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ABSTRACT As some of the objective functions are piecewise, so they are non-differentiable at spe-
cific points which have a significant impact on deep network rate and computational time. The non-
differentiability issue increases the computational time dramatically. This issue is solved by the reformulation
of the absolute value equation (AVE) through a parametrized single smooth equation. However, utilizing a
single smoothing function is less effective to produce a better curve at the breaking points. Therefore, this
work formulates a new smoothing function of Aggregation Fischer Burmister (AFB) via amalgamating of
two popular smoothing functions: Aggregation (AGG) and Fischer-Burmeister (FB). These functions are
having the ability of minimum estimation from both sides of the canonical piecewise function (CPF). If an
amalgamation of smoothing functions can affect the differentiability of the piecewise objective function,
then amalgamating the AGG and FB smoothing functions will produce a smooth secant line slope on both
sides with less computational time. To evaluate the proposed technique, we implement a Newton algorithm
using MATLAB, with random initial values. A new smoothing function is formulated by firstly converting
the piecewise objective function to CPF. Then, we applied it to the Newton algorithm. Finally, to validate the
AVE difficulty of the new piecewise function, we perform one run for each initial value, and 30 runs for time
evaluation. The experimental analysis verified that the proposed technique outperformed other techniques of
AGG and FB individually in terms of the natural logarithm, exponential, and square root. Hence, this novel
technique yields promising smooth approximation for AVE with less computational time.

INDEX TERMS Absolute value equation, artificial neural network, objective function, piecewise linear

function, smooth approximation.

I. INTRODUCTION

Piecewise functions are widely applied in various areas, such
as image processing [1]. These functions are pieced together
from a set of connected linear segments causing them to be
neither continuous nor differentiable [2]. One of the most
well-known piecewise technique is a canonical piecewise
linear model [2], [3] which is appropriate for nonlinear mod-
elling. This technique has fewer parameters and also need a
lower computational burden. As the nature of this technique
is piecewise; thus, its application becomes restricted when the
derivative is required [2]-[4].

The conventional neural networks have shown significant
performance on various issues over the years [5], [6]. Even
though their functions in the recognition scheme were proven
applicable, some of these nets like principal component anal-
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ysis (PCA) and auto-encoder with various hidden layers are
still enduring in handling selectivity-invariance dilemma and
vanishing gradients issue respectively [6]. Despite becom-
ing the most prevalent supervised learning technique, deep
learning technique detaches complex aspects of input by gen-
erating multiple levels of representation [7]. Convolutional
neural networks (CNNs) employ gradient algorithm, thus the
learning of the network has potentially been trapped into the
saddle point or local minima. Consequently, this implication
effects CNNs performance significantly and thus initiates
deep learning innovators in disentangling vanishing gradient
and slow convergence learning issues, respectively [8].

As the objective function is considered as an essential
component in CNNss, thus, the appropriate objective function
should be utilized to avoid the network to be trapped into
local minima [8], [9]. Some objective functions in deep CNN
are piecewise in nature. Therefore, they are not continuously
differentiable that leads to the bad performance of the deep
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network. There are several signs such as corners, cusp, verti-
cal tangent line, discontinuity, and other weirdness that show
the non-differentiability of functions which can be recognized
by viewing its graph.

Many works addressed the non-differentiability issue by
reformulating the absolute value equation (AVE) system
through a parametrized smooth equation [10]. Among the
existing smoothing functions, the Aggregation (AGG) and
Fischer-Burmeister (FB) [10], [11] are considered as the
most popular smoothing functions. These functions have
been capable of estimating the minimum function from both
sides to retain the original form of the piecewise objective
function [12]. As the AGG and FB functions are utilizing log-
arithm and square root functions, respectively, they are being
able to smooth any corner or breaking points by producing
curve [13]. However, smoothing with a single square root and
a single log function is less effective due to producing slighter
curves [11], [12].

If an amalgamation of smoothing functions can affect
the differentiability of the piecewise objective function, then
amalgamating the AGG and FB smoothing functions will
produce a smooth secant line slope on both sides with less
computational time. Therefore, in this study, we aim to pro-
pose a new smoothing technique of Aggregation Fischer
Burmister (AFB) to improve the non-differentiability issue
of the canonical piecewise objective function by amalgamat-
ing AGG and FB. The amalgamation of these functions can
express the smoothing in terms of natural logarithm [12],
exponential [11], [12], and square root [11].

The other part of this paper is divided into five parts.
The preliminaries of the essential concept of AVE as well
as the impact of smoothing function to the non-differentiable
functions are covered in Part II. The methodology is discussed
in Part III. Attained results and the discussion are addressed
in Part IV. Finally, the paper is concluded in Part V.

Il. RELATED WORKS

This section covers the essential perception of AVE and the
impact of a single smoothing technique to solve the non-
differentiability issue. In continuation of a pilot study by
[14], many researchers studied the absolute value equation
comprehensively [15], [16]. The standard form of AVE is as
follow:

