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ABSTRACT Both number manually-counting method and traditional Machine-Vision (MV) number count-
ing strategy are laborious and very time-consuming (sometimes several hours). Thus a new deep learn-
ing (DL) fusion model is proposed, which includes object detection and semantic segmentation. It can solve
the problems of end-face localization and segmentation of steel bars at the same time. In this fusion model,
firstly, an improved data augmentation method namely, Sliding Window Data Augmentation (SWDA) is
adopted to compensate less training data concerning object detection, based on which a new object-detection
architecture, Inception-RFB-FPN is presented to improve the accuracy and inference time. Secondly, a novel
Al labeling method, Fibonacci-incremental mask labeling method (FIMLM) is introduced to accelerate
the generation of annotation mask. Furthermore, by contrast, three FCN (Fully Convolutional Networks)
architectures of data segmentation, namely, VGG16-FCN, ResNet18-FCN, and ResNet34-FCN are used
to conduct the end-face segmentations of steel bars separately. Finally, a series of experiments show that
the proposed Inception-RFB-FPN model can reach 98.17% in F1 score (harmonic mean value of precision
and recall) with respect to object detection, and its inference time only needs 0.0306 seconds, much faster
than some related reports. In addition, the FIMLM-based ResNet34-FCN model can reach 97.47% in mean
Intersection-Over-Union (mIOU) with respect to semantic segmentation, higher than both VGG16-FCN and

ResNet18-FCN.

INDEX TERMS Steel bar, data augmentation, object detection, semantic segmentation.

I. INTRODUCTION

With the development of city, the required number of steel
bars is becoming larger and larger at the building site, which
is indispensable to support the constructure. But it’s difficult
and even annoying to count the number of steel bars manually.
Workers usually need to spend several hours to count the
steel bar’s number. With the coming Industrial 4.0, Al is
widely applied to industry, even in the counting process of
steel bars at the building site. In Al application, the automatic
localization and segmentation of steel bars are needed at first
after achieving the images of a bundle of steel bars. On the
other hand, a big problem needs to be tackled, which lies in
the trade-off between accuracy and consuming time. There-
fore, the deep learning (DL) method is used to realize the
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localization and segmentation of the steel bar’s end face.In
this paper, we want to study and rethink the augmentation
method of small object localization, taking the end-face
segmentation of steel bars into consideration. In particular,
we find a data augmentation solution for small-object local-
ization in case of inadequate data, which can provide more
training data for object detection to reach better accuracy
and less inference time. In the early study, a small object
is hard to be detected in the image because of too large
downsample ratio. Although it can be solved by reducing
the downsampling ratio, there’s a big problem that there
exists only a small object number in dataset. An easy way
to tackle this problem is to fill k times of small object around
target localization in an image. However, it is not suitable for
the augmentation dataset. The diversity of small objects can
improve the small object detection accuracy. Based on this
observation we propose a small object augmentation method,
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namely, Sliding Window Data Augmentation (SWDA). Our
experiment shows that the proposed Inception-RFB-FPN can
achieve a better accuracy and less inference time.

The main contributions to the paper can be summarized as
follows:

(1) We improve a small data augmentation method which
can be used as a data-processing strategy to achieve better
performance in image localization.

(2) We propose a Fibonacci-incremental mask labeling
method, which works well in Segmentation dataset.

(3)By use of RFB block of FPN, we design a steel bar
localization architecture Inception-RFB-FPN to improve the
localization accuracy, and to save the inference time.

(4) SWDA-CNN is composed of Inception-RFB-FPN and
modified ResNet34-FCN, which can be used for steel bar
localization and segmentation.

Then this paper is organized as follows: Section II, the chal-
lenges and related works are briefly discussed; Section III,
the proposed method is described; Section IV, a series of
experiments are conducted to prove our methods. Section V,
the summaries are given.

