
Received March 24, 2020, accepted April 7, 2020, date of publication April 21, 2020, date of current version May 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989267

Analysis and Comparison of FPGA-Based
Histogram of Oriented Gradients
Implementations
SINA GHAFFARI , PARASTOO SOLEIMANI, KIN FUN LI, (Senior Member, IEEE)
AND DAVID W. CAPSON, (Senior Member, IEEE)
Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada

Corresponding author: Sina Ghaffari (sinaghaffari@uvic.ca)

This work was supported in part by the Doctoral Fellowships from the University of Victoria, and in part by the National Science and
Engineering Research Council of Canada through the Discovery Grants under Grant 36401 and Grant 04787.

ABSTRACT One of the commonly-used feature extraction algorithms in computer vision is the histogram
of oriented gradients. Extracting the features from an image using this algorithm requires a large amount of
computations. One way to boost the speed is to implement this algorithm on field programmable gate arrays,
to benefit from flexible designs such as parallel computing. In this paper, we first, provide a summary of the
steps of the histogram of oriented gradients algorithm. We then survey the implementation techniques of the
histogram of oriented gradients on field-programmable gate arrays in the past decade. We group the different
techniques into four main categories and analyze various enhancement methods in each category. The first
group is the optimization of the algorithm computation which involves the steps of input selection, magnitude
calculation, orientation and bin assignment, and normalization. The second category is data manipulation
techniques which include numerical representation, data flow modification, and memory optimization. The
third group contains modified features based on the histogram of oriented gradients and their hardware
implementation, and the fourth one is the implementations in hardware-software co-design of the algorithm.
We compare the different implementations using a speed metric called pixels per clock cycle, and resource
utilization. Finally, we provide design summary tables for efficient implementation with respect to the speed
metric, accuracy, and resource utilization.

INDEX TERMS Histogram of oriented gradients, field programmable gate arrays, hardware acceleration,
hardware design.

I. INTRODUCTION
One of the most well-known feature extraction algorithms
in computer vision is the histogram of oriented gradients
(HOG). Dalal and Trigs [40] present the HOG algorithm
in 2005 and over the years, this algorithm has proven to
be useful in many object detection applications. The main
idea behind the HOG algorithm is to compute gradients
as local descriptors and normalize them locally, and then
obtain location invariant features which are robust to illu-
mination changes in the image. HOG features have many
applications such as face recognition [42], [43], texture clas-
sification [44], vehicle detection [45], and human activity

The associate editor coordinating the review of this manuscript and

approving it for publication was Liang-Bi Chen .

recognition [46]. A complete object detection model can be
designed by using HOG features coupled with a classifier
such as Adaboost [1] or Support Vector Machines [2], [3].
Some work focus on modified extended features based on
HOG descriptors [11], [25].

Since many applications in computer vision have real-time
constraints and are implemented as an embedded system,
much research has been focusing on the hardware accel-
eration of computer vision algorithms. Although HOG has
shown outstanding detection capacity, it is computationally
expensive and requires extensive operations to extract the
features of a single frame. Due to this large amount of compu-
tation, its software implementation on a stand-alone Central
Processing Unit (CPU) may not meet performance expecta-
tions. Therefore, there have been many efforts to implement

79920 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0489-3825
https://orcid.org/0000-0003-3181-4480

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

the HOG algorithm (and its variants) on parallel hardware
platforms such as Graphical Processing Units (GPUs) and
Field Programmable Gate Arrays (FPGAs). Since many
applications require mobility and low power consumption,
the implementation of the HOG algorithm has been more
popular using FPGAs than GPUs.

FPGA implementations can potentially run faster, with
less resource utilization and power consumption, which are
important in embedded systems that require real-time pro-
cessing. Ma et al. [9] compare CPU, GPU and FPGA imple-
mentation of the HOG algorithm. They implement the HOG
algorithm on an Intel Xeon E5520 CPU processor, an Nvidia
Tesla K20 GPU and a Xilinx Virtex-6 FPGA. To process
a single frame, their FPGA implementation consumes 130x
less energy than that of the CPU and 31x less energy than that
of the GPU, while the speed is about 68x faster than the CPU
and 5x faster than the GPU.

Over the years, many researchers propose FPGA imple-
mentations for the HOG algorithm in many different appli-
cations. Table 1 shows the applications of the FPGA-based
HOG algorithm reviewed in this paper.

TABLE 1. Applications of FPGA-based HOG in the surveyed references.

One of the most popular applications which has used HOG
features is pedestrian detection. Pedestrian detection and
tracking have been employed in driving assistance, surveil-
lance, and robotics. Other popular applications of the HOG
algorithm are for human detection. The difference between
pedestrian and human detection is that pedestrians are mostly
standing and walking in different directions while in the
case of human detection, people may be in any possible
position such as playing a sport, dancing, or just stationary.
Some papers demonstrate the HOG algorithm in traffic sign
detection [10] and car detection [18], which are useful in
autonomous vehicle systems. Blair and Robertson [15] pro-
pose an application of the HOG algorithm to locate illegally
parked cars in urban areas. Other applications, as shown
in Table 1, include crowd density estimation, digit recogni-
tion, and general object detection.

This paper is an extended version of our previous work
[41]. We review the research work on FPGA-based HOG
implementations from 2010 to 2019, collected from IEEE

TABLE 2. Table of notations.

Xplore, Science direct, and NCBI databases. The selected
papers are the most relevant articles that we could identify for
HOG implementation on FPGA platforms. Table 2 presents
the notations and their description used in this paper.

The typical parameters in an embedded real-time FPGA-
based system which could be optimized are speed, power,
resource usage, and accuracy. There is always a trade-
off between these parameters. For example, by paralleliz-
ing the design and using more FPGA resources, one can
improve speed. Most of the papers in this survey focus
on speed and resource utilization. Only a few of them
have reported on power consumption while others have
assumed that implementation on an FPGA consumes less
power than GPUs and CPUs, and therefore is naturally of
lower power.

In this survey, we discuss the different techniques and
methods of implementing the HOG algorithm on FPGA.
First, we review the HOG algorithm in section II. We then
group these methods into four main categories based
on different techniques to enhance HOG implementation.
Fig. 1 shows the organization of the various categories
of the survey provided in this paper. In section III, we
present innovative methods which optimize the computation
of different steps of the algorithm. In section IV, we dis-
cuss in detail the techniques in recent work which are
related to data structure and manipulation. In section V, we
present the FPGA implementation of some modified ver-
sions of the HOG algorithm. In section VI, we review the
methods which benefit from hardware-software co-design.
Finally, we have a critique on these methods in section VII,
and a comparison of the results of recent papers
is presented.

VOLUME 8, 2020 79921

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

FIGURE 1. Categorization of HOG algorithm performance enhancement.

FIGURE 2. A flowchart of the HOG algorithm. The HOG algorithm is
sequential, but the second step (magnitude and orientation) can be
computed in parallel.

II. THE HOG ALGORITHM
The basic idea of the HOG algorithm is to use gradient infor-
mation of each pixel to extract discriminating features for
object detection. HOG features are normally extracted from
various window sizes in the image. Fig. 2 shows a flowchart
of this algorithm.