Mx — |x| =n (D

where M is within the set of Rpxp and n is within the set of Rp.
Here, the |x| implies a trajectory with components of the value
of absolute x where x is within the set of Rp. The (1) is not
completely smooth due to the existence of |x|. Usually, partial
smoothing arises from the optimization difficulties such as
linear complementarity, mixed integer programming difficul-
ties, quadratic programs, and biomatrix games which apply
an AVE [16] as written in (1). The clarification for AVE is
a nondeterministic polynomial-time problem (NP-hard) [17].
To overcome the issue of standard AVE (1), several different
approaches are presented in the previous studies [15]-[18].
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Newton Raphson technique is one of the most prominent
ways to accurately and quickly approximate the root of func-
tion as well as solving equations numerically [18]-[22]. This
technique is based on the concept of linear approximation
[18] that uses straight-line tangent has been utilized to esti-
mate the differentiability and continuity of the function. This
technique estimates the value of the root of the function based
on the value of the initial guess. The letter of [23] devel-
oped a second-order cone complementarity technique. They
offered a standard regularized smoothing Newton technique
is offered to overcome the issue of monotone second-order
cone complementarity. They also claimed that the regulariza-
tion parameter and the smoothing parameter are similar by
definition. Furthermore, the standard regularized smoothing
Newton algorithm can converge globally and quadratically
in mild circumstances[23]. The analysis results specify that
the proposed technique is efficient. The study of [24] utilized
the smoothing Newton the technique to tackle the arising
difficulty from an AVE which is allied with second-order
cone (SOCAVE). They reformulate the SOCAVE, which is
the extension of standard AVE by using the smoothing func-
tion and overcoming the iterative issue using the smoothing
Newton algorithm. The SOCAVE formula is derived in (2).

Mx 4+ N|x| =n 2)

where M, N € RP"’ and n € RP are similar to those in (1);
|x| in formula (2) represents the absolute value of x which
is achieved via the root square of the Jordan product “o” of
x and x. The mathematical formula of both standard AVE (1)
and SOCAVE (2) are similar, but the main difference between
these functions is the definition of |x| wherein standard AVE
(1) means the component-wise |x;| of every x; € R though,
absolute x in SOCAVE (2) signifies the trajectory sufficient
V2 = +/(x o x) allied with second-order cone in Jordan
product. Second order cone (SOC) is a spectral decomposi-
tion of x for x = (x1, x2) € R x R* !, as (3):

x = p1OV + prxv? )

where the p1 (x) andp; (x) are two scalars of x. For every x €
Rn , the value of absolute x describes SOC wherein |x| is
equivalent to a summation of positive and negative sides of
x where is equal to the |x| = +/x o x. The combination of
expression of x4 and x_ with (4), can be recast the absolute
value |x| as the following:

Xl = [1 )4 + =Py @D+ ] + [(p2 )4
+H=p2 ) ] = o1 D Y + I @ MY @)

The p1(x) and pa(x) denote as spectral values of x where
thevil) and vy~ represent the spectral vectors of x. The
smoothing newton technique overcomes the SOCAVE (2)
issue [24]. Due to the differentiability issue of [x| for x € R,
a smoothing function can be utilized to substitute the non-
smooth function to be continuously differentiable. Hence,
they define the function @; (-, -) : R — R specifically as

01 (c,d) :==/le/' +1d|!, I>1 )
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The smoothing function of [24] attains its originality from
FB function [25]. Let a vector-valued smoothing function
I[:R x R" — R”, the combination of the spectral decompo-
sition of x from (4) and the function ®; from (6) are redefined
as below:

@ (1, x) = By (1, pr )V + 07 (1, pa (1)) v

= VIl + 1pr @ P+l +1pa @) 114

(6)

In [24] after performing some proper settings, a quadratic
convergence indicates the effectiveness of the smoothing
algorithm [24]. Apart from that, the effectiveness of the
proposed method [24] is evaluated based on two types of pre-
liminary numerical comparisons. In the first stage, they com-
pare the smoothing Newton technique against the generalized
Newton technique in which the experiment results showed
that both smoothing and generalized Newton algorithms are
suitable to solve the SOCAVE. On the other hand, smooth-
ing methods solve mathematical programming problems [26]
intensively. The smoothing approaches are efficient to solve
the optimization problems such as Nonlinear Problem Com-
plementarity [27], and so on [28]. Furthermore, the study of
[12] proposed a novel smoothing method for overcoming the
nonlinear complementarity issue. This difficulty is to acquire
a vector x € R" such that

x>0, F(x)>0, xTEx)=0 (7

The appropriate smoothing functions have a crucial role in
attaining an approximate smooth issue of (7). Unlike present
smoothing approaches, [12] proposed a semi smoothing func-
tion: p: R_4+xR"2 —R, and for all (u,c,d)e R_+xR"2,

c ifc<d,u>0
B(u,cd = ,uarctanc—i if c>d, uw>0
min {c, d} g ifu=0
®)

It estimates the smoothing parameter, i by calculating
the minimum of each function only on the single side. This
algorithm tackles the difficulties of the nonlinear comple-
mentarity using the Jacobian smoothing method [29]. The
experiment results prove that the suggested technique can
solve the NCP problem by the minimum number of iterations
and produces higher accuracy compared to others. Besides, it
is also robust to find the solution of large-scale test problems.
It is also affected by choice of the initial value.

The piecewise functions have a simple structure due to
their compact formula [2]-[4]. One of the most popular tech-
niques of these models is the canonical piecewise function.
These functions are partially differentiable at certain points
due to having more than one equation. So, the application
of these techniques is restricted while the differentiability of
the function becomes interesting. Hence, there are several
smoothing functions suggested in the literature [30], [31]
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to overcome the non-differentiability issue of these models.
Having the ability of the estimation of the minimum function
from both sides, the two functions namely AGG and FB are
the most popular smoothing techniques [12]. The study of
[31] has proposed a smooth piecewise model by substituting
the local linear function into polynomial functions. They ini-
tially apply a generalization of canonical piecewise function
into their polynomial function that yields to a better smooth-
ing piecewise model. Their smoothing function successfully
overcomes the derivative issue by achieving a non-zero state.
On the other hand, the usage of the polynomial function is less
applicable for modeling the real-world of device complexity.
As the space of the input divides into a larger area, these
functions are inclining to produce an oscillation state.