Il. RELATED WORKS

Nowadays, the present DL method faces many difficulties
and challenges in processing the steel bar’s image about num-
ber counting. Because the images captured from the building
site are different depending on the on-site conditions, there
exist some problems such as irregular end shapes, uneven
illuminance, non-uniform colors, and overlapped end faces,
etc. All of these factors lead to an unstable recognizing result
when using the present DL image-processing algorithms,
which often requires lots of data to be trained. In fact, there are
usually no enough data to join the training group. Therefore,
a special data augmentation method is needed to solve this
problem. After the data augmentation is finished, two kinds
of operations need to be introduced to realize the number
counting of steel bars, namely end-face localization and seg-
mentation.

In end-face localization, besides the manual counting,
some traditional Machine-Vision (MV) methods have been
adopted, Luo and Li [1] have proposed a K-level fault toler-
ance method and used the bidirectional linked lists to achieve
the steel bar location and its offset; Similarly, in [2], Wu et al.
have improved this method by use of concave point segment.
In [3], Zhang et al. have proposed a template matching and
mutative threshold method to implement the on-line steel bar
counting and automatic separating system. In [4], Ying et al.
have combined Sobel operator and Otsu to get the foreground
and used Hough transform to enhance gray values in order
to localize the steel bars. In [5], Su ef al. have adopted the
modified gradient Hough circle transform to localize the steel
bars. In [6], Wang et al. have proposed a new segmentation
method based on a quasi-circular assumption to count the
Bounded steel bars. In [7], Nie et al. have used the matching
algorithm to identify the adjacent frames and record the mov-
ing steel bars. In [8], Ghazali et al. have applied the Hough
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transform and a series of morphological operations to get the
circle and rectangle shape of steel bar. In [9],Yan ef al. have
proposed a single-multi-classification of connected regions
based on feature matching. However, all these MV-based
methods are easily affected by light illumination and machine
jitters, so some algorithm parameters need to be adjusted
in real-time. In addition, Liu et al. [10]. adopt HOG fea-
tures to locate steel bar center based on a machine learning
SVM (support vector machine) classifier; Fan er al. [11]
propose a CNN model named CNN-DC to achieve a
high-accuracy counting rate (99.26 %) and localization
simultaneously, but they need a long inference time of about
3.5 seconds.

In end-face segmentation, Arbeldez et al. [12] have pro-
posed a region-based semantic model to implement pixel
segmentation. In [13], Kampffmeyer et al. have modified the
FCN by median frequency balancing method and achieved
the high accuracy and F1 score. In [14], Noh et al. have pro-
posed a convolution and deconvolution network to generate
dense semantic masks. Lin er al. [15] have also proposed
a patch-patch combined CRF (condition random fields) to
avoid overlong CRF inference time due to iterative opti-
mization. Reference [16] has proposed a generic multi-path
refinement network to execute the high-resolution predic-
tion. In [17], Zhao et al. have mentioned a feature pyra-
mid pooling framework and achieved 85.4% of Intersection-
Over-Union(mIOU). These DL methods above are mainly
based on the deeper neural network and high-resolution
image. In [18], it has proposed a method based on a
geodesic distance-based technique for video segmentation,
but the optical flow computation is very time-consuming.
In [19],video object detection has been implemented via
FCN, they adopted double FCN models, which can only
reach 2 FPS for a single image(224 x 224).In [20],they
used the pyramid attention and salient edge for object detec-
tion with 25 FPS/image. In [21],an iterative and coopera-
tive FPN is used in object detection, but it’s not suitable
for the on-site complex situation. Likewise, Protonet [22]
also faced a mask Leakage problem after being cropped in
overlapped object detection, it can’t even separate the very
close objects. So inspired by Protonet work, in this paper,
we build a new tiny FCN to reduce the large bounding-box
crops for very-close objects and thus to save the inference
time.