In the original HOG algorithm [40], the image window is
divided into several blocks, and each block is divided into
several cells. As an example, each block may contain four
cells, and each cell may contain 16 (4 × 4) pixels. The first

step of the HOG algorithm, as shown in Fig. 2, is to compute
the gradients of each pixel in each cell, that is, to compute
the derivatives in horizontal and vertical directions using the
pixels around them. The gradient of the image is computed as
shown in (1) and (2):

Gx(x,y) = I(x+ 1, y)− I(x− 1, y) (1)

Gy(x,y) = I(x+ 1, y)− I(x− 1, y) (2)

where I(x,y) is the image pixel with coordinates x and y,
Gx is the gradient of the horizontal direction and Gy is the
gradient of the vertical direction. After calculating the gradi-
ents, the second step of the HOG algorithm is to compute
the magnitude and orientation of each pixel as shown in
(3) and (4):

Magnitude(x,y) =
√
G2
x(x,y)+ G2

y(x,y) (3)

Orientation(x,y) = tan−1(Gy(x,y)/Gx(x,y)) (4)

The third step of the HOG algorithm is bin assignment in
which a histogram is created based on the calculated orien-
tation of pixels in each cell, which could be between 0 to
180, or 0 to 360 degrees, depending on the implementation
configuration. Dalal and Triggs [40] use nine bins each corre-
sponding to 20 degrees in their original work. The magnitude
of each pixel is added to the value of the bin which contains
the orientation of that pixel. In order to reduce aliasing,
the weightedmagnitude of each pixel is added to two adjacent
bins based on the distance of its orientation to the center of
the bins.

In the fourth step, the histograms of cells within each block
are normalized separately. Finally, HOG features are obtained
by concatenating all histogram values in the selected window
in the fifth step. Fig. 3 shows how the input image window is

79922 VOLUME 8, 2020

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

FIGURE 3. Visualization of cell and block in the HOG algorithm. (a) shows how pixels in an image window are grouped by cells and blocks.
Each 4 by 4 pixels (red square) is a cell and each blue 8 by 8 pixels (blue square) is a block. The top part of (b) shows orientation of gradients
in one cell and the bottom part of (b) shows the orientations in one block. The top part of (c) shows an example histogram for each bin
created from one cell and the bottom part of (c) shows an example of 4 histograms in one block which are going to be concatenated and
normalized in the next step. The number under each bin limit on the upper figure shows the ranges of the orientations of that bin.

divided for an example in which each cell contains 16 pixels,
and each block contains four cells. The arrows in each pixel
represent the orientations of the gradients in that cell, and a
histogram is created for each cell.

The flowchart in Fig. 4 shows the steps of the HOG imple-
mentation for each cell of the image. After calculating the
histograms for each cell, the cell histograms within a block
are normalized together. Therefore, for this example, in each
cell, 32 gradients, 16 magnitudes, and 16 orientation values
are computed. Then, by comparing the orientations of the
pixels with bin limits, the appropriate bin is assigned for all
16 pixels. After that, we have four histograms that are divided
by the L2-norm of themselves.

In general, for an M by N input image, the first step of the
HOG algorithm requires 9xMxNmultiplications and 2xMxN
additions to compute its gradient in x and y directions.
In the second step, the algorithm computes the magnitude and
arctangent for each pixel. Therefore, MxNx2 multiplications,
MxN additions, and MxN square root and arctangent evalua-
tions are required. In the third step, the angle for each pixel is
comparedwith the limit values between 0 to 180 (or -90 to 90)
degrees. Depending on the algorithm and data, the number
of comparisons in this step might differ. But for nine bins,
the maximum number of comparisons is nine. Then, for each
pixel, the magnitude value is added to a bin value. Therefore,
there areMxN additions in this step. After that, in the normal-
ization step, the histograms of a block are normalized. For K
cells in each block, we have 9K divisions, 9K multiplications
and additions, and one square root computation. The total
number of computations is shown in Table 3.

In Table 3, M and N are the dimensions of the input image,
K is the number of cells in each block and B is the total

FIGURE 4. The flowchart of calculating a histogram of a cell from raw
pixels. Parallel computation is possible for gradients in x and y directions
and after that for magnitude and orientation calculation. The final result
of this stage is a histogram of one cell.

number of blocks in the image. Table 3 is useful as it can show
us by simplifying each stage of the algorithm, how many
operations are affected. As an example, we can transform the
multiplications in the gradient calculation step to subtractions

VOLUME 8, 2020 79923

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

TABLE 3. Operations required for the HOG algorithm for an M × N image.

and additions. Also, we have two steps containing square
root. If we could optimize the calculation of square root, both
these steps would benefit from it. For example, suppose that
M = N = 200 and we have 16 pixels in each cell and 4 cells
in each block. Therefore, K and B would be 2500 and 625,
respectively. In this case, we have about 14M multiplications
and additions, 40k square root calculations, 40k arctangent
operations, 14M divisions, and 360k comparisons.

III. OPTIMIZING THE COMPUTATION
OF THE ALGORITHM
The HOG algorithm contains several steps which are shown
in the flowchart of Fig. 2. In this section, first, we categorize
the different input selection choices in section A. The meth-
ods which optimize magnitude calculation are reviewed in
section B. Then, since many work have integrated orientation
calculation and bin assignment techniques, we review these
two steps together in sectionC. Finally, the normalization step
is discussed in section D.

A. INPUT SELECTION
In this section, we review different color channels and inputs
to the HOG algorithm.

1) CHANNEL SELECTION
Several papers implement the HOG algorithm on the lumi-
nance channel. Rettkowski et al. [21] propose to first convert
the RGB image into a luminance image for hardware imple-
mentation. Then, they compute the gradients of the luminance
image using line buffers. Advani et al. [11] propose an initial
stage to find the dominant channel (from RGB) for HOG cal-
culation. In this method, first, the gradients of each cell of the
image for the three RGB channels are calculated and based
on the accumulation of their values, a comparator chooses
which channel is the most suitable for further processing. Ilas
[23] simplifies the input channel even further by proposing to
compute HOG on binary images instead of grayscale images.
First, the image is transformed from a greyscale image to a
binary image by comparing each pixel to a threshold. Then,
the HOG features are extracted.

Observations and Conclusions: Performing HOG on a
binary image reduces the delay and hardware utilization since

only one bit is used for each input pixel. However, since
there is less information embedded in the extracted features,
the accuracy of the model decreases as well. This method
can be useful if the speed and hardware utilization are very
critical in the specific application and the contour of the
object of interest in the image does not contain many details.
Otherwise, the luminance channel is themost commonly used
in HOG feature extraction.

2) SINGLE SCALE COMPUTATION
While some researchers such as Blair et al. [4], Ma et al. [9],
and Li et al. [36] implement the HOG algorithm on multi-
scale images, Negi et al. [1] simplify the algorithm and
compute HOG on a single scale image. Ma et al. [9] work
on 640 × 480 pixel frames and use 1.05 scaling factor for
multi-scale detection with a window stride of four pixels.
They employ 34 scales for HOG extraction and achieve
68.18 frames per second with 640× 480 frames.
Observations and Conclusions: Multi-scale detection,

which means using different sizes of the image to extract
features, requires extra hardware resources for resizing the
input image and buffering it inside the FPGA. It should only
be used if the accuracy is application dependent or there are
varying sizes of the object of interest in the image; otherwise,
single-scale detection is faster than multi-scale detection.

B. MAGNITUDE CALCULATION
The next step in the HOG algorithm is to compute the gra-
dients of each pixel. In order to do so, the difference of
pixels in rows and columns are calculated. The magnitude
of gradients is computed as shown in (3) in section II. Since
square and square root calculations are complex in hardware,
several papers approximate the magnitude calculations. For
FPGA implementation, in order to reduce the number of
square root calculations in magnitude computations, Chen
et al. [16] approximate the gradient amplitude for each pixel
and simplify it according to (5) and (6):

Magnitude(x,y) = |I(x+ 1, y)− I(x− 1, y)|

+ |I(x,y+ 1)− I(x,y− 1)| (5)

Magnitude(x,y) = |G(x)| + |G(y)| (6)

79924 VOLUME 8, 2020

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

FIGURE 5. A basic hardware architecture for magnitude approximation by
the summation of absolute values of gradients in horizontal and vertical
directions. MSB is the most significant bit of the signal and the opposite
sign is computed as two’s complement. This architecture requires one
adder, two multiplexers, and two two’s complement operations.

FIGURE 6. A basic hardware architecture for magnitude approximation.
MSB is the most significant bit of the signal and the opposite is computed
as two’s complement. This architecture requires three multiplexers, two
adders, two multipliers, one comparator (shown as Comp) and two two’s
complement operations.