Another study [32] suggests a novel smooth func-
tion via smoothing the symmetric perturbed Fischer—
Burmeister function. The proposed smooth function [32] can
resolve second-order cone optimization (SOCO) issues. This
approach merely solves one linear scheme of equations and
just presents a one-line search at all iterations. The exper-
imental analysis based on the proposed algorithm displays
astonishing and comparable results in comparison to interior-
point approaches.

In conclusion, there are several works [12], [24] that have
been proposed recently to solve the non-differentiability issue
of AVE and its extension SOCAVE by utilizing the single
smoothing function. Those studies employed the Newton
Raphson technique to estimate the differentiability and con-
tinuity of the function after applying the smoothing function.
The Newton Raphson technique is capable of accurately and
quickly approximate the root of function as well as solving
equations numerically.

ill. METHODOLOGY

This section divides into three subsections. At first, we
described the principle and proposed smoothing objective
function piecewise function. Secondly, we provide detail of
applying the smoothing Newton algorithm based on the pro-
posed smoothing objective function to solve the issue of AVE.
Finally, we describe our proposed smoothing objective func-
tion based on the amalgamation of two objective functions.

A. THE PRINCIPLE AND PROPOSED NEW SMOOTHING
PIECEWISE OBJECTIVE FUNCTION

The proposed smoothing objective function has three steps
(as shown in Fig. 1):

Step 1: Convert the piecewise objective function with the
canonical piecewise function (CPF) to compact the formula
with the minimum number of parameters.

Step 2: Amalgamate the AGG and FB (AFB) smoothing
functions to propose the new smoothing function to overcome
the non-differentiability issue of canonical.

Step 3: Build a precise smoothing Newton algorithm by
proposed AFB smoothing function to solve the AVE issue
in the piecewise objective function which makes the secant
line slope of both right and left sides of the function to be
equivalent and also reduces the computational time.
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FIGURE 1. The procedure of proposed AFB function.

B. CONVERSION OF PIECEWISE OBJECTIVE FUNCTION TO
CANONICAL FORM

Given any single-valued piecewise-linear function q(x) with
utmost L number of corner points whereby E; < E; <--- <
EL, the equation is shown as below:

L
q=d+ex+y  fixg ©)

where d and f; are scalars for i=1, 2..., L+1, where e and x
are n-dimensional vectors. The J© is representing the slope of
the i" linear segment in the piecewise function. The value of
d, e, and f; are computed by (10),(11), and (12) respectively.

L
d=yO - clBi (10)
(L 115)
= — 11
e 5 (I
Jh+D _ j)
fi=—F7— (12)

The objective function of this study is stated in (13). This
piecewise objective function consists of four learnable param-
eters. It selects each parameter carefully to make the function
applicable between the specified ranges. The two- parameter
values of {¢", '} are {0.4, —0.4} correspondingly. Unfortu-
nately, these values cause the corner shape in the function
which makes the function to be non-differentiable at these
points. Additionally, the value of {a”, a’} are equal to {0.2,
0.2}. After substituting these values to the function (y) (14).
It eventually simplifies the function as stated in (15).

t"+ad (x;—t") x>1t"
' >x >t (13)

x <t

y=3x

th+ad (x;— 1)
044+02(x —04) x>04

y={x 04>x>-04 (14
—04+02x+04) x<-04
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02x+032 x>04
y={x 04>x>—-04 (15)
02x—-032 x<-04

Subsequently, converting y piecewise objective function of
this study to the canonical form, we first have to obtain the
three values namely slope, segments, and breaking points
subsequently based on (15). The slope value J®) of this func-
tion obtained from the coefficient of x which is equal to
{0.2,1,0.2}, where the segment value is equal to {1,2,3} as
this function consists of three pieces. The number of break-
ing points o is obtained from the subtraction of segments
value from 1 where it denoted by {¢", t'} which is equal to
{—0.4, 0.4} . The slope value of this function is specified by
{a”, a'} which is equal to 0.2, 0.2}. The value of {d, e, f;} for
the objective function of this study achieved as shown in (10),
(11), and (12) respectively.

02+1

o) = 2* ~06 (16)
0.2+0.2

e = + =02 (17)
1-02

Si= 5 = 0.4 (18)
02—1

hr="F—=-04 (19)

d=—0.5—04(0.4]) +0.4(—04) = —0.5 (20)

The canonical form of a piecewise objective function of this
study is derived as below:

y(@x)=—-0.5+0.8x4+0.4 x [|x —0.4]|—0.4 x ||x+0.4] (21)

1) APPLY AGG AND FB TO CANONICAL PIECEWISE
OBJECTIVE FUNCTION

In this section of this study, the two popular smoothing
methods of AGG and FB are utilized to make the functions
of this study becoming smooth. The function J has two
parameters namely 1 and x where the 1 parameter denotes
for smoothing parameters and x represents the input variable.
After replacing the absolute function of (8) with its equivalent
smooth AGG approximation (22), let us infer the canonical
technique for the objective function as shown in (23), and (24)
subsequently.

J(,x) = ln Zlm:l exp(Ji(x)/1) 22)
o (,M> <,\X*Ez\>
®p(l,x) = d+ex + Zizlﬁ(—lln(e L )geN 1))
(23)
_ exp (x+0.4)
y(x) = —0.54+0.8x+0.4 (—0.05 In (—0'05 >>
—04 (—0.05 In (W)) (24)

Moreover, the function T has three parameters of (a, b, 1)
where the a and b denote as the absolute value of each
breaking point and | denotes as smoothing parameter. By sub-
stituting the absolute-value function of (9) with its equivalent
smooth FB approximation (25), let us derive the canonical
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model for the objective function as shown in (26), and (27)
respectively:

T(a,b,1) = Va2 +b>+1*> — (a+ b) (25)
K@) =dtextd . fi(/a2+ B+ —(@+b) (26)
y(x) =—-0.540.8x

+0.4(\/ (Ix — 04D + (Ix + 0.4))% + (0.05)°
— (Ix — 0.4] + |x + 0.4]))

—0.4(\/ (Il — 0.4)* + (Ix + 0.4])* + (0.05)
—(Ix — 0.4] + [x + 0.4))) 27)

Fig. 2 Displays the plotting of smoothing piecewise objective
function based on AGG and FB functions.