We propose a data augmentation method, namely, Sliding
Window Data Augmentation (SWDA) to train an advanced
deep-learning detector for counting the number of steel bars.
After the location of each steel bar is confirmed in the DL
model, small patches (128 x 128 pixels) are cropped by
Numpy slice operation, which are then fed into FCN (Fully
Convolutional Networks) model. Thus semantic masks are
acquired. In this case, a data augmentation method is used
to generate more data in order to improve the recall and
precision rates. Then, the bounding box of each steel bar area
is cropped and resized to be 128 x 128 pixels. Afterward, three
FCN models are used to conduct the high-quality semantic

VOLUME 8, 2020



Y. Zhu et al.: End-Face Localization and Segmentation of Steel Bar Based on Convolution Neural Network

IEEE Access

1. raw images

3.Resized end-face object
image for FCN

4.Dataset division TrainVal-set,Independent-

Test-set

Lol m ~ . Independent
. Test-set (200)

8. Fusion models for steel-bar localization
and Segmentation (fusion prediction)

7.Segmentation model training

K AN
semantic se

6. Detection model training

Ql Object Detection I
G

Inception-
RFB-FPN

gmentation | | L

ResNet34-

-~
n faster- | cascade-
ssps12 | 'nceptionT faster- rcnn- renn-
RFB-FPN_ |renn-r50
r101 r101

AN

FIGURE 1. The Framework of proposed SWDA-CNN localization and segmentation of steel bar’s end face.

segmentation for the end face of steel bar, at last, we combine
DL detector and FCN models by Numpy and OpenCV to
acquire the final results.

Ill. PRINCIPLE OF METHOD

A. SEGMENTATION FRAMEWORK OF STEEL BAR’s END
FACE

As shown in Fig.1, we propose a framework based on the
SWDA-CNN localization and segmentation of the steel bar’s
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end face, which includes SWDA, Object Detection, FIMLM
(Fibonacci-incremental mask labeling method), Semantic
Segmentation and result mapping.

In Fig.1, there are two sections. Section one(object detec-
tion) includes (1),(3),(5),(7).Section two(semantic segmenta-
tion) includes (1),(2),(4),(6).Final results can be predicted by
Inception-RFB-FPN and ResNet34-FCN.

(1) In all, there are 250 steel bar’s raw images from [23],
with 2666 x 2000 pixels in resolution. These images captured
from the building site are different depending on the on-site
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FIGURE 2. Cropped images of End face of steel bar (128 x 128 pixels).

conditions, there exist some problems such as irregular end
shapes, uneven illuminance, non-uniform colors and over-
lapped end faces, etc.

(2) A new data augmentation method SWDA is proposed
to solve the problem of less data, which can’t drive the DL
model.

(3) To meet the training requirement in a semantic segmen-
tation model (FCN), each object is cropped from 250 raw
images. Because the CNN model usually needs an input of
square size, we resize the width and height of all objects to
be 128 x 128 pixels.

(4) When the data augmentation is completed, the aug-
mented dataset is randomly divided by ratio of 8:1:1 for
training model of object detection.

(5) For the supervised DL, the FCN model needs
lots of labeled images, but manually labeling work is
laborious. So an improved labeling method is proposed
based on FIMLM, which is to aim at getting a high
mlOU.

(6) Comparison of various object detection models,
namely SSD300, SSD512, Faster-rcnn-r50, Faster-rcnn-
r101, Cascade-rcnn-r101 and the proposed Inception-RFB-
FPN.

(7) Comparison of three semantic segmentation models,
namely VGG16-FCN, ResNet18-FCN, and ResNet34-FCN.

(8) The object detection model produces bounding boxes,
based on which raw images are cropped and resized to be
128 x 128 pixels in order to meet the requirement of FCN
input. Finally, bounding boxes and masks are mapped back
into the raw images.

B. SWDA AND FIBONACCI-INCREMENTAL MASK
LABELLING METHOD (FIMLM)

1) SWDA

Fig.2 shows the appearance characteristics of the steel bar’s
end face. At the site, it’s difficult to acquire high-quality
raw images, which bring some troubles to model training.
Inspired by the works of Kisantal et al. [24], we adopt an
improved data augmentation method for the small object
detection, namely SWDA. The procedure is described in
algorithml.