Fig. 5 shows the block diagram of the hardware architecture
described in (6).

Blair et al. [4] use the approximation mentioned by
Qasaimeh et al. [31], as shown in (7):

Magnitude=
1

1+
√
2

(
|Gx|+

∣∣Gy
∣∣+√2max

(
|Gx| ,

∣∣Gy
∣∣))

(7)

The block diagram of the hardware architecture of (7) is
shown in Fig. 6.

Chen et al. [8], B.K. et al. [22], and Wang and Zhang [26]
use the square root approximation technique [37], which
approximates magnitude calculation using (8):

Magnitude(x,y) = max((0.875a+ 0.5b), a) (8)

where a = max(Gx, Gy) and b = min(Gx, Gy). In this way,
the magnitude can be estimated using comparators and shifts
only, thus simplifying the hardware. Fig. 7 presents the block
diagram of the hardware design of (8).

Rettkowski et al. [21] store the magnitudes in look-up
tables and compute the square root of magnitudes by retriev-
ing the approximate values from the look-up tables. The total
memory required for these look-up tables is 72 kbyte which
can be stored in a block RAM in the FPGA.

Some researchers use pre-developed IP cores for magni-
tude calculation in the HOG algorithm. Sledeviè et al. [25],

FIGURE 7. A basic hardware architecture for magnitude approximation.
The ‘‘�n’’ sign means signed shifting to the right by n bits. This
architecture requires three multiplexers, one adder, one subtractor, two
shifting operations, and two comparators (shown as Comp).

Luo and Lin [27], and Li et al. [36] use the Altera ALTSQRT
IP core to calculate the square root function. Huang et al. [29]
use a Xilinx IP core for square root calculation.

Observations and conclusions: there are several ways
to improve speed and hardware utilization of the magni-
tude computation. The simplest method, which is used by
Chen et al. [16], uses only two two’s complement units, two
multiplexers, and one adder. More complex method, such
as the work proposed by Blair et al. [4], which requires
two multiplications, two additions, three multiplexers and
one comparison, results in a more accurate approximation of
the magnitude computation. On the other hand, the square
root approximation technique consumes fewer hardware
resources as it uses only shift, add and comparison. Since the
magnitude should be computed for every pixel, it has a great
effect on the overall speed of the circuit. Therefore, methods
proposed by Chen et al. [8], B.K. et al. [22], and Wang
and Zhang [26] are suitable for high speed requirements.
If accuracy is more important than speed, using IP cores for
exact computation leads to a higher accuracy. If hardware
utilization is not a concern in the design, the method provided
by Rettkowski et al. [21] can be fast and accurate as well.

C. ORIENTATION AND BIN ASSIGNMENT
The next step of the HOG algorithm is computing the gradient
orientation and assigning the magnitudes to the proper bins.
Several papers make innovative contributions to this part of
the algorithm.

1) BIN ASSIGNMENT
Many papers suggest that bin assignment can be performed
without computing the value of arctangent for gradient orien-
tation. Blair et al. [4] use the method described in the work
provided by Bauer et al. [39] for assigning gradient magni-
tudes to bins. For orientation calculation, Blair et al. [4] use
approximate values for tangent of the orientation (tan(θ)) and
compare the Gy(x,y) (gradient in the vertical direction) value
with tan(θ) multiplied by Gx(x,y) (gradient in the horizon-
tal direction). This method, which consumes less hardware
resources than computing the tangent of the division of Gy
over Gx for each value, is shown in (9).

Gx(x,y) tan(θi) ≤ Gy(x,y) < Gx(x,y) tan(θi+1) (9)

VOLUME 8, 2020 79925

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

FIGURE 8. A basic hardware architecture for bin assignment. In this
architecture, gradient in horizontal direction is multiplied by the tangent
limit and is compared with the gradient in vertical direction. The two
signals from the comparators (shown as Comp) of two adjacent blocks
are XORed. If they are different, an enable signal is issued to write the
value into the selected bin.

where θi is one of the limit angles and θi+1 is the limit after
that. Hahnle et al. [5], Hemmati et al. [7], Chen et al. [8],
Zhou et al. [10], Wang and Zhang [26], and Luo and Lin [27]
implement bin assignment in the same way. By using this
method, they decrease the amount of hardware required for
their HOG implementation.

For creating the histogram, Rettkowski et al. [21] use eight
bins for degrees between –π/2 and π/2. They also scale the
numbers so that instead of division, only integer multiplica-
tion and shifting are enough to find the correct bin for each
histogram.

Ilas [19] provides slope computation as a replacement for
arctangent calculation. Since the angle value is only used
for bin assignment, the author suggests that slope value can
do the same task with fewer computations. The slope can
be computed as a division of gradient in y orientation by
the gradient in x orientation. However, since slope changes
more rapidly and can have large values, Ilas uses an adapting
scalingmethod to saturate the value of slope in predetermined
bins. Therefore, the HOG features computed are completely
different than the conventional HOG. But the result shows
that it has an accuracy near the original HOG in the case study
of car detection systems.

Similar to magnitude computation, some work use IP-
cores for orientation computation as well. Meus et al. [24]
and Ngo et al. [28] use CORDIC IP cores for orientation
computations.

Observations and Conclusions: The most commonly used
method which many papers [4], [5], [7], [8], [10], [26],
[27] use is to compute the tangent value of border angles
and compare the y-direction gradient with the multiplica-
tion of the x-direction gradient and tangent limits. In this
way, no trigonometric calculation is required. The method
presented by Ilas [19] is similar in that there is no need for
trigonometric calculation. However, it has less accuracy than
the exact orientation computation in the HOG algorithm.

2) BIN NUMBER SELECTION
Some researchers propose methods to simplify the HOG
algorithm. As an example, some papers use less than nine bins
for histogram creation. For example, Rettkowski et al. [21]
use eight bins, therefore each bin covers a domain
of 180/8 degrees. Ilas [23] proposes to use only four bins

instead of nine bins in the histogram computing stage, which
correspond to 0,−45,+45, and 90 degrees. In this way, only
2.6% of LUTs are used. However, the accuracy is decreased.
The author suggests that one can use this algorithm to find
candidates and perform the original HOG only on selected
candidates to improve the detection time. Chen et al. [16]
propose to divide the linear gradients into only six orientation
bins in 0◦ to 180◦ to reduce the computation complexity,
with negligible accuracy loss compared to nine bins. Ilas
[18] divides the orientation bins for every 16 degrees instead
of 20 degrees. Therefore, this implementation consumes
fewer hardware resources, and the division by 20 can be
replaced by division of 16which is implemented conveniently
as a 4-bit shifter. As a result, 6% fewer LUTs and 17% fewer
registers are used.

Observations and Conclusions: Using a smaller number of
bins can reduce hardware utilization; however, it decreases
the accuracy in some applications. Therefore, this is suit-
able for applications where hardware resources are limited
but accuracy reduction is tolerable. Furthermore, the method
proposed by Ilas [23] which uses a simpler classifier (with
four bin HOG) first and a more precise HOG after that, can
perform faster by using more hardware resources.

3) INTERPOLATION
Another area of algorithm simplification is interpolation
between bins. Although some authors such as Chen et al. [8]
implement bilinear interpolation, Ilas [18] assumes that if
no interpolation is considered between bins in both training
and testing phases, the accuracy will not change. On the
other hand, Chen et al. [8] compute the weight of gradient
magnitude for two adjacent bins using (10):

α = (n+ 0.5)− b
θ (x,y)
π

(10)

in which, b (the total number of bins) is 9 and n is the bin to
which θ belongs. After that, the magnitudes are weighted as
(11) and (12) for two adjacent bins:

mn = (1− α)m(x,y) (11)

mnearest = αm(x,y) (12)

Observations and Conclusions: Performing interpolation
in the bin assignment makes histograms smoother. However,
Ilas [18] shows that if interpolation is not used in both training
and testing phases of feature extraction, the overall accuracy
reduction is negligible. Therefore, interpolation is useful in
cases which accuracy is critical, and the hardware utilization
and delay caused by this unit are acceptable.