Smooth Pieceswise Function by Aggregation Function
10

— Piecewise Objective Function
=== Aggregation Smoothing Function

Objective Function

-1|5 T T T T T T T
-1.00 -075 -050 -025 000 025 050 075 100

Input
(a)

Lo Smooth Pieceswise Function by Fischer Burmeister Function

— Piecewise Objective Function
=== Fischer Burmeister Smoothing Function

Objective Function

—1.5 T T T T T T T
=100 =075 =050 =025 000 025 050 075 100

Input

(®)
FIGURE 2. The smoothing piecewise objective function based on (a) AGG
and (b) FB functions.
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2) THE PROPOSED (AFB) BASED ON AMALGAMATION OF
(AGG AND FB)

Dealing with non-differentiable objective function due to the
existence of AVE, it aims to propose the amalgamate smooth-
ing function AFB by building a precise smoothing Newton
algorithm. The AFB function produces equivalent limit value
on both sides of the secant line slope. The aim of this study is
to solve the non-differentiability of the piecewise objective.

Therefore, we first obtain the value of segments, slope,
and breaking points before converting (13) into the canonical
form as shown in (21). It is inevitable that the breaking points
have caused the non-differentiability issue of the piecewise
objective function. Hence, we apply the canonical formula as
shown in (21) only at those breaking points into the proposed
amalgamated function (AFB) as shown (26). Tentatively, the
secant line slope becomes smoother in the Canonical Piece-
wise objective Function compared to the initial piecewise
objective function (13) as illustrated in Fig. 4.

According to [18], a smoothing Newton method is able to
solve the non-differentiability issue of AVE (1). With similar
motivation, we also employ the smoothing Newton algorithm
and we observe that the secant line slope of the right and
left side of the function to be equivalent. As show in Fig.3
the flowchart for smoothing of the non-differentiability of
piecewise objective function based on the proposed (AFB)
function in the smoothing Newton method.

v

Piecewise objective Function

v
Build Canonical Piecewise
Function

\Z

Apply Combined Functions

(AFB)

v

Proposed Smoothing Newton

L 2
Solve Non-Differentiability

f
Display Results

FIGURE 3. The flowchart for smoothing of the non-differentiability of
piecewise objective function based on the proposed (AFB) function in the
smoothing Newton method.

The proposed AFB function is based on the amalgamation
of the two functions of AGG and FB from (21), (24). The
steps of amalgamating the two functions are stated in (28)
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where the AFB is recast in (29). Fig. 4 shows the proposed
smooth AFB function.

J(,x)+T@b ) =vVa2+b>+*=—-a—b
(28)
(Va2 + b>4+12)? = (—a — b)?

AL +12 =a®+b* 4+ 2ab
A+ —a*—b—2ab =0

1>=2ab =0

12 = 2ab

| = ~2ab
12

a= —
2b
12

b= —
2a

AFB (a,b) = —v/2abln(exp <_21_b)

!
+exp(—=)
2a
AFB(L, x) = —0.5 + 0.8x + 0.4
(—/2 <x2 — 0.42)

—0.05
* (111 exp(—2 o 0.4)>
N —0.05
exp (2 + 0.4)>
—0.4,/2 (x2 +0.4?)

—0.05
* (ln exp(—2 o — 0.4)>

—0.05
+exp <—2(x+0.4)> (29)

Proposed AFB Smoothing Function
1.0

— Piecewise Objective Function
-=- Proposed AFB Smoothing Function

Objective Function

_1.5 T T T T T T T
-1.00 -0.75 -0.50 -025 000 025 050 075 100

Input

FIGURE 4. The smoothing piecewise objective function based on the
amalgamation of AGG and FB functions (AFB).
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In other words, the absolute function of |x| is linked with
the canonical piecewise objective function. This study is
consistently smoothing through the function AFB. Based on
standard AVE as in (1), the function AFB is defined as a
function W (I, x) : R"! — R"*! a5 below:

J— l n
W, x)= [Mx—l—NAFB(l,x)—n]’ VieR xeR

(30)

Then, we observe the following outcomes. Lemma 1 Let
AFB be described through (31), afterwards, the subsequent
consequences hold. (i) W (I, x) = 0 if and only if x overcome
the issue of (1). (ii) W is constantly differentiable on R"*1{0},
and once (/, x) # 0, the Jacobian matrix of W, at ([, x) is
defined with

1 0
W' (l,x) = N3AFB(1,x) +N8AFB(1,x) (31)
8l ax
where aAF;a(l,x) — (aAF]:(1~X1) BAF](?(] Xn) )T and
il C1)) —g , 7
! dAFB(, , .
—aAF;j”J) = diag {—ax(]" Do , —BA??;LW } (i) W is

strongly smooth on R"*1.

C. SMOOTHING NEWTON TECHNIQUE

In this part, the smoothing Newton algorithm is investigated
through the smoothing function AFB (1,x) to tackle the AVE
issue in (28) and represent the convergence of the used
algorithm based on its properties. The standard smoothing
algorithm stages are shown below.

1) SMOOTHING NEWTON ALGORITHM PROCEDURES
Step0: Set §, 0 = [0, 1], woeR™, set x9 to all vector
spaces of n (R"), and set k% := (o, x%). The € is equal to
{1,0} which is belong to a multiplication of a real number
(R) to all vector spaces of n(R"). Let § > 1, therefore
min (1, {|| W(&°) |1)° < Buo. Choose Z := 0.