After SWDA, the object number in each image increases
by K times compared to the original dataset of steel
bar. Then the less-data problem can be solved by
SWDA.
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Algorithm 1 Algorithm of SWDA
Input: sample number K ,imageA,labelA,imageB,labelB.
Output: augmentation imageA,labelA.
1: Read sample filenames recorded in a list.
2: Randomly shuffle the list.
3: From the list Pops two element sample image names,A
and B.
4: Read image(A and B) and label(A and B).
5: label lists C and bounding boxes (BBox) D belong to
labelA.
6: for eachiin BBox list D do
7:  set all i region values to be 255
8
9

: end for
: for step = 0to K do
10:  get object and label from imageB,labelB.
11:  use sliding window to generate valid area
12:  add object and label to augmentation imageA,labelA.
13: end for
14: return augmentation imageA,labelA.

Main Steps of SWDA,

(1) SWDA reads an image and annotations(Algorithm line
1-5), shown in Fig3, SWDA transfers all the annotated files
to the folder, stores them in a list, and then disorders the
list. We will pop up two filenames from this list. According
to these two filenames, we will read the image A and its
corresponding annotation label A, image B and label B. label
A includes label list C and bounding box list D, and label B
is also the same.

(2) SWDA generates object masks(Algorithm line 6-8),
and object region value is set to be 255, shown in Fig4.
In order to avoid the occlusion the original image data,
we generate a mask area to facilitate the subsequent gener-
ation of valid areas.

(3) According to object mask by using Sliding Windows
method, SWDA generates valid area ( namely green box
area, including no value 255), and adds new object and label,
then the positions are randomly selected from valid areas (for
example K = 3).(Algorithm line 9-13),shown in Fig5. It is
noted that the sliding window is generated by Python yield
function.

(4) SWDA returns image and label (Algorithm line 9-13).

2) FIMLM

Labeling operation is very time-consuming for the tradi-
tional supervised learning method due to the high resolution
(2666 x 2000 pixels) of raw images with many objects.
At present, there are many labeling tools such as Label Me
and Labelimg, but they are very laborious and not efficient.
So Castrejon [25] has proposed a labeling tool PolyRNN, then
Acuna et al. [26] has modified PolyRNN to be PolyRNN-++-,
which becomes an automatic labeling tool for semantic seg-
mentation. PolyRNN and PolyRNN+-+ aim to predicting the
convex point of object, but generally, the steel bar has an
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FIGURE 3. Read image A, B and label A,B.
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FIGURE 5. SWDA generates valid area and adds object, label.

irregular end face, it is very hard to find the convex point.
Accordingly, we propose a new semi-automatic labeling
method, namely FIMLM. In Photoshop software, the anno-
tation labels adopt VOC data format and set the color panel
background to be (0,0,0), steel bar to be (128,0,0). FIMLM
includes the following steps: firstly, make manual annotations
of 300 patches (cropped objects from raw image, all resized
to be 128 x 128 pixels suitable for ResNet34-FCN model
input); secondly, train a semantic segmentation model and
evaluate the model by mIOU:; thirdly, when the first model
is trained, we choose a Fibonacci series as the incremental
ratio. In Fibonacci series 1,1,2,3,5..., the first number
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is abandoned, and the left numbers are multiplied by 300,
so the annotation number series is 300, 600, 900, ...n,n + 1,
finally, the FCN model is iterated repeatedly until mIOU
reaches a good value.

Figure 6 shows the operation process of FIMLM. The
first-round 300 images are made by manual annotation,
and we use the first-round dataset to train Resnet34-FCN
model. when the first-round training is completed, the trained
Resnet34-FCN (semantic model) is used to predict 600 unla-
beled images. At the beginning, the semantic model doesn’t
work very well because it predicts some wrong masks. Here
we keep the qualified masks, and abandon the wrong masks.
All the qualified masks in the first-round prediction will mix
up with previously trained dataset, for example, the second-
round dataset includes the first-round data and first-round
qualified masks. In this process, man only picks up the wrong
masks without any subjective annotation. we repeated the
above process and iterate semantic model until the fifth round
dataset is trained. After we have a very good test result
of mIOU, we use a semantic model to predict all the rest
unlabeled images.