D. NORMALIZATION
The next step in the HOG algorithm is the normalization
of histograms in each block. After assigning the magnitudes
to different bins, the histograms of cells inside a block are
normalized. Several papers propose techniques to make this
normalization computation efficient.

79926 VOLUME 8, 2020

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

Mizuno et al. [2], Chen et al. [8], Ma et al. [9], and
B.K. et al. [22] use the Newton method to approximate
L2 normalization. Chen et al. [8] and B.K. et al. [22] use
IEEE754 standard floating-point representation to normal-
ize the histograms in each block. The authors also use the
Newton-Raphson method to approximate inverse square root.

The formula for Newton approximation is shown in (13):

1
√
x
= yd

(
3− x

(
yd
)2)

2
(13)

where

yd = Decimal{(xIEEE754 � 1)− 0x5F3759DF} (14)

where xIEEE754 is the IEEE754 floating-point representation
of x. Decimal {h} is the decimal representation of the hex-
adecimal value of h. Also, 0x5F3759DF is the magic number
[39] for Newton-Raphson approximation so that there is no
need for iteration.

Wang and Zhang [26] use shifting instead of division for
block normalization according (15).

hn = h� [log2(sum(h))] for h 6= 0 (15)

where sum(h) is the summation of values in vector h and hn
is the normalized vector.

Observations and Conclusions: Although the method pro-
vided by Wang and Zhang [26] consumes less hardware
resources since it uses only shifting and addition, it is less
accurate. The Newton approximation method which is used
in some work [2], [8], [9], [17], [22] for inverse square root
is more often used for normalization since it consumes fewer
hardware resources than computing the more exact value of
inverse square root using IP cores.

IV. DATA MANIPULATION TECHNIQUES
In this section, we review the methods which change the
parameters that affect the whole algorithm. In section A, bit-
width and numerical representation and their effects on FPGA
implementation are discussed. Then, in section B, the meth-
ods that contribute to data path optimization of the HOG
algorithm are surveyed. Finally, in section C, the methods
which are more focused on memory usage optimization are
presented.

A. NUMERICAL REPRESENTATION
One of the main techniques for efficient implementation of
mathematical algorithms on an FPGA is choosing an appro-
priate numerical representation. If more than the necessary
number of bits are used in the implementation, without any
changes in accuracy, more memory is used, and the total
latency of the circuit is increased. On the other hand, if the bit-
width is too small or the representation is too simple, it will
result in accuracy loss.

While some researchers such as Komorkiewicz et al. [3],
Chen et al. [8], and B.K. et al. [22] use floating-
point representation similar to that of the original HOG

algorithm [40], others such as Ma et al. [6],
Hemmati et al. [7], and Ngo et al. [28] use a constant number
of bits for fixed-point representation for HOG. Ma et al. [6]
investigate using fixed-point calculations for HOG feature
extraction. The authors suggest that using 13-bit fixed-
point can preserve the accuracy of an HOG-SVM pedestrian
detector and even enhance it. Although reducing bit-width
decreases area consumption, it may not preserve accuracy for
some applications.

Some research groups use different fixed-point represen-
tations for different parts of the HOG algorithm [1], [2],
[9]. Negi et al. [1] use 19 bits for gradient calculations,
14 bits for each histogram, and 33 bits for normalized his-
tograms. Although they achieve 62.5 frames per second,
due to the fixed-point implementation, the accuracy of their
model decreases. Mizuno et al. [2] dedicate 9 bits for gradient
magnitude, 6 bits for gradient orientation, 11 bits for orienta-
tion histogram, and 25 bits for L2 normalization which they
use Newton method to approximate it. In order to preserve
the accuracy, first, Chen et al. [9] use 27-bit fixed points for
HOG calculations. Then, for each part of the calculations,
they decrease the bit-width and compare the results with
software implementation to determine if the accuracy has
decreased or not.

Observations and Conclusions: Overall, data represen-
tation is a trade-off between accuracy, speed, power, and
resource consumption. The methods which use floating-point
numbers [3], [8], [22] obviously lead to higher accuracy.
However, floating-point computation requires more hardware
resources and is not as fast as fixed-point computations.
Therefore, although the ones that use fixed-point calcula-
tions [6], [7], [28] are less accurate, they perform faster and
use fewer FPGA resources than the others. On the other
hand, methods such as those proposed by Negi et al. [1],
Mizuno et al. [2], and Ma et al. [9] are more balanced since
they try to optimize the hardware usage and also preserve the
accuracy of the model.

B. DATA FLOW MODIFICATION
In this section, we review the methods which optimize
the data path of the HOG algorithm. Mizuno et al. [2]
present an architectural study on HOG feature extraction.
The authors propose a cell-based pipeline for HOG com-
putations which reduces memory bandwidth. They use an
external CPU to control the pipeline for HOG compu-
tation. They process images with 1920 × 1680 pixels
and achieve 30 frames per second with 76 MHz clock
frequency. Komorkiewicz et al. [3] propose using a 32-bit
single-precision floating-point numbers in HOG computation
for object detection. They use a complete pipeline without the
need for memory in intermediate calculations and achieve 60
frames per second for 640 × 480 frames. Their intent is to
improve accuracy by using more hardware resources.

Luo and Lin [27] implement the HOG algorithm fully
on an FPGA. They test their design on 800 × 600 images
with 150 MHz clock frequency. Three line-buffers of 800

VOLUME 8, 2020 79927

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

FIGURE 9. A pipeline of three rows of line-buffer registers [16], [27]. The
pixels enter the registers from the top left register and flow into the
buffer. At each clock cycle, the solid blue register is the main pixel and
the values of dashed pixels on top, bottom, left, and right of the main
pixel, which have fixed positions, are used to compute the gradients.

8-bit words are used to accommodate the pixels required
for calculating the gradients simultaneously. After assigning
magnitudes to the bins, the cell values are computed using
several shift registers on the fly, and the result is given to a
block normalizationmodule. The authors use FIFOmemories
to save the blocks which overlap with other blocks, and use
them later without redundant computations.

Chen et al. [16] propose to use a shift register which covers
three rows of pixels since HOG feature extraction for each
pixel requires four other surrounding pixels. By using buffers
for every three lines, after an initial setup time and when the
buffers are full, at each clock cycle, the required pixels are
available. Therefore, at each clock cycle, the values of the
required pixels are extracted from the shift registers, and the
computations are done. Fig. 9 shows the architecture of line
buffers in that paper. Finally, when the orientation of each
pixel is computed in the HOG engine, the L1 distance of the
HOG features and the HOG of the object model are computed
to classify the object. The line buffers enable the algorithm
to run faster but on-chip registers are used for those buffers.
Using a fewer number of bins allows the algorithm to run
faster however it also decreases its accuracy.

Qasaimeh et al. [31] propose a systolic array structure
for HOG computation. For sliding window operation, they
propose to compute the histograms for each 3× 3 window in
an overlapping manner. When the histogram of one window
is computed, for the next window, the contribution of the last
column is subtracted from the histogram, and the contribution
of the new column is added. Therefore, at each window,
one column calculation is preserved. Fig. 10 shows how this
method affects the computed histogram.

Observations and Conclusions: Data path optimization
techniques can affect the overall speed of the implementation.
Designing the circuit using pipeline architecture can reduce
the clock period and increase maximum clock frequency.
On the other hand, using line buffers is a common solution
for parallelizing the input data which is read at the begin-
ning of the algorithm. These techniques lead to performance
enhancement in speed.

C. MEMORY OPTIMIZATION
Hemmati et al. [7], Ma et al. [9], Chen et al. [16], and
Luo et al. [27] propose innovative methods for memory
usage. One of the innovations of the work provided by

FIGURE 10. Sliding window proposed by Qasaimeh et al. [31]. The left
image shows two consecutive cycles. In the current cycle, the contribution
of pixels from left side of the previous window (blue -) are subtracted
from the histogram and the contribution of new pixels (red +) are added.
The top right image shows that some values are subtracted from bin
values and in the bottom right image new values are added. The number
under each bin limit shows the ranges of the orientations of that bin.