Stepl: If | W (k%) ||= 0, end. Else, fixed t, equal to min
of {1, || W (k%) ||}

Step2: Calculate Ak* where it is equal to (Au;, AX?)
where it belongs to a multiple of a real number (R) to all
vector space of n (R") though

W(K) + W (K)AKS = (1/B)72e’ (32)
where W/(-) is specified by (31).

Step3: Let «; stand for the greatest values of 1, §, 82....50
that the norm vector of W (K 4 o, Ak?) is less and equal to

[1—od—=1/B)al I W (k) | . (33)

Step4: Fix k! completely equal to the summation of
(K%, a; Ak?) and z completely equal to z 4 1. Return back to
Step 1.
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Lemma 2: Let k* be built by procedure of smoothing
Newton algorithm in 1. Then, the subsequent outcomes hold.
(1) The {|| F (k%) ||} and t, sequences are uniformity reducing.
(ii) tzz is less and equal to B, which retain for each z. (iii)
The sequence . is uniformity reducing, and p, is greater
than O for each z. To displays the evolvability of Newton (31),
the following lemma is necessary.

Lemma 3: Assume that real symmetric matrices of S and
T belong to R™" if the minimum single matrix value of S
is extremely larger, in comparison to the maximum value of
single larger, in comparison to the maximum value of single
matrix T, subsequently the matrix S-T is certainly positive.

Assumption 1: The minimum matrix value of the A is
extremely larger in comparison to the maximum value of the
B matrix. The evolvability of Newton (31) is as follows.

Theorem 1: Let W and W’ be stated via (30) and (31),
correspondingly. Supposing that Assumption 1 holds. Subse-
quently, W’ (I, x) is inverse at all (I, x) € RxR" with [ > 0.

Proof: Refer to (31), it is clear that the W' ([, x) is
inverse if A + BAFBEN/0x qupposing that there exists p is
not equal to 0 such that [A + B?FB(1)] p equal to 0. Then,

dAFB(y) 1", 9AFB(.y)
ATA, = (Ap)'A, = | B=——"2)p | B :
PAA, = (Ap) [ o P ox P
=p'c B’Bc (34)
where ¢ completely equal to diag{- I l(? ))‘ﬁ L, Lo , g‘f(r;()‘c’;))‘ ﬁ’;' ).

Based on the consequence 4.5.11 in [33], there exists a fixed
g such that 0 < Awin (c'c) < & < Apax (c'c) < 1 and
Amax (¢'B'Bc) = & Amax (B'B). Together by the statement that
Amin (A’A) > Amax (B’B) > 0, indicates that A, (A’A) >
Amax (c’ B’Bc) . Therefore, it follows up via Lemma 3 that
p'A'A,, greater and equal p’c’B' Bc, which contravene (33).
The proof is complete. Utilizing the Theorem 1 can be able
to overcome the issue of Newton equations.

Lemma 4: Supposing that Assumption 1 holds. After-
wards, the sequence {k?} produced through procedure of
smoothing Newton algorithm in 1 is constrained.

Proof: Through lemma 2 (iii), the sequence {u*} is
restricted clearly. Therefore, it only necessary to indi-
cate that the sequence {x*} is restricted. Lemma 2 (i),
followed by the sequence {|| W (k%) ||} which is limited.
This lemma together with (30), indicates that sequence
{ll Ax* + BAFB (1, x*) — b ||} is restricted, and therefore,
the sequence {|| Ax* 4+ B (I, x?) ||} is restricted. Meanwhile,
I Ax* | — || BAFB (I, x%) ||| Ax®+ BAFB (I, x%) |,
assuming that, with losing of popularity, that there exists a
stable ¢ greater than O such that

I Ax® || — | BAFB(I;, x%) | < ¢. (35)

Furthermore, for every z, | Ax?* |?>= () A'Ax* >
Amin (ATA) | x* |I%, Il BAFB (I;,x*) < Amax (B'B) |
AFB (I, x*) 112, & || AFBy (I, x*) 12< || x* |7 + ni%,
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it follows up through (35) that for every z,
¢ = || Ax® || — | BAFB (I, %) [|> v/Amin (A’A)| X° |
s BB) (Il x| +ni2)
> (v/Amin (A'A) = \/dmax (B'B)|| X |

—/ni2x, . (B'B)

The assumption indicates that || x*

C"F\/ l’ll )Lmux(B’B)

I= —Jxm,n<AfA> N/ *max(B'B)
keep for every z. Therefore, the sequence {x*} is restricted.

Thus, the proof accomplishes.

Theorem 2: Supposing that assumption 1 holds and the
sequence {k?} is proposed through procedure of smoothing
Newton algorithm in 1. Next to every accrual point of {x°} is
an answer of (1). Prove via Lemma 4, presume, with no loss
of popularity, that k* = k* = (l, x*) . Through Lemma 2(i),
obtain W* := W(k*) = lingo W (k?*) and T4 := min {l, W¥} =
Zl_l)rgo min{l, W(k?)}. Nojv, demonstrate that W* equal to 0.

Assuming that W* greater than 0, which showed a conflict.
In this instance, it follows out by Lemma 2(ii) that 1, > 0.
The proof is split into the subsequent cases.

Casel: Supposing that «; greater and equal to where o*
greater than O for every z, where o* is fixed. Through (32),
we have | W) <l W) || —o(1 — 1/B)a* |
WK || . As the sequence {||W(k*) |} is limited,
then Y ;2 a*o(l —1/B) || W(kz) || is less than oo, which
indicates that || W(k?) ||= 0. This against to W* greater
than 0.

