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ABSTRACT The advanced driving assistant system (ADAS) is an important vehicle safety technology
that can effectively reduce traffic accidents. This system can perceive information about the surrounding
environment through in-vehicle cameras. However, these cameras are easily affected by severe weather
conditions, such as those involving fog, rain, and snow. The quality of the images acquired by the system
is degraded, and the function of the ADAS is thus weakened. In response to this problem, we propose a
comprehensive imaging model that can represent the features of fog, rain streaks, raindrops and snowflakes
in an image. Subsequently, an algorithm called RASWNet is proposed, which can remove all severe weather
features from a degraded image. Based on the generative adversarial network, RASWNet combines the focus
capture ability of a visual attention mechanism, the memory ability of the recurrent neural network and the
feature extraction ability of the dense blocks approach. We verify the network structure through several
ablation studies and use various synthetic and real images to test it. The results of these experiments show
that our algorithm is not only better than the commonly used algorithms in terms of its clarity enhancement
capacity but is also suitable for all severe weather conditions.

INDEX TERMS Generative adversarial network, remove all severe weather features, degraded image,
RASWNet, visual attention mechanism.

I. INTRODUCTION
With the continuous increase in car ownership, the traf-
fic safety situation is becoming increasingly serious.
To improve driving safety, the ADAS market has been grow-
ing rapidly [1]–[4]. The four types of ADAS sensors are
LIDAR, radar, cameras and ultrasonic sensors [1]. These
sensors can detect the surrounding environment and obtain
all types of information needed by the system. However,
these sensors are costly, and they require continuous mainte-
nance and complex synchronization for the fusion of different
sources of data [1]. Because vision is the most important
perception of human beings, similarly, the camera is the most
important perception component of an ADAS. Thus, we use
images collected by a low-cost in-vehicle monocular camera
as our research object to remedy these limitations.
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However, the ability of in-vehicle cameras to detect the
surrounding environment is easily affected by severe weather
conditions, such as fog, rain, and snow. For example, the pres-
ence of fog can considerably reduce the visibility and contrast
of the images collected by the cameras in addition to blurring
the details. Raindrops or snowflakes move and fall rapidly
in the air, which will lead to partial occlusion or blurring
of the images. More specifically, the raindrops that adhere
to the windshield or camera lens will reflect light from
other areas, thereby degrading the images [5]. Consequently,
the degradation of images caused by fog, rain and snow will
not only reduce the driver’s response speed but also weaken
the functioning of the ADAS.

Currently, there are many clarity enhancement algorithms
for a single image degenerated by severe weather conditions,
such as dehazing algorithms [6]–[9], rain streak removal algo-
rithms [10]–[12], raindrop removal algorithms [5], [13] and
snow removal algorithms [14], [41]. Simultaneously, there
are some clarity enhancement algorithms for two types of
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severe weather conditions, such as deraining and desnowing
algorithms [15]–[18] and rain streaks and mist removal algo-
rithms [33], [40]. If the algorithms are used in anADAS, there
are two challenges. The first challenge is how to recognize
the current weather condition before using the algorithm.
Weather recognition requires expensive equipment, which
will strongly increase the cost of the car. The second chal-
lenge is that a weather recognition error will lead to a failure
in the clarity enhancement. For example, if a rainy image
is recognized as a foggy image, the defogging algorithm
cannot remove the rain streaks and raindrops, and vice versa.
In summary, we need an algorithm that can remove all of the
severe weather features from a degraded image. The algo-
rithm would be used not only in ADAS, driverless vehicles
but also in intelligent monitoring, unmanned aerial vehicles
(UAVs) and other fields.

In addition, for the images collected in severe weather
conditions, researchers have proposed a variety of imaging
models. Although these models are effective, there are still
two problems: the first is the lack of uniform standards
in addressing the masks of fog, rain streaks, raindrops and
snowflakes; the second is the lack of a comprehensive severe
weather imaging model. In summary, when we combine all
types of degraded images collected in severe weather condi-
tions together for processing, we must build a comprehensive
imaging model. Hence, the contributions of our paper are as
follows:

The first contribution is that we propose an algorithm
called RASWNet, which can remove all severe weather fea-
tures from a degraded image. Based on the generative adver-
sarial network (GAN), it can use the dense blocks to extract
the severe weather features, the visual attention mechanism
to capture the regions of the features, and the recurrent neural
network (RNN) to remember these regions. It can automati-
cally locate and remove the fog, rain streaks, raindrops and
snowflakes in an image, and it has excellent clarity enhance-
ment results.