Hemmati et al. [7] is the use of four different memories, each
containing one cell of each block. Therefore, gradient cal-
culation, histogram generation, and block normalization can
be done in parallel by accessing the cell values from four
independent memories.

Ma et al. [9] design the HOG hardware to fetch pixels from
two rows of cells and to process two rows at the same time
to have more parallelism. Since cells in one row can be used
in the next row for block normalization, alternating between
odd and even rows can prevent computing the histograms two
times and therefore lead to a speed-up in their implementa-
tion. In addition, the authors pack each pair of magnitude
and orientation into a single 32-bit integer. In each mem-
ory access, a 64-bit value is returned which is two pairs of
magnitude and orientation. Still, in their implementation, they
compute the magnitude and orientation in software and send
them to the FPGA for further computations and block normal-
ization. They attempt to maintain the accuracy of the HOG
algorithm by not reducing the number of bits, the number
of bins, and scaling factor for classification. They propose a
method to make the whole algorithm (without simplification)
faster. However, they use software for more complex compu-
tational parts such as magnitude and orientation computation.
The main goal of their work is to preserve the accuracy and
then improve the speed of their design.

Observations and Conclusions: Memory usage
optimization has an important role in data throughput. How-
ever, storing the data as required in the memory might not
be achievable in all situations, since it is dependent on the
application and platform.

V. MODIFIED HOG-BASED FEATURES
In order to increase the accuracy of the overall algorithm,
some papers have modified the HOG features. In this section,
we review four methods which implement modified HOG
algorithm on FPGAs.

A. FEATURE COMPRESSION
Advani et al. [11] propose feature compression. From the
72 features that are produced after block normalization in
their paper, a concatenation of 18 features (accumulated bins

79928 VOLUME 8, 2020

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

for each cell), 9 features (coupling 18 bins into nine bins)
and 4 features (accumulating bins of each cell) are generated.
Overall every 72 features are compressed into 31 features.
Therefore, the final classifiers (SVM in this case) only have
to process 31 features.

Rettkowski et al. [21] propose to transform the final HOG
features to binary values. They convert the features to binary
values by comparing each value of the histograms with 8/128
(which is a 4-bit shift) and transform every 14-bit value in
the histograms into a 1-bit feature, which is very beneficial in
memory usage reduction.

B. CORRELATION OF HOG FEATURES
Nishizumi et al. [17] introduce sparse FIND (Feature Inter-
action Descriptor) features which are extracted from HOG
features. They first compute the HOG features and then cal-
culate FIND features by obtaining the correlation between
HOG features and normalizing the correlations. Because of
the complexity of the calculations, they only extract the
elements with high validity in identification from HOG
(which have values more than a threshold). They calcu-
late this threshold using (16) where k is a sparsifica-
tion parameter, m is the number of histogram bins in
the block, and hi is the HOG value in each bin. Equa-
tion (17) also shows the parameter α which is used for
normalization.

threshold = (k/m)
∑

hi (16)

α = 1/
∑

h2i (17)

Finally, they compute the correlation as shown in (18).

f(hi, hj) = α × hi × hj if hi, hj > threshold (18)

where hi and hj are values of the bins in the histogram that are
bigger than the threshold. They use the correlation to reduce
the number of dimensions. Using these correlation values
as new features reduces the number of previous features,
and the classification step becomes simpler. However, for
computing sparse FIND features, multiplication and division
are required which consume more hardware resources. Their
method improves the accuracy but consumes more area in the
feature extraction part.

C. HISTOGRAM OF SIGNIFICANT GRADIENTS
Bilal et al. [20] introduce HSG (Histogram of Significant
Gradients) which is a modified version of HOG. In this
method, they compute the averagemagnitude in each cell, and
if a gradient magnitude is higher than the average value, that
magnitude casts a binary vote to the histogram bin (the value
of that bin is incremented by one unit). One advantage of this
method is that there is no need to normalize HOG features
and another advantage is that the final feature vector con-
tains integer values only, hence, the hardware computation is
simplified.

FIGURE 11. The extension of HOG features used by Sledeviè et al. [25].
The left image shows the example orientation in the main pixel
calculated by 16 pixels with 1-pixel distance from the main pixel. The
right image shows the example orientation of the pixels around the main
pixel. The histograms derived by both methods are concatenated together
as final features.

D. GRADIENT EXTENSION
Sledeviè et al. [25] increase the number of HOG features by
using pixels which are one pixel further from the center pixel.
Their implementation uses both the 8 pixels around the main
pixel and the 16 pixels around the first 8 pixels to compute the
gradient, and this method processes 24 pixels for each pixel.
Then for each block, they add the value to the bin dedicated
to the specific direction. Fig. 11 shows the histogram bins for
one pixel using the method provided by Sledeviè et al. [25].
Higher accuracy is expected by using more features to get
more information about the local variations of the image.
They use the HOG algorithm for tracking objects.

Observations andConclusions: In this section, we reviewed
four variants of the HOG algorithm and their hardware imple-
mentation. The methods described in the feature compression
subsection can be used where FPGA resources are limited or
the features are to be sent through a communication channel
(such as IoT devices). Sparse FIND features require more
computations for feature extraction. Although the authors
decrease the number of features, more hardware recourses
are utilized to compute them. HSG features simplify the
histogram computation by creating binary features which is a
trade-off for accuracy. In contrast, extension of gradients for
16 further pixels usesmore hardware to have a better accuracy
for their application.

VI. HARDWARE-SOFTWARE IMPLEMENTATIONS
While some work focus on pure FPGA implementation of
the HOG algorithm, others propose a hardware-software
co-design approach. Mizuno et al. [2] use CPU to control the
logic of a pipeline for HOG computations. For intermediate
computations such as storing histograms of processed cells
and the SVM coefficients, they use an external SRAM mem-
ory. Ma et al. [9] implement the HOG-SVM system on a Con-
vey HC-2ex platform, which is composed of two Intel Xeon
four-core processors and four Xilinx Virtex-6 FPGAs that can
communicate with each other through shared memory. They
compute the magnitude and orientation in software and store
them inmemory. Then, the FPGA cores read the data from the
memory for further computations and block normalization.

VOLUME 8, 2020 79929

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

Rettkowski et al. [21] implement a software version,
a HW/SW codesign version, and a hardware version of the
HOG algorithm. In their paper, they show that hardware
design is 503x faster than the software version and the
HW/SWversion is 9x faster than the software version. For the
HW/SW version, they use the Xilinx tool SDSoc to convert
C code to hardware implementation. They compute the gra-
dient, magnitude and orientation in software, and histogram
generation and block normalization in hardware. The main
contribution by Huang et al. [29] is in the classification part
which they classify all blocks with the Adaboost classifier,
and give only the most probable candidate windows (which
have 36x(number of blocks) features) to a linear SVM for
human detection applications. The authors implement HOG
as a hardware accelerator to be used in a HW/SW system.
They send one block of pixels at each time to the FPGA to get
the normalized histograms of that block. Then, they perform
the classification using an ARM processor. Ngo et al. [28]
implement the HOG algorithm including the sliding window
step in hardware and the classification step in software. Most
of the work in our survey use Hardware Description Lan-
guages such as Verilog or VHDL. However, B.K. et al. [22]
and Meus et al. [24] use high level synthesizers for FPGA
implementation.

Observations and Conclusions: Deciding whether or not
to use HW/SW implementation depends on the applica-
tion and the other parts of the design. As mentioned by
Rettkowski et al. [21], pure hardware implementation is usu-
ally faster than HW/SW version. However, if programmable
logic is limited in a circuit, software solutions can be useful.
In applications and scenarios where FPGA resource usage
is more critical than speed, the HW/SW design approach
performs better. However, it is important to separate the
algorithm into the appropriate parts for each platform to get
the best results.