Case 2: Supposing that Zl_1)rgO o is equal to 0. Subsequently,

for every appropriate large z, ), = «;/8 does not satisfy
(33), for instance, | W(z* + a”kAZK) ||> [1 — o(1 —
1/B)a”z] |W(K?) ||. Thus, for each proper large z, it fol-
lows up with (|W(k* + o",AK?) | Wk D™, >
—o(1-1/8) ||W(k*) |. Meanwhile, 1, is greater than O, it
follows up with W is continuously differentiable at k*. Let
7z — 00, then the above difference provides

—o(1-1/B) W& | (36)

Furthermore, via (32) attain as follow

(W(K"), W EHAK) /[ WK =

;<w (k%) , W (K)AK*) = — | W (k) |
| W(k*) || ’ -
2
T
—* (W (k¥), 0 — || W (k*
+ﬂ||W(k*)||< (k*), %) < — I W (k*) |
2| W(k*) I
= < — || W (k* 8
B IWES) ” < — I W (K*) | +7/8

=1+ 1/B) I W(E) I

This equation composed by (35), signifies that —1 + 1/8 >
—o (1 — 1/B8), which against the truth that o belongs to (0, 1)
and g is greater than 1. The compounding of casel and 2, give
W(k*) = 0. Hence, the x* is akey of (1). The proof is achieves
completely. To prove the superlinear local convergence of a
smoothing algorithm, whole Jacobian metrics of function W
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should be nonsingular at key answer points. Lemma 5 display
the assumption which keeps trivially for the difficulties of this
study.

Lemma 5: Supposing the assumption 1 keeps and
k* := (I4,x*) is a cumulation point of {k*} which pro-
duced through procedure of smoothing Newton algorithm
in 1. (1) JWk*): = {lim W'(%): z* — z*}. Then,

WG < 0 A+ BdigDy ) PieI=h L=
1,2,...., e}.(2) Every v € JW(k*) is not a single value.(3)
The O(k*) of k* and a fixed q such that for every z: = (I, x)€
O(k*) by 1 less than zero, W’(K) is not single value and ||[(W
&N =<q.

Proof: The straightforward calculation returns the outcome
of (1). While assumption 1 keeps, alike to the proof of
Lemma 3, it is straightforward to get the outcome of (2).
Through [12, Lemma 2.6], be able to attain the outcome (3).
By utilizing Lemma 2(iii) and Lemma 5, in the same manner
in [13, theorem 8], capable of achieving the local quadratic
convergent of procedure of smoothening Newton algorithm
in 1 as below.

Theorem 3: Supposing that assumption 1 keeps and k*:
= (4, x*) is an accumulation point of sequence {k®} pro-
duced through procedure of smoothening Newton algorithm
in 1. Then the complete sequence {k*} converge to z* with
[+ =1 [|= ([ —2z* ||?) and H! = 2.

vy =

2) PROCEDURE OF PROPOSED SMOOTHING NEWTON
TECHNIQUE

The Newton Raphson is a technique that is utilized to estimate
the real zeros value of the function by using the tangent lines.
The solution of the function (Root) is zero of the tangent
line. The procedure of obtaining the solution of the nonlinear
equation based on the proposed smoothing objective function
is as follows: In the first stage, we define the proposed AFB
smoothing piecewise objective function (29). Secondly, get
the derivative of AFB piecewise objective function. Thirdly
set the initial value. Then set the maximum number of itera-
tions (Numltr) in the fourth stage. Also, set the tolerance (tol)
followed by saving the final iteration if tol is less than Numltr
and finally, plot the solution.

IV. RESULTS AND DISCUSSION

As the piecewise linear functions application is limited
when the differentiability of the function becomes important,
generating a proper smoothing function estimator plays a
significant role in gaining an estimated smooth issue [34].
Therefore, we suggest the amalgamation of two best smooth-
ing functions of AGG and FB with piecewise objective func-
tion (13) of this letter to have more control in computational
time and resolve the non-differentiability issue by making the
secant line slope of this piecewise objective function (13)
to be equivalent in both sides of right and left at specific
breaking points of {—0.4,0.4}. In this section, the efficiency
of the proposed AFB smoothing function compared with
well-known functions of AGG [10], FB [25], in procedure
of smoothening Newton algorithm in 1.
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In assessing the performance of these three techniques,
firstly, we utilized the smoothing techniques of AGG (24), FB
(27), and proposed AFB functions (29) separately. Then com-
pute the derivative of these smoothing functions. Thirdly as
the Newton method may not converge so, the selection of the
initial value has an important role in obtaining less error value
[18]. So, we set the initial values of {1,3,5,8,9,10,30,80,700}
for each run as these values offer the low error rate. The
value of the maximum numbers’ iteration is set to 10 for
three smoothing functions of AGG, FB, and proposed AFB
functions. As the optimum value obtained while the error is
lower than tolerance value so we set the tolerance value to
1e-6 for all functions. Therefore, for all nine initial values of
each smoothing function, the newton method converges under
the same number iteration. The w value is utilized to control

TABLE 1. Error and mean of processing time for piecewise function
based on aggregation smoothing function.

Initial Mu Max Final Root Error Mean
value Iterati  Iterati of
on on process
ing
Time
()]
1 0.002 10 2 0.54649 1.1102e-16 0.0001
5592
3 0.002 10 2 0.54649 3.3307e-16 0.0001
6681
5 0.002 10 2 0.54649 5.5511e-16 0.0001
2777
8 0.002 10 2 0.54649 1.2212e-15 0.0002
9067
9 0.002 10 2 0.54649 3.3307e-16 0.0000
771
10 0.002 10 2 0.54649 1.5543e-15 0.0004
1228
30 0.002 10 2 0.54649 1.9984e-15 0.0001
0595
80 0.002 10 2 0.54649 1.5765¢e-14 0.0001
2448
700 0.002 10 2 0.54649 1.5543e-15 0.0002
49

TABLE 2. Error and mean of processing time for piecewise function
based on fischer burmeister smoothing function.