The second contribution is that we propose a comprehen-
sive imaging model that reflects all types of severe weather
features. The model unifies the masks of fog, rain streaks,
raindrops and snowflakes, which not only conforms to the
imaging situation of single severe weather conditions but also
conforms to the imaging situation of multiple severe weather
conditions.

This paper is organized as follows. Section I describes
the research background and significance. Section II briefly
reviews the related work. Section III describes the com-
prehensive imaging model. Section IV proposes RASWNet.
Section V describes the datasets used. Section VI describes
the experimental research, and Section VII provides the con-
clusions.

II. RELATED WORK
The research content of this paper involves image defogging,
image deraining and desnowing, and severe weather imaging
models. This section introduces the relevant research studies

for these three aspects. The traditional defogging algorithm
mainly uses image restoration technology based on a variety
of prior studies [6]–[9], while the rain and snow removal
algorithms are mainly based on image decomposition tech-
nology [19]–[21]. The results of these algorithms are gen-
erally not as good as those based on deep learning (DL).
Consequently, the algorithms introduced in this section are
based on DL.

A. IMAGE DEFOGGING
Image defogging algorithms based on DL involve the pro-
cess of training a deep neural network to make the defog-
ging image continuously approach the ground truth image.
According to the different network structures, they can be
divided into two types: defogging by using a convolutional
neural network (CNN) and defogging by using a GAN.

The first is defogging by using a CNN. In 2016,
Cai et al. [22] designed an end-to-end CNN model
(DehazeNet). It took a hazy image as input and outputted
its medium transmission map, which was subsequently used
to recover a haze-free image via an atmospheric scattering
model. In 2017, Li et al. [23] proposed an all-in-one net-
work (AOD-Net) based on a CNN, which was a lightweight
CNN model and could be easily embedded in an object
detection algorithm. In 2018, Ren et al. [24] proposed an
end-to-end gated fusion network (GFN), which was com-
posed of an encoder and a decoder. The experimental results
were better than those of other mainstream algorithms, but
it could not remove thick fog. Ancuti et al. [25] collected
two hazy image benchmark datasets for related research. The
I-HAZE dataset contained 35 scenes corresponding to indoor
domestic environments, with objects with different colors and
specularities. O-HAZE contained 45 different outdoor scenes
depicting the same visual content recorded in haze-free and
hazy conditions under the same illumination parameters.
Song et al. [26] proposed a novel Ranking-CNN. In this net-
work, a novel ranking layer was proposed to extend the struc-
ture of CNN such that the statistical and structural attributes
of hazy images could be simultaneously captured. In 2019,
Yeh et al. [27] proposed a deep learning-based architec-
ture (denoted by MSRL-DehazeNet) for single-image haze
removal relying on multiscale residual learning (MSRL) and
image decomposition. They reformulated the dehazing prob-
lem as restoration of the image base component.

The second is defogging by using a GAN. In 2018,
Zhang et al. [28] proposed a densely connected pyra-
mid dehazing network (DCPDN) that used a new
edge-preserving densely connected encoder-decoder struc-
ture with a multilevel pyramid pooling module for estimating
the transmissionmap. In 2019, Dudhane et al. [29] proposed a
dehazing network by using a cycle-consistent GAN (CDNet),
which consisted of an encoder-decoder architecture that was
used to estimate the transmission map and restore the haze-
free scene. Qu et al. [30] proposed an enhanced pix2pix
dehazing network (EPDN). First, the discriminator guided the
generator to create a pseudo realistic image on a coarse scale,
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and then the enhancer following the generator was required
to produce a realistic dehazing image on a fine scale.

In general, the defogging results of these algorithms are
good. However, they can only be used to remove fog or haze
from a single image, not rain or snow.

B. IMAGE DERAINING AND DESNOWING
Similar to the image defogging algorithms, the image derain-
ing and desnowing algorithms can also be divided into two
types: deraining and desnowing by using a CNN and derain-
ing and desnowing by using a GAN.