VII. DISCUSSION
In this section, first, we compare the performance of different
workwith respect to frame rate and speed. Then, in the second
part, we suggest design guidelines for optimized implemen-
tation of the algorithm while considering the limitation of the
system.

A. SPEED COMPARISON
In Table 4 and Table 5, we summarize the results for the
surveyed papers for HOG implementation. One of the most
commonly used metrics for speed evaluation of an image
processing algorithm is the number of frames processed
in one second. However, since FPGA implementation of
an algorithm depends on the clock frequency and the size
of the input image, frames per second may not be a fair
evaluation metric for comparing different algorithms. The
reason for this argument is that in the same design, frames
per second can easily be increased by decreasing the size
of the input frame or by increasing the clock frequency.
Therefore, we use the method presented by Ngo et al. [28]

TABLE 4. Speed comparison and FPGA used in each reference.

which computes the pixels per clock cycle, according to (19)
and (20).

pixels per clock cycle =W× H× FR× 1/f (19)

pixels
clock cycle

=
#of pixels
frame

×
frame
s
×

s
clock cycles

(20)

where W is the width of the frame, H is the height of
the frame, FR is the frame rate, and f is the frequency.
In order to compute this metric, first, the frames per sec-
ond rate is multiplied by the input image size and the
result is the number of pixels processed in each second.
Then, the obtained value is divided by the clock frequency
of the system so that all work can be compared in the
same clock domain. Table 4 shows this measure for dif-
ferent implementations and hardware platforms. We com-
pute this metric only for papers that reported the frame
size, the clock frequency of the FPGA, and frames per
second rate.

As shown in Table 4, some work use Zynq family FPGAs
[7], [10], [16], [21], [24], [15] while others use Virtex
series FPGAs [1], [3]–[5], [9], [11], [17], [25], [35]. On the
other hand, [2], [20], [26]–[28] use Cyclone family FPGAs.
Cyclone V devices have more available memory while Virtex
family FPGAs have more logic elements than Cyclone and
Zynq series. It can be seen that methods which are imple-
mented on Zynq series are mostly in the upper half of Table 4
indicating their speed superiority. In addition, the results by
Ngo et al. [28] who use Cyclone V FPGA is better than all
Cyclone IV FPGAs. Although it seems that newer FPGAs
and technology lead to faster systems, it cannot be concluded

79930 VOLUME 8, 2020

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

TABLE 5. Resource utilization.

TABLE 6. Optimization for speed.

as a fact since the works with newer technology are the most
recent ones and they have more effective innovations in their
implementation as well.

Nishizumi et al. [17] use the CORDIC method for arct-
angent and square root operations for histogram generation.
They also use the Newton method for square root division for
normalization. While most of the work read the input data as
one pixel per clock cycle, Long et al. [33] use a high-speed
camera and receive the data by 64 pixels per clock cycle.
Therefore, the overall speed of their system is higher than the
others.

The work proposed by Ngo et al. [28] has a frame rate
of 526 which is higher than other projects with similar input
stream size and throughput. The reason is that they use
buffers for data path optimization and CORDIC IP cores for
magnitude and orientation computation. As a trade-off, they
use more registers than others. The next best performance
with respect to frame rate are found in [27], [20], and [10].
Zhou et al. [10] use a pipeline architecture for HOG imple-
mentation and simplification on normalization formula. They
also report the frame rate based on 32 × 32 frames which
are much smaller than what others use and their frequency is

VOLUME 8, 2020 79931

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

TABLE 7. Optimization for accuracy.

TABLE 8. Optimization for hardware resource utilization.

241 MHz which is higher than other work. Luo and Lin [27]
use Altera IP cores for square root and line buffers for data
path structure. Bilal et al. [20] remove the normalization
step by using a threshold value in the bin assignment stage.
In conclusion, data path optimization techniques, such as
using pipeline architecture and line buffers, have a great effect
on the final frame rate. Besides, the normalization step is
one of the most time-consuming steps of HOG algorithm
implementation.

B. RESOURCE UTILIZATION
The resource utilization of different approaches for FPGA-
based implementation of HOG is shown in Table 5. These
resources, which are normally used to compare designs,
include look-up tables (LUT), block RAMs (BRAM) and
digital signal processing units (DSP) on the FPGA. LUTs
are the smallest programmable elements on the FPGA. Block
RAMs are memories which are embedded on the FPGA.
DSPs on the FPGA are used for mathematical operations
such as multiplications. Since many papers do not report
their hardware utilization explicitly, we include only the ones
which report their results in Table 5. The work proposed

by Rettkowski et al. [21] is on top of the table. This work
does not use block memories but uses more LUTs instead.
The method proposed by Bilal et al. [20] does not require
the normalization step which has led to less resource usage.
Considering the work which use most hardware resources,
the method proposed by Ma et al. [9] has the most LUT
and BRAM usage in Table 5 since they implement the HOG
algorithm for 34 scales. Advani et al. [11] implement multi-
scale detection while Komorkiewicz et al. [3] implement
HOG using floating-point numbers. Li et al. [36] implement
a highly parallel system which receives the input of 64 pixels
per clock cycle. They also implement multi-scale detection.
These are the main reasons for the large number of used
resources in these papers.

C. DESIGN GUIDELINES
The most important criteria in embedded real-time systems
are speed, accuracy, resource usage, and power. In this part,
we summarize the techniques reviewed in this survey as a
design guideline based on these criteria. Since FPGA-based
designs are typically of lower power than CPUs and GPUs,
in this section we focus on speed, accuracy and resource

79932 VOLUME 8, 2020

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

utilization of the designs. Table 6 shows the methods sug-
gested for increasing the speed of the final design by using
different techniques in existing work. Methods described in
this table require a fewer number of computations and use
more hardware resources. However, they are optimized for
speed.

The methods described in Table 7 are optimized for accu-
racy. No simplification is used for the methods in Table 7 in
order to have the same features as the software implementa-
tion. The methods described in Table 8 are optimized for the
cases which hardware resources are limited.

D. CONCLUSION
In this paper, we reviewed the methods used to implement
the histogram of oriented gradients algorithm on FPGAs in
the past decade (2010-2019). Some of the reported tech-
niques are related to individual steps of the algorithm, and
some affect the whole algorithm. We also reviewed different
simplification methods and the hardware implementation of
modified features which were based on the original HOG
algorithm. After that, we compared the recent work regarding
speed, accuracy, and resource utilization of the designs. It was
observed that the methods which focus on optimizing the
data path of the design have the most effect on the speed
of the circuit. Finally, we presented three design guidelines
for FPGA-based HOG implementation which categorize dif-
ferent methods regarding the limitation and requirements of
different applications.

The research community has considered many aspects of
the hardware implementation of the HOG algorithm. How-
ever, many have not reported the accuracy of their pro-
posed methods, possibly due to the fact that their main focus
lies in other aspects such as processing speed and resource
utilization, or accuracy is not a concern in their particular
application. For the ones that reported accuracy, it is often
less than that of a software implementation. Interpolation
in bin assignment and normalization steps are the parts
that most of the work approximated and simplified to gain
higher speed, hence, leading to accuracy issues. Though,
these two steps have great potential to enhance FPGA-based
HOG implementation in a future work. Since the proposed
methods for multi-scale detection are not the focus with
respect to hardware resource consumption, one of our future
directions is to find an optimum number of image scales
to achieve higher accuracy while maintaining other design
metrics.

REFERENCES
[1] K. Negi, K. Dohi, Y. Shibata, and K. Oguri, ‘‘Deep pipelined one-chip

FPGA implementation of a real-time image-based human detection algo-
rithm,’’ in Proc. Int. Conf. Field-Program. Technol., Dec. 2011, pp. 1–8.