Initial Mu Max Final Root Error Mean
value Tterati  Iterati of
on on process
ing
Time
)
1 0.002 10 3 0.6250 0 0.0004
788
3 0.002 10 3 0.6250 0 0.0002
1132
5 0.002 10 3 0.6250 0 0.0001
0656
8 0.002 10 3 0.6250 0 8.51E-
05
9 0.002 10 3 0.6250 0 9.22E-
05
10 0.002 10 3 0.6250 0 0.0001
7688
30 0.002 10 3 0.6250 0 0.0002
3143
80 0.002 10 3 0.6250 1.42109¢-14 0.0001
1268
700 0.002 10 3 0.6250 0 0.0001
1561
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TABLE 3. Error and mean of processing time for piecewise function
based on proposed AFB smoothing function.

Initial Mu Max  Final Root Error Mean
value Iterati  Iterat of
on ion proces
sing
Time
()]
1 0.002 10 3 0.6250 0 6.93E-
05
3 0.002 10 3 0.6250 -3.333470e-  0.0001
16 03065
5 0.002 10 3 0.6250 0 8.39E-
05
8 0.002 10 3 0.6250 0 8.75E-
05
9 0.002 10 3 0.6250 0 8.61E-
05
10 0.002 10 3 0.6250 0 9.43E-
05
30 0.002 10 3 0.6250 0 8.57E-
05
80 0.002 10 3 0.6250 0 0.0001
24405
700 0.002 10 3 0.6250 0 9.57E-
05

TABLE 4. Error and mean of processing time for piecewise function
based on #1smoothing function.

Initial Mu Max  Final Root Error Mean
value Iterati  Iterat of
on ion proces
sing
Time
()]
1 0.002 10 3 0.0199 1.1102e-16  0.0035
3 0.002 10 3 0.0199 0 0.0036
5 0.002 10 3 0.0199 1.1102e-16 ~ 0.0038
8 0.002 10 3 0.0199 0 0.0043
9 0.002 10 3 0.0199 0 0.0022
10 0.002 10 3 0.0199 0 0.0022
30 0.002 10 3 0.0199 0 0.0021
80 0.002 10 3 0.0199 0 0.0022
700 0.002 10 3 0.0199 1.1102¢-16 ~ 0.0031

TABLE 5. Error and mean of processing time for piecewise function
based on 92 smoothing function.

Initial Mu Max Final Root Error Mean
value ITterati  Iterat of
on ion proces
sing
Time
)]
1 0.002 10 3 0.8000 0 0.0045
3 0.002 10 3 0.8000 3.5527e-15  0.0033
5 0.002 10 3 0.8000 0 0.0035
8 0.002 10 3 0.8000 3.5527e-15  0.0042
9 0.002 10 3 0.8000 0 0.0036
10 0.002 10 3 0.8000 0 0.0023
30 0.002 10 3 0.8000 0 0.0049
80 0.002 10 3 0.8000 0 0.0033
700 0.002 10 3 0.8000 0 0.0029

the smoothness in all function domains, or it can defined
as the certain value at the breaking points of {—0.4, 0.4}. In
this work, the value of © was selected as 0.002 as the u >0
can offer better smoothing in each of the three smoothing
functions. In order to show that the proposed smoothing
function of this study has lower computational time com-
pared to the other two mentioned smoothing functions, in
this work we examine the processing times of the algorithm
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TABLE 6. Error and mean of processing time for piecewise function
based on 93 smoothing function.

Initial Mu Max Final Root Error Mean
value Tterati  Tterat of
on ion proces
sing
Time
©)
1 0.002 10 3 0.4800 1.1102e-16  0.0034
3 0.002 10 3 0.4800 -3.3307e-16  0.0003
5 0.002 10 3 0.4800 0 0.0024
8 0.002 10 3 0.4800 1.1102e-16  0.0024
9 0.002 10 3 0.4800 5.5511e-16  0.0032
10 0.002 10 3 0.4800 -3.3307e-16  0.0041
30 0.002 10 3 0.4800 5.5511e-16  0.0022
80 0.002 10 3 0.4800 9.2149¢-15 0.0025
700 0.002 10 3 0.4800 3.6415e-14  0.0028

TABLE 7. Error and mean of processing time for piecewise function
based on ¢4 smoothing function.

Initial Mu Max Final Root Error Mean
value Tterati  Iterat of
on ion proces
sing
Time
®)
1 0.002 10 3 0.1600 8.8818e-16 0.0029
3 0.002 10 3 0.1600 0 0.0042
5 0.002 10 3 0.1600 2.6645¢e-15 0.0027
8 0.002 10 3 0.1600 5.3291e-15 0.0029
9 0.002 10 3 0.1600 1.0658e-14 0.0033
10 0.002 10 3 0.1600 7.9936e-15 0.0026
30 0.002 10 3 0.1600 -3.1974e-14  0.0021
80 0.002 10 3 0.1600 4.2366e-13 0.0026
700 0.002 10 3 0.1600 -3.3955¢e-11  0.0024

for each initial value thirty times as these values are variant.
Afterwards, calculate the mean for each of the nine initial
values.

Moreover, in this study, we applied another four smoothing
functions {@1, #2, #3, ¥4} which are obtained from [19], [20]
to demonstrate the superiority of proposed AFB smoothing
function. The parameter setting of initial values, number of
iteration, tolerance value, and the smoothing value of u is set
as the same as three smoothing functions of AGG, FB, and
Proposed AFB functions.