The first type is deraining and desnowing by using a CNN.
In 2017, Fu et al. [31] introduced a deep network architecture
called DerainNet for removing rain streaks from an image.
It had two characteristics: the network layers were not deep,
and it was trained on a detailed (high-pass) layer. The exper-
imental results showed that the algorithm was effective and
fast. In 2018, Li et al. [32] proposed a nonlocally enhanced
encoder-decoder network for single-image deraining, which
was composed of a series of nonlocally enhanced dense
blocks. It could not only remove rain streaks of various
densities but also effectively preserve similar linear details.
Liu et al. [14] proposed a context-aware deep network called
DesnowNet to remove translucent and opaque snow particles.
These researchers also differentiated the snow attributes of
translucency and chromatic aberration for accurate estima-
tion. In 2019, Yang et al. [33] proposed a joint rain detection
and removal algorithm based on a CNN, which could remove
a large number of rain streaks andmist via a contextual dilated
network. The experimental results showed that the algorithm
had a good effect on heavy rain images. Pei et al. [34]
proposed a novel network architecture named multiweather
network (MWNet), which could improve the performance of
the on-board object detection system under extreme weather
conditions. However, it could only recognize good weather
and bad weather, and it could not enhance the clarity of the
image. Ren et al. [35] proposed a progressive recurrent net-
work (PReNet), which notably reduced network parameters
with unsubstantial degradation in deraining performance. The
experiments showed that the PReNet performed favorably on
both synthetic and real rainy images. Wang et al. [36] pro-
posed a novel spatial attentive network (SPANet) that could
learn to identify and remove rain streaks in a local-to-global
spatial attentive manner. Extensive evaluations demonstrated
the superiority of the proposed method over the state-of-the-
art derainers. Fu et al. [37] proposed a lightweight pyramid
of networks (LPNet) for single-image deraining. By using
the pyramid to simplify the learning problem and adopting
recursive blocks to share parameters, LPNet had fewer than
8K parameters while still achieving good performance. In
2020, Jiang et al. [38] explored the multi-scale collabora-
tive representation for rain streaks from the perspective of
input image scales and hierarchical deep features in a unified
framework, termed multi-scale progressive fusion network
(MSPFN) for single image rain streak removal. Experimental
results on several synthetic deraining datasets and real-world

scenarios showed great superiority of their proposed MSPFN
algorithm over other top-performing methods.

The second type of algorithm is deraining and desnow-
ing by using a GAN. In 2018, Qian et al. [5] proposed
an attention generative network (ATT-GAN) for raindrop
removal from a single image, which used the visual attention
mechanism to make the generative network learn the rain-
drop regions and their surroundings, and the discriminative
network could evaluate the local consistency of the recovery
area. In 2019, Zhang et al. [39] proposed an image-deraining
conditional GAN (ID-CGAN) algorithm, which used a new
loss function to reduce the artifacts produced by the GAN,
and they designed a multiscale discriminator to improve the
ability to distinguish real and fake images. Li et al. [40] pro-
posed a 2-stage network: a physics-based backbone followed
by a depth-guided GAN refinement. Extensive experiments
showed that their method outperformed the state of the art
algorithms on real rain image data, recovering visually clean
images with good details. Li et al. [41] proposed a snow
removal composition GAN (SR-CGAN), which comprised
a clean background module and a snow mask estimation
module. The former aimed to generate a clear image from
an input snowy image, and the latter was used to produce the
snow mask in an input image. The experiments showed that
the snow removal results of this algorithm were better than
those of other similar algorithms.

In summary, some of these algorithms can remove rain
streaks [31], [32], [35]–[39], some can remove raindrops [5],
some can remove snowflakes [14], [41], and some can remove
rain streaks and mist [33], [40], but there is no algorithm that
can remove fog, rain streaks, raindrops and snowflakes from
an image.

C. SEVERE WEATHER IMAGING MODELS
In view of the various image degradation types in severe
weather conditions, researchers have proposedmany imaging
models. These models are described as follows:

The first imaging model is for foggy images, and the
commonly used atmospheric scattering model [30], [42], [28]
is as follows:

I = t � B+ A(1− t) (II.1)

where I is the degraded image by fog, B is the fog-free
scene image, t is the medium transmission map, and A is the
global atmospheric light value. Here,� denotes elementwise
multiplication, where t ∈ [0, 1], t = 0 means that the fog
concentration is maximum, the scene is completely invisible,
and the image shows the atmospheric light value I = A; t = 1
means that there is no fog, the scene is completely visible, and
I = B; the values from 0 to 1 indicate changes in the medium
transmission, and the larger the value of t is, the higher the
visibility of the scene is.