[2] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M. Yoshi-
moto, ‘‘Architectural study of HOG feature extraction processor for real-
time object detection,’’ in Proc. IEEE Workshop Signal Process. Syst.,
Oct. 2012, pp. 197–202.

[3] M. Komorkiewicz, M. Kluczewski, and M. Gorgon, ‘‘Floating point HOG
implementation for real-time multiple object detection,’’ in Proc. 22nd Int.
Conf. Field Program. Log. Appl. (FPL), Aug. 2012, pp. 711–714.

[4] C. Blair, N. M. Robertson, and D. Hume, ‘‘Characterizing a heterogeneous
system for person detection in video using histograms of oriented gradi-
ents: Power versus speed versus accuracy,’’ IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 3, no. 2, pp. 236–247, Jun. 2013.

[5] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, ‘‘FPGA-
based real-time pedestrian detection on high-resolution images,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2013,
pp. 629–635.

[6] X. Ma, W. Najjar, and A. R. Chowdhury, ‘‘High-throughput fixed-point
object detection on FPGAs,’’ in Proc. IEEE 22nd Annu. Int. Symp. Field-
Program. Custom Comput. Mach., Boston, MA, USA, May 2014, p. 107.

[7] M. Hemmati, M. Biglari-Abhari, S. Berber, and S. Niar, ‘‘HOG feature
extractor hardware accelerator for real-time pedestrian detection,’’ in Proc.
17th Euromicro Conf. Digit. Syst. Design, Aug. 2014, pp. 543–550.

[8] P.-Y. Chen, C.-C. Huang, C.-Y. Lien, and Y.-H. Tsai, ‘‘An efficient hard-
ware implementation of HOG feature extraction for human detection,’’
IEEE Trans. Intell. Transp. Syst., vol. 15, no. 2, pp. 656–662, Apr. 2014.

[9] X. Ma, W. A. Najjar, and A. K. Roy-Chowdhury, ‘‘Evaluation and
acceleration of high-throughput fixed-point object detection on FPGAs,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 25, no. 6, pp. 1051–1062,
Jun. 2015.

[10] Y. Zhou, Z. Chen, and X. Huang, ‘‘A pipeline architecture for traffic
sign classification on an FPGA,’’ in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), May 2015, pp. 950–953.

[11] S. Advani, Y. Tanabe, K. Irick, J. Sampson, and V. Narayanan, ‘‘A scalable
architecture formulti-class visual object detection,’’ inProc. 25th Int. Conf.
Field Program. Log. Appl. (FPL), Sep. 2015, pp. 1–8.

[12] X. Yuan, L. Cai-nian, X. Xiao-liang, J. Mei, and Z. Jian-guo, ‘‘A two-
stage hog feature extraction processor embedded with SVM for pedestrian
detection,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2015,
pp. 3452–3455.

[13] Z. Yu, S. Yang, I. Sillitoe, and K. Buckley, ‘‘Towards a scalable hard-
ware/software co-design platform for real-time pedestrian tracking based
on a ZYNQ-7000 device,’’ in Proc. IEEE Int. Conf. Consum. Electron.-
Asia (ICCE-Asia), Oct. 2017, pp. 127–132.

[14] P.-Y. Hsiao, S.-Y. Lin, and S.-S. Huang, ‘‘An FPGA based human detec-
tion system with embedded platform,’’ Microelectron. Eng., vol. 138,
pp. 42–46, Apr. 2015.

[15] C. G. Blair and N.M. Robertson, ‘‘Video anomaly detection in real time on
a power-aware heterogeneous platform,’’ IEEE Trans. Circuits Syst. Video
Technol., vol. 26, no. 11, pp. 2109–2122, Nov. 2016.

[16] X. Chen, J. Xu, and Z. Yu, ‘‘A fast and energy efficient FPGA-based system
for real-time object tracking,’’ in Proc. Asia–Pacific Signal Inf. Process.
Assoc. Annu. Summit Conf. (APSIPA ASC), Dec. 2017, pp. 965–968.

[17] Y. Nishizumi, G. Matsukawa, K. Kajihara, T. Kodama, S. Izumi,
H. Kawaguchi, C. Nakanishi, T. Goto, T. Kato, andM. Yoshimoto, ‘‘FPGA
implementation of object recognition processor for HDTV resolution video
using sparse FIND feature,’’ in Proc. IEEE Int. Workshop Signal Process.
Syst. (SiPS), Oct. 2017, pp. 1–6.

[18] M.-E. Ilas, ‘‘HOG algorithm simplification and its impact on FPGA imple-
mentation: With applications in car detection,’’ in Proc. 9th Int. Conf.
Electron., Comput. Artif. Intell. (ECAI), Jun. 2017, pp. 1–6.

[19] M.-E. Ilas, ‘‘New histogram computation adapted for FPGA implemen-
tation of HOG algorithm: For car detection applications,’’ in Proc. 9th
Comput. Sci. Electron. Eng. (CEEC), Sep. 2017, pp. 77–82.

[20] M. Bilal, A. Khan, M. U. K. Khan, and C.-M. Kyung, ‘‘A low-complexity
pedestrian detection framework for smart video surveillance systems,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 27, no. 10, pp. 2260–2273,
Oct. 2017.

[21] J. Rettkowski, A. Boutros, and D. Göhringer, ‘‘HW/SW co-design of the
HOG algorithm on a xilinx zynq SoC,’’ J. Parallel Distrib. Comput.,
vol. 109, pp. 50–62, Nov. 2017.

[22] A. B. K., V. Venkatraman, A. R. Kumar, and S. D. S., ‘‘Accelerating real-
time computer vision applications using HW/SW co-design,’’ in Proc. Int.
Conf. Comput., Commun. Electron. (Comptelix), Jul. 2017, pp. 458–463.

[23] M.-E. Ilas, ‘‘Improved binary HOG algorithm and possible applications in
car detection,’’ in Proc. IEEE 23rd Int. Symp. Design Technol. Electron.
Packag. (SIITME), Oct. 2017, pp. 274–279.

[24] B. Meus, T. Kryjak, and M. Gorgon, ‘‘Embedded vision system for
pedestrian detection based on HOG+SVM and use of motion information
implemented in zynq heterogeneous device,’’ in Proc. Signal Process.,
Algorithms, Archit., Arrangements, Appl. (SPA), Sep. 2017, pp. 406–411.

VOLUME 8, 2020 79933

S. Ghaffari et al.: Analysis and Comparison of FPGA-Based HOGs Implementations

[25] T. Sledevie, A. Serackis, and D. Plonis, ‘‘FPGA-based selected object
tracking using LBP, HOG and motion detection,’’ in Proc. IEEE 6th
Workshop Adv. Inf., Electron. Electr. Eng. (AIEEE), Nov. 2018, pp. 1–5.

[26] M.-S. Wang and Z.-R. Zhang, ‘‘FPGA implementation of HOG based
multi-scale pedestrian detection,’’ in Proc. IEEE Int. Conf. Appl. Syst.
Invention (ICASI), Apr. 2018, pp. 1099–1102.

[27] J. Luo and C. Lin, ‘‘Pure FPGA implementation of an HOG based real-time
pedestrian detection system,’’ Sensors, vol. 18, no. 4, p. 1174, 2018.

[28] V. Ngo, A. Casadevall, M. Codina, D. Castells-Rufas, and J. Carrabina,
‘‘A high-performance HOG extractor on FPGA,’’ 2018, arXiv:1802.02187.
[Online]. Available: http://arxiv.org/abs/1802.02187

[29] S.-S. Huang, S.-Y. Lin, and P.-Y. Hsiao, ‘‘An FPGA-based HOG accel-
erator with HW/SW co-design for human detection and its application to
crowd density estimation,’’ J. Softw. Eng. Appl., vol. 12, no. 1, pp. 1–19,
2019.

[30] E. P. R. Raj, B. S. Paul, and G. L. Narayanan, ‘‘Simplified SIFT histogram
of oriented gradients bin locator on FPGA,’’ in Proc. 9th Int. Conf. Com-
put., Commun. Netw. Technol. (ICCCNT), Jul. 2018, pp. 1–4.