C. INCEPTION-RFB-FPN ARCHITECTURE
A series of baseline models are trained for the localization of
steel bars. Liu ef al [27], have proposed Single Shot Multibox
Detector(SSD), and Ren et al. proposed Faster-RCNN [28].
To acquire the results of baseline models quickly, Mmdetec-
tion toolbox [29] is used to train and test these models based
on standard parameters, and then to analyze these results.

Inception-RFB-FPN model is used for localization.
Inception-RFB-FPN model is implemented based on
open-source framework PyTorch, fundamental code of
RFBNet [30] and open-source repository [31]. Same to
RFBNet, the training steps include online data augmentation,
hard negative mining, and calculation of loss function (local-
ization by Smooth L1 Loss and classification by Softmax
Loss). Fig.7 shows the Inception-RFB-FPN architecture.

In Fig.7, the head layer is stacked by three convolu-
tion layers, and a series of Inception blocks with pooling
layer (abstract layers) extract the foreground information.
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FIGURE 7. Inception-RFB-FPN architecture.

To improve the model’s generalization ability, we stack three
Inception blocks to generate the 20-layer Inception-RFB-
FPN neural network, which is powerful and time-saving.
However, we don’t stack more layers because a deep neu-
ral network has an explosive parameter increasement. Then
an RFB-FPN architecture is designed to recover the object
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Stage three

feature from high-level feature maps. Detection layers are
to acquire the BBox and object probability following the
RFB-FPN stage. In Head layers, three Conv3 x 3 with
32 channels are used, then the Inception block has four
branches, namely, branch one: Convl x 1 with 32 channels;
branch two: Conv1 x 1 with 32 channels and double Conv3 x 3
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with 64 channels; branch three: Convl x 1 with 32 channels
and Conv5 x 5 with 64 channels; branch four: average pooling
3 x 3, stride 1 and Convl x 1 with 32 channels. After that,
a Max-pooling layer 2 x 2 with stride 2 is used to reduce
the feature map size. Afterward, the Inception block with
the Max-pooling layer will be repeated three times. At last,
RFB-FPN is constructed by two convolution layers and an
RFB block. From Fig.5, stage one consists of Convl x 1 with
128 channels, Conv3 x 3 with 128 channels and RFB-one:
stack Convl x 1, Conv3 x 3, Conv3 x 3 with dilation 2,3,
and 5 in succession. Stage two and Stage three are similar
to Stage one except for Convl x 1 with 64 channels. Both
Stage two and Stage three have 2X up-sampling (binary
interpolation) and element-wise addition to merge the previ-
ous feature maps. Scales and aspect ratios are set to be 20,
40 and 60 separately and to be 0.9. All convolution layers are
initialized by KaiMing-norms.

D. FCN ARCHITECTURE

The FCN model is used for segmentation. Because FCN
model [32] costs a long inference time due to the adoption
of a large-size input image, a small input one is needed
to improve the model performance. In Fig.8, the small
input FCN model is shown, in which a small image patch
is provided by 3X down-sampling of the feature map
and by deconvolution layers (initialized by bilinear kernel
method). In this case, the down-sampling feature maps are
derived from one of these three backbones, namely, VGG16,
ResNet18, and ResNet34. Then, the up-sampling feature
maps are achieved by deconvolution layers. Consequently,
the down- and up-sampling feature maps are superposed by
element-wise addition to get the final feature maps. Finally,
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TABLE 1. Computer configuration.

Hardware platform:

CPU:4 core

Memory:30GB

GPU:NVIDIA T4 16G memory
Software platform:
System:Ubuntu16.04 LTS

Code Edit: Pycharm with Python3.6
Deep learning framework PyTorch1.2.

the loss value is calculated pixel by pixel by soft-max cross-
entropy. In three FCN architectures, ResNet34-FCN performs
best.