The second imaging model is for images with rain streaks;
Li et al. [43] proposed the following model:

I = B+ R (II.2)
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where I is the original image with rain streaks, B is the clean
background scene, and R is the component image of the rain
streaks. The clean background scene B can be obtained by
subtracting the rain streaks component R from the image I .
The third imaging model is for images with snowflakes;

Liu et al. [14] proposed the following model:

I = (1−MS )� B+MS � S (II.3)

where I represents the original image with snowflakes, B rep-
resents the snow-free image, and S represents the component
image of the snowflakes. MS is a snowflake mask, which
indicates the transparency of the snowflakes in the image.
Here, MS ∈ [0, 1]. MS = 0 means no snowflakes, the scene
is completely visible, and I = B; MS = 1 means that only
snowflakes can be seen, the scene is completely invisible,
and I = S; the values from 0 to 1 mean that the snowflakes
are translucent, and the smaller the value is, the higher the
visibility of the scene is.

The fourth imaging model is for images with raindrops;
Qian et al. [5] proposed the following model:

I = (1−MD)� B+ D (II.4)

where I represents the original image with raindrops, B rep-
resents the background image, and D is the effect brought
by the raindrops, which represents the complex mixture of
the background information and the light reflected by the
environment and passing through the raindrops that adhere
to a lens or windscreen [5]. Here, MD is a raindrop mask
that represents the binary state of the raindrop region in the
image. When MD = 1, the background is completely invisi-
ble, and I = D; when MD = 0, the raindrops overlay on the
completely visible background, and I=B+D.

III. COMPREHENSIVE IMAGING MODEL
The four imaging models described in Section II.C are effec-
tive when processing image degradation caused by a certain
severe weather condition, but there are two challenges when
processing degraded images caused by combinations of vari-
ous severe weather conditions.

The first problem is the lack of uniform standards in
addressing the mask problems of fog, rain streaks, raindrops
and snowflakes. The mask is the transparency of the image in
the fog, rain streak, raindrop and snowflake regions, which is
represented by t , MR, MD andMS , respectively.
First, there is no rain streak mask MR in (II.2) when

processing an image with rain streaks. The authors [43]
thought that, in the rain streak region, the pixel intensity of
the background image B did not decrease when overlaid on
rain streaks. However, it is weakened in the actual image, as
shown in Fig. 1(a). The intensity of the red exterior wall in
the black box (rain streak region) of the right figure is weaker
than that in the white box (no rain region). It can be seen that
the rain streak has an impact on the intensity of the image
background, and the impact degree varies with the location.
Therefore, it is unreasonable not to set the rain streak mask
MR in (II.2).

FIGURE 1. Influence of fog, rain streak, raindrop and snowflake regions
on the image. (a) The details of the rain streak region, (b) The details of
the raindrop region, (c) The details of the snowflake region, (d) The
details of the fog region.

Second, when processing an image with raindrops, (II.4)
indicates that, when the raindrop mask MD is 0, the back-
ground is visible without attenuation. However, this expecta-
tion is not the case in the actual image, as shown in Fig. 1(b).
The intensity of the blue windows in the black box (the
raindrop region) is weaker than that of the blue windows in
the white box (the nonraindrop region). Therefore, it can be
seen that, in (II.4), it is unreasonable to set the raindrop mask
MD as a binary number.

Third, when processing an image with snowflakes, accord-
ing to (II.3), when the snowflakemaskMS is between 0 and 1,
there is translucency. The smaller the value is, the higher
the background visibility is, as shown in Fig. 1(c). The gray
floor tiles in the black box of the right figure are located
in the snowflake region (the reflection of a snowflake), and
the intensity value of the floor tiles is weaker than that of
the snow-free region in the white box. Therefore, (II.3) is
reasonable.

Finally, when processing a foggy image, according to
(II.1), when the transmission map t is between 0 and 1,
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there is translucency. The larger the value is, the higher the
background visibility is, as shown in Fig. 1(d). The streetlight
in the black box of the left figure is clearly visible, but the
streetlights in the red box enlarged in the right figure are
faintly visible. Because the former is nearer, t is larger; the
latter is farther away, and t is smaller. Therefore, (II.1) is
reasonable.

