degree in computer
science from the Institute of Computing Tech-
nology, Chinese Academy of Sciences, Beijing,
China, in 2010. He is currently a Professor with
the School of Information Science and Technol-
ogy, Guangdong University of Foreign Studies,

Guangzhou, China. He is also with the School of Computer Science and
Engineering, HunanUniversity of Science and Technology, Xiangtan, China.
His research interests include service-oriented computing, software engi-
neering, and data mining. In addition, he is a member of the China Computer
Federation and the ACM.

86584 VOLUME 8, 2020


	INTRODUCTION
	RELATED WORK
	THE FIRST CATEGORY
	THE SECOND CATEGORY

	SYSTEM ARCHITECTURE
	SYSTEM MODEL AND THEORETICAL ANALYSIS
	SYSTEM MODEL
	THEORETICAL ANALYSIS

	METHOD IMPLEMENTATION
	FORM THE N-1 QUEUES
	IMPLEMENT THE RDMM

	EXPERIMENTAL EVALUATION
	EXPERIMENT SETUP
	FUNDAMENTAL EVALUATION
	COMPREHENSIVE EVALUATION
	SERVICE EFFICIENCY
	PERIODIC PERFORMANCE
	OVERALL PERFORMANCE


	CONCLUSION
	REFERENCES
	Biographies
	CHENG HU
	HUAN LUO
	MINGDONG TANG