IV. EXPERIMENTAL AND RESULTS
A. EXPERIMENT CONFIGURATION
Computer configuration is shown in Table 1:

The training dataset contains object detection and semantic
segmentation. As shown in Table 2, object detection dataset
(raw dataset) comes from Data Fountain platform [23], which
contains 250 train images and 200 test images. In Table 2,
the traditional augmentation dataset has 1350 images, and
the SWDA dataset contains 2000 images. We divide all
datasets by ratio of 8:1:1 into train set, validate set and
test set. These datasets comprise various images of irregular
end-face shape, uneven illuminance, non-uniform color and
overlapped end-face. All of these factors will lead to an unsta-
ble detection result. When training the models, we use the
trainval (train and validate) set. The split test dataset is aban-
doned. We use an independent test dataset (200) to testify the
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TABLE 2. Object detection data set.

TABLE 4. In SSD300, SSD512, Faster-rcnn-r50, Faster-rcnn-r101, and
Cascade-rcnn-r101 models, non-augmentation method.

Types Raw dataset Traditional raw i SWDA
3:1‘:gd‘;(‘y(r‘l‘:‘;%len‘)‘:‘::e::nber) 22050 1:’3850 '26(?: model Recall Precision F1 Score Times(s)
Individual tes st(image number) 200 200 200 SSD300 0.828  0.785 0.806 0.0686
Total image number 425 1415 2000 SSD512 0.944 0.936 0.940 0.0968
Faster-renn-r50 0.708 0.707 0.707 0.1356
TABLE 3. Semantic segmentation data set Faster-rcnn-r101 0.708 0.706 0.707 0.1493
: ) cascade-rcnn-r101  0.707 0.706 0.706 0.4461

Types Roundl Round2 Round3 Round4 R d5 Round
Train set(image number) 240 648 1285 2420 4192 23166
Validation set(image number) 30 81 161 302 524 2896
Test set(image number) 30 80 160 302 523 2895
Total image number 300 809 1606 3024 5239 28957

model’s performance. Generally, the traditional augmentation
method adopts the Imageaug Python library including some
operators such as Vertical Flip, Mirror, Brightness, Gaussian
blur and Affine.

Table 3 shows the semantic segmentation dataset, which
comes from the raw dataset of steel bar. The objects are
cropped and resized to be 128 x 128 pixels. After FIMLM,
man manually picks up the qualified sample images and
labels, and merges them round by round (training stage),
in all, there are six rounds from Roundl to Round6.
All Rounds of datasets are divided by ratio of 8:1:1.
In Roundé6, there are 23166 images treated as the training set,
2896 images as the validation set and 2895 images as the test
set.

B. MODEL TRAINING AND EVALUATION

1) END FACE LOCALIZATION OF STEEL BAR

Open source framework Mmdetection is used to get the local-
ization of end face, in which the object detection models
adopt SSD300, SSD512, Faster-renn-r50, and Faster-rcnn-
r101, respectively. To evaluate the object detection models,
Recall, Precision, and F1 score are used. Recall, Precision,
and F1 score are calculated by the following equations from

(1) to (3).

TP
Recall = ——— (D
TP + FN
. TP
Precision = ———— (2)
TP + FP
Fl—>2 Recall x Precision 3)

X
Recall + Precision

where TP is true positive, FP false positive, FN false negative,
and TN true negative.

As shown in Table 4, the traditional data augmentation
has little lower scores in Recall, Precision, and F1 than the
non-augmentation method, that is to say, data augmentation
method does work.

To further improve the localization accuracy, anew SWDA
is considered. By calculating, Recall, Precision, and F1 score
are achieved as shown in Table 6.

At the same time, the inference time of each method
is calculated and shown in Table 4,5 and 6. All these
models perform the testing in Table2 by use of individ-
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TABLE 5. In SSD300, SSD512, Faster-rcnn-r50, Faster-rcnn-r101, and
Cascade-rcnn-r101 models,traditional augmentation method.

model Recall Precision F1 Score Times(s)
SSD300 0.853 0.812 0.832 0.0686
SSD512 0.926 0.906 0.916 0.0968
Faster-rcnn-r50 0.701 0.696 0.698 0.1356
Faster-rcnn-r101 0.706 0.704 0.705 0.1493
cascade-rcnn-r101  0.707 0.705 0.706 0.4461