In summary, the intensity values of the background scenes
in the fog, rain streak, raindrop and snowflake regions are all
weakened; thus, the mask factors t , MR, MD and MS must
be considered when establishing the imaging model. With
reference to (II.3), we change the rain streak imaging model
from (II.2) to (III.1), and we change the raindrop imaging
model from (II.4) to (III.2). The expressions are as follows:

I = (1−MR)� B+MR � R (III.1)

I = (1−MD)� B+MD � D (III.2)

The second problem is the lack of a comprehensive imag-
ing model of severe weather conditions. We must build an
imaging model to address the above four types of severe
weather conditions together.

By combining (II.1), (II.3), (III.1) and (III.2), we can obtain
a comprehensive imagingmodel of severe weather conditions
as follows:

I = t � (1−MR)� (1−MS )� (1−MD)� B

+A(1− t)+MR � R+MS � S +MD � D (III.3)

If there is only one severe weather condition, (III.3) can be
directly converted into (II.1), (II.3), (III.1) or (III.2). If there
are multiple severe weather conditions, such as rain streaks
and raindrops in an image, then the mask isMR andMD, and
image I = (1−MR)� (1−MD)� B+MR � R+MD �D.
Because of the influence of (1-MR)�(1-MD), the intensity of
the background scene located in both the raindrop and rain
streak regions will be weaker than the single raindrop or rain
streak region. If we place background B on the left side of the
equal sign, (III.3) is transformed as follows:

B =
I − A(1− t)−MR � R−MS � S −MD � D

t � (1−MR)� (1−MS )� (1−MD)
(III.4)

According to (III.4), the background scene B can be
obtained to remove the severe weather features. Note that t
cannot be 0 and thatMR,MD andMS cannot be 1. They repre-
sent that the background is completely occluded. At this time,
B should be 0. Except for the image I , all of the variables on
the right side of the equation are unknown, which is a typical
ill-posed problem. If we estimate the atmospheric light value
A, rain streak R, snowflake S, raindrop D and each mask and
then combine them into a clean background scene B, there
will be a large cumulative error, and the generated B will be
distorted. Consequently, we take the right side of (III.4) as
a whole and design a deep neural network. By training the
network, the loss value tends to the minimum (i.e., the image
with removal of all severe weather features is closer to the
ground truth image), and a clean background scene image B
can be obtained.

FIGURE 2. Overall structure of RASWNet.

IV. RASWNET
To obtain a clear image in any severe weather condition,
we propose an algorithm called RASWNet that can remove
all severe weather features from a degraded image. It is based
on the GAN, and it uses the technology of the visual attention
mechanism, the RNN and the CNN. The overall structure of
RASWNet is shown in Fig. 2. It can be seen that RASWNet
consists of a generator and a discriminator. The generator
consists of an AttDenseGRU network and a Stacked autoen-
coder network. The input severe weather image is sent to the
AttDenseGRU, which uses dense blocks and gated recurrent
units (GRUs) to generate attention maps, and it outputs the
last attention map to the Stacked autoencoder. The Stacked
autoencoder sends the generated image to the discriminator,
and the discriminator can distinguish whether the image is
real or fake. The generated image also participates in the
calculation of the loss function. As a label, the ground truth
image is sent to the AttDenseGRU, the Stacked autoencoder
and the discriminator. In addition, it is used to calculate the
loss function.

A. ATTDENSEGRU NETWORK
The AttDenseGRU network is a structure that combines the
CNN and the RNN. Its purpose is to locate the regions of
severe weather features from the input image (including fog,
raindrop, rain streak or snowflake) that need to be removed
and the pixels around them. It can generate the attention maps
that highlight the regions that must be removed in the image.
On the one hand, the attention map is the reference of the
Stacked autoencoder to remove fog, rain streaks, raindrops
and snowflakes. On the other hand, it is one of the parame-
ters of the loss function of the Stacked autoencoder and the
discriminator. The overall structure of the AttDenseGRU is
shown in Fig. 3.