[31] M. Qasaimeh, J. Zambreno, and P. H. Jones, ‘‘A runtime configurable
hardware architecture for computing histogram-based feature descriptors,’’
in Proc. 28th Int. Conf. Field Program. Log. Appl. (FPL), Aug. 2018,
pp. 351–3513.

[32] T. Adiono, K. S. Prakoso, C. Deo Putratama, B. Yuwono, and S. Fuada,
‘‘Practical implementation of a real-time human detection with HOG-
AdaBoost in FPGA,’’ in Proc. TENCON IEEE Region Conf., Oct. 2018,
pp. 0211–0214.

[33] X. Long, S. Hu, Y. Hu, Q. Gu, and I. Ishii, ‘‘An FPGA-based Ultra-High-
Speed object detection algorithm with multi-frame information fusion,’’
Sensors, vol. 19, no. 17, p. 3707, 2019.

[34] P. Ranawaka, M. Ekpanyapong, A. Tavares, J. Cabral, K. Athikulwongse,
and V. Silva, ‘‘Application specific architecture for hardware accelerating
HOG-SVM to achieve high throughput on HD frames,’’ in Proc. IEEE 30th
Int. Conf. Appl.-Specific Syst., Archit. Processors (ASAP), New York, NY,
USA, Jul. 2019, pp. 131–134.

[35] I. Ahmad, Z. UI Islam, F. Ullah, M. Abbas Hussain, and S. Nabi,
‘‘An FPGA based approach for people counting using image processing
techniques,’’ in Proc. 11th Int. Conf. Knowl. Smart Technol. (KST), Phuket,
Thailand, Jan. 2019, pp. 148–152.

[36] J. Li, X. Liu, F. Liu, D. Xu, Q. Gu, and I. Ishii, ‘‘A hardware-oriented algo-
rithm for Ultra-High-Speed object detection,’’ IEEE Sensors J., vol. 19,
no. 10, pp. 3818–3831, May 2019.

[37] D. D. Gajski, Principles of Digital Design. Upper Saddle River, NJ, USA:
Prentice-Hall, 1997.

[38] T. Wilson, M. Glatz, and M. Hodlmoser, ‘‘Pedestrian detection imple-
mented on a fixed-point parallel architecture,’’ in Proc. IEEE 13th Int.
Symp. Consum. Electron., May 2009, pp. 47–51.

[39] S. Bauer, S. Kohler, K. Doll, and U. Brunsmann, ‘‘FPGA-GPU architecture
for kernel SVM pedestrian detection,’’ in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. Workshops, Jun. 2010, pp. 61–68.

[40] N.Dalal andB. Triggs, ‘‘Histograms of oriented gradients for human detec-
tion,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
(CVPR), San Diego, CA, USA, Jun. 2005, pp. 886–893.

[41] S. Ghaffari, P. Soleimani, K. F. Li, and D. Capson, ‘‘FPGA-based imple-
mentation of HOG algorithm: Techniques and challenges,’’ in Proc. IEEE
Pacific Rim Conf. Commun., Comput. Signal Process. (PACRIM), Victoria,
BC, Canada, Aug. 2019, pp. 1–7.

[42] Z. Xiang, H. Tan, and W. Ye, ‘‘The excellent properties of a dense grid-
based HOG feature on face recognition compared to Gabor and LBP,’’
IEEE Access, vol. 6, pp. 29306–29319, 2018.

[43] M. Awais, M. J. Iqbal, I. Ahmad, M. O. Alassafi, R. Alghamdi, M. Bash-
eri, and M. Waqas, ‘‘Real-time surveillance through face recognition
using HOG and feedforward neural networks,’’ IEEE Access, vol. 7,
pp. 121236–121244, 2019.

[44] W.Xing, N. Deng, B. Xin, Y. Liu, Y. Chen, and Z. Zhang, ‘‘Identification of
extremely similar animal fibers based on matched filter and HOG-SVM,’’
IEEE Access, vol. 7, pp. 98603–98617, 2019.

[45] N. Laopracha, K. Sunat, and S. Chiewchanwattana, ‘‘A novel feature
selection in vehicle detection through the selection of dominant patterns
of histograms of oriented gradients (DPHOG),’’ IEEE Access, vol. 7,
pp. 20894–20919, 2019.

[46] M. Ehatisham-Ul-Haq, A. Javed, M. A. Azam, H. M. A. Malik, A. Irtaza,
I. H. Lee, and M. T. Mahmood, ‘‘Robust human activity recognition using
multimodal feature-level fusion,’’ IEEE Access, vol. 7, pp. 60736–60751,
2019.

SINA GHAFFARI was born in Tehran, Iran,
in 1992. He received the B.S. degree in electronic
engineering from theUniversity of Tehran, Tehran,
Iran, in 2015, and the M.S. degree in digital elec-
tronics from the Amirkabir University of Technol-
ogy, Tehran, in 2017. He is currently pursuing the
Ph.D. degree in electrical and computer engineer-
ing with the University of Victoria, Victoria, BC,
Canada.

His research interests include computer vision,
image processing, hardware design, and machine learning. He has been
awarded the University of Victoria Doctoral Fellowship.

PARASTOO SOLEIMANI was born in Gorgan,
Iran, in 1992. She received the B.S. degree in elec-
tronic engineering from the University of Tehran,
Tehran, Iran, in 2015, and the M.S. degree in elec-
trical engineering-integrated circuits of electronic
from the K. N. Toosi University of Technology,
Tehran, in 2018. She is currently pursuing the
Ph.D. degree in electrical and computer engineer-
ing at the University of Victoria, Victoria, BC,
Canada.

Her research interests include computer vision, image processing, hard-
ware design, and machine learning. She has been awarded the University of
Victoria Doctoral Fellowship.

KIN FUN LI is the Director of the two highly
sought-after professional master of engineering
programs in telecommunications and information
security (MTIS) and applied data science (MADS)
at the University of Victoria, Canada, where he
teaches both hardware and software courses in
the Department of Electrical and Computer Engi-
neering. He dedicates his time to instructing and
researching in computer architecture, hardware
accelerators, education analytics, and data mining

applications. He is actively involved in the organization ofmany international
conferences, including the biennial IEEE Pacific Rim in Victoria and the
internationally held IEEE AINA. He is also a passionate supporter and
participant in numerous international activities to promote the engineering
profession, education, and diversity.

Dr. Li is an Honorary Member of the Golden Key and a Registered
Professional Engineer in the Province of British Columbia.

DAVID W. CAPSON (Senior Member, IEEE)
received the B.Sc.Eng. degree in electrical engi-
neering from the University of New Brunswick,
Fredericton, NB, Canada, in 1979, and the M.Eng.
and Ph.D. degrees in electrical engineering from
McMaster University, Hamilton, ON, Canada,
in 1981 and 1985, respectively.

He was a Visiting Scientist at the IBMAlmaden
Research Center, San Jose, CA, USA, in 1989,
and worked with CRS Robotics, Burlington, ON,

Canada, in 1995, and with Gennum Corporation, Burlington, ON, from
2004 to 2005. From 1984 to 2012, he was a Professor with the Department
of Electrical and Computer Engineering, McMaster University, serving as
a Department Chair, from 2008 to 2012. In 2007, he was the Winner of
the McMaster Student Union Lifetime Teaching Achievement Award. He is
currently a Professor with the Department of Electrical and Computer Engi-
neering, University of Victoria, BC, Canada, and the Dean of the Faculty
of Graduate Studies. His research interests include computational vision,
algorithms and architectures for accelerated and embedded image analysis,
and machine vision-based applications in robotics, metrology, inspection,
and servo systems.

Dr. Capson is a Registered Professional Engineer in the provinces of
British Columbia and Ontario and an Honorary Member of the Golden Key
International Honor Society.

79934 VOLUME 8, 2020