TABLE 6. Cascade-rcnn-r101,Inception-RFB-FPN SWDA dataset with
different k number result.

models name Recall Precision F1 Score Times(s)
cascade-renn-r101(k=1) 0.707 0.705 0.706 0.4461
cascade-renn-r101(k=3) 0.708 0.706 0.707 0.4461
cascade-renn-r101(k=5) 0.707 0.705 0.706 0.4461
cascade-rcnn-r101(k=7) 0.708 0.705 0.706 0.4461
cascade-rcnn-r101(k=9) 0.707 0.705 0.706 0.4461

Inception-RFB-FPN(k=1) 0.9874  0.9716 0.9794 0.0306
Inception-RFB-FPN(k=3) 0.9869 0.9718 0.9793 0.0306
Inception-RFB-FPN(k=5)  0.9881 0.9747 0.9814 0.0306
Inception-RFB-FPN(k=7) 0.9881  0.9753 0.9817 0.0306
Inception-RFB-FPN(k=9) 0.9879  0.9744 0.9811 0.0306

TABLE 7. Compared with the results from other references.

Method Recall Precision F1 Score times(s)
Zhang et al. [3] 0.886 0.936 0.910 0.3023
Ying et al. [4] 0.962 0.842 0.898 0.2404
Ghazali et al. [8) 0.978 0.937 0.957 0.1346
Liu et al. [35] 0.812 0.683 0.742 0.0313
Fan et al. [11] 0.995 0.998 0.992 3.5862
Proposed(k=7) 0.988 0.975 0.982 0.0306

ual test dataset. Furthermore, the proposed method is com-
pared with the results of other references, which are shown
in Table 7. It denotes that our proposed Inception-RFB-
FPN model reaches F1:98.20% and needs the least inference
time.

2) DETECTION RESULT DISCUSSION AND VISUALIZATION

The test dataset comprises 200 images with different scales,
occlusion and illumination. From Fig 9,10,11,and12,we find
that without augmentation dataset, the traditional augmenta-
tion method can’t reach a good F1 score, but SWDA by use
of augmentation dataset can improve Inception-RFB-FPN to
reach a higher F1 score. In SWDA K number experiment,
we search in the range [1,3,5,7,9]. Results show K number
must be over the Nyquist Sampling Theorem rate. In our
experiment, the model has the highest F1 score when K is 7.
Some object detection results are on the test dataset by using
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FIGURE 11. SWDA augmentation method recall precision trade off.

Inception-RFB-FPN (SWDA k = 7), on these images the
yellow bounding box represents normal detection, and the red
box is error detection or target loss. From Fig13, the proposed
model leads to some confusions due to occlusion, strong
illumination and truck wheel, but it has a good compati-
bility of scale, irregular end shape and non-uniform color
(normal detection). Owing to the different view angles of
hand-held mobile phone, there is a certain degree of physical
occlusion that targets are partly missing. It is inevitable that
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TABLE 8. Properties of semantic segmentation model.

Model name Training types Number layers FLOPS Filter parameter number
VGG16-FCN scratch 16 5590585344 14718406
VGG16-FCN fine-tuned 16 5590585344 14718406
ResNetl18-FCN  scratch 18 613158912 11179462
ResNet18-FCN  fine-tuned 18 613158912 11179462
ResNet34-FCN  scratch 34 1218981888 21287622
ResNet34-FCN  fine-tuned 34 1218981888 21287622

there will be some error detections, In the case of small
occlusion, the proposed model performs well. From the
detection results, the wheel is detected by the proposed model
because the truck wheel has a similar circle shape. In the open
environment, the background of image may be affected by the
sky. In the case of strong illuminance condition, the steel bar’s
boundary and the object color will become blur, resulting in
the loss of target. The steel slags scattered on the ground are
also considered as the targets because their colors are very
close to the target.

3) END FACE SEGMENTATION OF STEEL BAR
Pixel accuracy and mIOU are used to evaluate the quality of
label mask. They are described as (4) and (5) from [32].