It can be seen that an AttDenseGRU consists of three
network parts with the same structure, and each of them
is composed of five dense blocks, one GRU and one Conv
layer. The input image is sent to the first network part to
generate attention map 1. Subsequently, attention map 1 and
the input image are concatenated into the second network part
to generate attention map 2. Finally, attention map 2 and the
input image are concatenated into the third network part to
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FIGURE 3. Overall structure of the AttDenseGRU network. Conv is a
convolution layer. Filter concat is a filter concatenation layer. The
parameters of the Conv layer are (Width of filters)×(Height of
filters)×(The number of filters). The structure of the AttDenseGRU is on
the left, and the internal structure of a dense block is on the right.

generate attention map 3. In the network, three GRUs are
also connected in sequence, thus forming an RNN structure.
The most commonly used RNN unit is the long short-term
memory (LSTM) unit [44], but its structure is complex. Thus,
theGRU,which is simpler than the LSTM, is adopted as a unit
of the RNN. The memory ability of the GRU will gradually
improve the attention level through each network part. The
regions of fog, raindrops, rain streaks and snowflakes to be
removed become more and more highlighted in the attention
map. The changes of the highlighted fog regions of attention
maps 1 to 3 can be seen in Fig. 3. The function of a Conv layer
is to generate an attention map. Before training the network,
the initial value of the attention map is set to 0.5.

The internal function of the convolution GRU [45] is real-
ized by (IV.1). One GRU consists of an update gate zt , a reset
gate rt , a new hidden state H̃t and a hidden state Ht . In this
instance, ∗ is the convolution operation, σ is the Sigmoid
function, tanh is the Hyperbolic tangent function, and b is
the bias value. The first expression is the update gate zt;
it executes convolutions of the input Xt and the previous
hidden stateHt−1 in sequence, and then it performs nonlinear
processing with a Sigmoid function, where zt ∈ (0,1). It can
be seen from the fourth expression that, the smaller the value
of zt is, the smaller the proportion of Ht−1 is, and the larger
the proportion of H̃t is. The second expression is the reset
gate rt ; its calculation is similar to the update gate, where
rt ∈ (0,1). It can be seen from the third expression that, in the
calculation of H̃t , rt determines the proportion of the previous
hidden state Ht−1. The smaller the value of rt is, the smaller
the proportion of Ht−1 is.

zt = σ (Wz ∗ Xt + Uz ∗ Ht−1 + bz)

rt = σ (Wr ∗ Xt + Ur ∗ Ht−1 + br )

FIGURE 4. Structure of the Stacked autoencoder network. Conv is a
convolution layer. DilConv is a dilated convolution layer. DeConv is a
deconvolution layer. The parameters of the Conv, DilConv and DeConv
layers are (Width of filters)×(Height of filters)×(The number of filters).

H̃t = tanh(Wh ∗ Xt + Uh ∗ (rt � Ht−1)+ bH )

Ht = (1− zt )� H̃t + zt � Ht−1 (IV.1)

The right side of Fig. 3 shows the internal structure of a
dense block. Each block consists of two 3×3×8 Conv layers,
two 1 × 1 × 8 Conv layers and three Filter concat layers.
The dense block can not only reduce the number of network
parameters and calculations but also ensure the ability of
feature extraction.

The loss function LADG(A,C) of the AttDenseGRU is
shown in Fig. 3 and (IV.2). In this instance, A is the attention
map, C is the ground truth image, n = 3 is the number of
attention maps, φ = 0.9 is the base number of the coefficient,
and At (t = 1,2,3) denotes the attention maps 1 through 3. It
can be seen that the loss function LADG(A,C) calculates the
mean square error (MSE) between each attention map and
the ground truth image, multiplies them by 0.93−t and sums
the three products. When t changes from 1 to 3, the 0.93−t

coefficient changes from 0.92, 0.91 to 1, which is the weight
of each attention map, which indicates that the preceding
attention map has less influence on the loss function and that
the subsequent attention map has more influence.

LADG(A,C) =
n∑
t=1

ϕn−tLMSE (At ,C) (IV.2)

B. STACKED AUTOENCODER NETWORK
The input of the Stacked autoencoder network concatenates
the input image and attention map 3, and the output is the
generated image, as shown in Fig. 4. A Stacked autoencoder
consists of eight Conv layers, four DilConv (dilated convo-
lution) layers and two DeConv (deconvolution) layers. The
initial size of the filters of DilConv layers is 3 × 3, and
the dilation rate [46] is 2, 4, 8 and 16 in successive order.
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The DilConv layers can make the receptive field expand
exponentially and do not affect the resolution of the image.
According to [47], [48], the two DeConv layers can double
the width and height of the input feature maps. To make
the output feature maps smoother, the average pooling with
unchanged size is used after each DeConv layer. To ensure
that the output image is not distorted, four shortcuts are used
in the network. In other words, the outputs of Conv 1 and
DeConv 2 are added as the input of Conv 8; the outputs of
DilConv 1 and DeConv 1 are added as the input of Conv 7;
the outputs of DilConv 2 and DilConv 4 are added as the input
of Conv 4; and the outputs of Conv 4 and Conv 6 are added
as the input of DeConv 1.