This part is providing the numerical results of proce-
dure of smoothing Newton algorithm in 1 for solving
the non-differentiability of the piecewise objective function
of this study (13). All experiments are conducted based
on MATLAB codes. First, we demonstrated the compari-
son between the proposed technique with the other tech-
niques of AGG and FB functions individually. The results
of this study are in agreement with the numerical verifi-
cation by amalgamating two smoothing functions. It also
further emphasizes the importance of addressing the non-
differentiability issue of the canonical piecewise objective
function. With regards to strengthening the effectiveness
of our proposed AFB technique besides comparing with
single AGG, and FB alone we also utilized another four
smoothing functions of {1, @2, #3, #4} which are obtained
from [19], [20].
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The experimental result of this study verified that the mean
error value for AGG and FB, proposed AFB, #1, 2, #3, and
@4 functions are 2.60E-15, 1.58E-15, —3.70E-17, 1.23E-17,
7.89E-16, 5.14E-15, and —3.73E-12, respectively. Whereas
the mean of computational time are 0.00019, 0.0001789,
9.2219E-05, 0.0030, 0.0036, 0.0026, and 0.0029, subse-
quently. Based on the obtained results, we can conclude that
the proposed AFB technique outperforms the other recent
six functions of AGG, FB, @1, #2, ¢#3, and ¥4 in terms of
computational time and error. This large reduction on mean
error value is not unexpected, considering the fact that the
proposed AFB is designed to address the non-differentiability
issue by smoothing the secant line slope on both sides. In
addition, there is also a significant reduction in the processing
time as compared to AGG, FB, #3, #4, (1, and ()2 technique
respectively.

Tables 1, 2, 3, 4, 5, 6, 7 are showing the error
and mean of processing time for piecewise function
based on AGG, FB, proposed AFB, @1, ¢2, #3, and

TABLE 8. Comparison of error and mean of processing time between
smoothing functions of aggregation, Fischer Burmeister, proposed AFB,
91, 92, 93, and ¢4.

No Smoothing Function Mean of Error Mean
of
Proces
sing
Time
, (S)
1 Aggregation 2 60E-15 0.0;)01
2 Fischer Burmeister 1.58E-15 0.0001
789
3 Proposed AFB -3.70E-17 9.2219
E-05
4 [} 1.23E-17 0.0030
5 0, 7.89E-16 0.0036
6 D3 5.14E-15 0.0026
7 0, -3.73E-12 0.0029

Comparison of Processing Time Between The Smoothing Functions
of Aggregation, Fischer Burmeister, Proposed AFB, @1, (2, @3, and
o

180814 1
1.60E-14 o, 0 35E-11
[ ]
140E-14 N '.‘ ORI e AGG
120E-14 :° ‘,:' 2511 s AFB
100E-14 : ’.'- Wl ~—FB
8.0E-15 N T Q‘
6.00E-15 v . g =
400E-15 e
] . = IQ3

200E-15 o vy ER

0000, %0 el (4

0.00E400 WM&# 0

200815 1 3 5 8 9 10 30 8 700 SED
Initial Value

FIGURE 5. The comparison of error between seven smoothing functions
of AGG, FB, proposed AFB, §1, 92, #3, and 04.
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Comparison of Processing Time Between The Smoothing Functions
of Aggregation, Fischer Burmeister, Proposed AFB, 61, @2, #3, and

o4
0.006
0.005
R 1nnn AGG
£ 0.004
g === FB
'.;: 0.003 m AFB
g — ()]
Ah- L = )
0.001 =M
— (4

Initial Value

FIGURE 6. The comparison of processing time between seven smoothing
functions of AGG, FB, proposed AFB, ¢1, §2, 93, and ¢4.

?#4 smoothing functions respectively. A comparison of
the error and mean of computational time for these
seven smoothing functions are demonstrated in Table VIII,
Fig.5 and Fig.6.

A. EVALUATION METRICS
Newton method is a technique that approximates the real
zeros of the function by using the tangent line. The root value
(solution) is zero of the tangent line. The solution of the
function is shown in (37).
— f(_c,) (37)

()
where c;;+1 and ¢; are the solutions and initial value respec-
tively, f(c;) is the piecewise objective function of this study,
and the f’ (¢;) is the derivative of the piecewise objective
function. If the value of f (¢;) is equivalent to zero so the ¢; is
an exact solution for f (¢) = 0. So, the algorithm provides an
equal value for c¢;y1 and c;.

The error is utilized to discover the alteration among the
obtained estimated value and the initial value that is antic-
ipated. A smaller error value indicates that the smoothing
function is more accurate and trustworthy. The error value
is indicated in (38).

Ci+1 = Ci

Error = ciy1 — ¢ (38)

The parameters c; 1 and c; values are the same as the finding
solution of the piecewise function.

V. CONCLUSION

We had studied the AVE linked with the piecewise objec-
tive function, which caused the non-differentiability in some
particular points of the function. As the objective function
plays a vital role in the performance of the algorithms,
the construction of an appropriate approximate smooth-
ing function is beneficial to obtain an approximate smooth
problem.
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Therefore, this study proposed a new AFB approach
based on an amalgamation of smoothing techniques namely,
Aggregation (AGG) and Fischer-Burmeister (FB) function.
The aim is to have more control over computational time and
make the secant line slope of right and left side of the function
to be equivalent. These functions are able to estimate the least
of the function from the left and right sides. Moreover, the
proposed technique can be able to improve the performance
of the algorithm by smoothing the non-differentiable points
of the function.

The proposed amalgamation smoothing function with
proper properties is effective to build a precise smoothing
Newton algorithm to tackle the AVE issue in the piecewise
objective function of this study. The numerical results of this
work showed that the solution of the real zeros values of the
objective function based on the proposed technique is closer
to zero which outperforms the other six techniques of AGG,
FB, ¢1, #2, 3, and /4.
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