> Ti
1 2 Mii
ne 3 Ti+ 3 mji — nii

where n;; is the number of pixels of class i that is predicted
to belong to class j, where there are n. different classes, and
letT; = Zj n;j, T; is the total number of pixels of class i.
Two training strategies are adopted to train the FCN
model, namely, scratch and transfer learning (fine-tuned).
In Round6 mentioned in Table 3, six patterns can be achieved
through 3 CNN architectures x 2 training strategies. The
configuration of each pattern is described as an input size
128 x 128 pixels, a learning rate 0.01, a weight-decay 0.0001,
a max iteration number 1000, batch size 32, learning rate
scheduler on miles stone [400,500,600,700,800,900,1000]
and gamma 0.8. In FCN model, FLOPS (floating-point oper-

“

Pixels Accuracy =

mloU = ©)
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FIGURE 13. Detection result visualization.

ations per second) are shown in Table 8. ResNetl8-FCN FCN. And in the filter parameter number, VGG16-FCN
has the smallest filter parameter number among the three is close to ResNetl18-FCN, but the ResNet34-FCN model
models of VGG16-FCN, ResNet34-FCN, and ResNetl8- has twice larger than ResNetl8-FCN. For a neural net-
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FIGURE 15. Validation accuracy at Roundé6:
VGG16-FCN,ResNet18-FCN,ResNet34-FCN.

work, although fewer filter parameters have less inference
time, its performance also depends on FLOPS. By calcu-
lating, ResNet18-FCN has 6.1 GFLOPs (Giga FLOPs), and
ResNet34-FCN 12.1 GLOPs, VGG16-FCN 55.9 GLOPs,
nearly 4 times of ResNet34-FCN model.

Fig.14 shows the convergence time difference between
pre-training and no pre-training operations. It demon-
strates that except VGG16-FCN, both ResNet34-FCN and
ResNet18-FCN have obviously shorter convergence time
after pre-training.

Fig.15 shows the validation accuracy comparison of
three models (VGG16-FCN, ResNet34-FCN, ResNetl8-
FCN) with/without pre-training, which proves that the
pre-trained models have 0.45% higher validation accu-
racy in average than non-pre-trained ones. Fig.16 shows
the mIOU comparison of three models with/without pre-
training, which also proves that the pre-trained models
have 1.03% higher mIOU in average than non-pre-trained
ones.

Table 9 gives the testing accuracy and mIOU of
VGG16-FCN, ResNetl8-FCN, and ResNet34-FCN.
It demonstrates that ResNet34-FCN with pre-training oper-
ation has the highest test accuracy of 98.72% and mIOU
of 97.47%.
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TABLE 9. VGG16-FCN ResNet18-FCN ResNet34-FCN testset metrics.

Types test accuracy test mIOU
VGG16-FCN no pretrained 97.88% 95.84%
VGG16-FCN pretrained 98.19% 96.43%
ResNet18-FCN no pretrained 98.00% 96.08%
ResNet18-FCN pretrained 98.48% 96.99%
ResNet34-FCN no pretrained 98.02% 96.10%
ResNet34-FCN pretrained 98.72% 97.47 %

V. CONCLUSION

The localization and segmentation of the steel bar’s end face
play a very important role in industrial applications because
the traditional manual or MV method is very time-consuming
and has low efficiency. Therefore, a new DL detection frame-
work SWDA-CNN is proposed, which contains some new
algorithms such as SWDA, Inception-RFB-FPN-based object
detection method, FIMLM and modified FCN model. The
proposed SWDA can solve the problem of fewer data in
small object detection, and Inception-RFB-FPN achieves a
trade-off between accuracy and inference time, which means
that it can have a high accuracy (Recall: 98.81%, Precision:
97.53%, F1 score: 98.17%) when keeping the least inference
time (0.0306s per image). Meanwhile, the proposed FIMLM
can overcome the difficulties that it will need massive man-
power and spend much time to conduct the labeling work
when making the segmentation dataset. At last, the improved
pre-trained ResNet34-FCN has an obvious advantage both
in convergence time and test accuracy over the non-pre-
training FCN model with Test-accuracy of 98.72% and mIOU
of 97.47%.
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