The Stacked autoencoder has two loss functions, which are
the multiscale loss function LM and perceptual loss function
LP, as shown in Fig. 4. In this figure, LM compares the output
of 3× 3× 3 Conv layers 6b, 7b and 8b with the ground truth
image. Because the sizes of the three Conv layers are different
(they are 25%, 50% and 100% of Conv 8, respectively),
the loss function is called the multiscale loss function. The
expression is as follows:

LM ({Y },C) = 0.8LMSE (Y6,
C
4
)+ 0.9LMSE (Y7,

C
2
)

+ 1.0LMSE (Y8,C) (IV.3)

where Y6 and Y7 represent the outputs of Conv 6b and 7b,
respectively, and Y8 is the output of Conv 8b through the
function tanh. Here, C is the ground truth image, and C

4 and
C
2 represent that their sizes are 1

4 and 1
2 of C, which is to

remain consistent with the sizes of Y6 and Y7. LMSE indicates
the mean square error. Here, 0.8, 0.9 and 1.0 are three weight
values, which indicate that the subsequent network layer has
more influence on the loss function.

The perceptual loss function LP, proposed by
Johnson et al. [49], can compare the difference in the feature
maps between the generated image G(I) and the ground truth
image C . Its expression is as follows [49]:

LP(G(I ),C) = LMSE (VGG(G(I )),VGG(C)) (IV.4)

The two imagesG(I) andC are sent to the VGGNet-16 [50]
pretrained model for forward propagation, and then, the first
seven Conv feature maps are extracted. Finally, the MSE of
these feature maps of G(I) and C is calculated.
Combining (IV.2) through (IV.4), the expression of the

generator total loss function LG is obtained as follows [5]:

LG = 0.01× log(1− D(G(I ))+ LADG(A,C)

+LM ({Y },C)+ LP(G(I ),C) (IV.5)

The first item on the right side of the equation is the original
loss function of the GAN generator [51], which is multiplied
by 0.01 to reduce its weight and enhance the role of the next
three loss functions.

C. DISCRIMINATOR
The input of the discriminator is the generated image
O(O = G(I)) or the ground truth image C . It consists of six

Conv layers, one discriminator map, three Filter concat lay-
ers, one global average pooling layer and one FC+Sigmoid
layer. The network structure of the discriminator is shown
in Fig. 5, in which the Conv layers and the Filter concat layers
in the dotted box form a dense block to extract the features of
the input image. The output of the dense block constitutes a
discriminator map. Then, the output of the discriminator map
and the Filter concat layer 3 are multiplied to highlight the
regions of the severe weather features in the feature maps.
Subsequently, the sizes of the feature maps are reduced by
Conv layers 5 and 6, and then the network is flattened by the
global average pooling layer. Finally, regardless of whether
the image is real or fake is discriminated by going through
the FC+Sigmoid layer.

It can be seen from Fig. 5 that the loss function of the
discriminator consists of the output of the ground truth
image or the generated image through the discriminator,
the discriminator map and attention map 3. Its expression LD
is as follows:

LD = − log(D(C))− log(1− D(O))+ LDmap(O,C,A3)

(IV.6)

The first two items on the right side of the equation are
the original loss function of the GAN discriminator [51].
The third item is called the discriminator map loss function
LDmap(O,C,A3), which is related to the generated image O,
the ground truth imageC and attentionmap 3. The expression
of this loss function is as follows:

LDmap(O,C,A3) = LMSE (Dmap(C),Dmap(O))

+LMSE (Dmap(O),A3) (IV.7)

where Dmap(O) or Dmap(C) represents the discriminator map
produced by the generated imageO or the ground truth image
C going through the dense block. The first item on the right
side of the equation represents the MSE of Dmap(C) and
Dmap(O), and the second item represents theMSE ofDmap(O)
and attention map 3. The smaller theMSE values of these two
items are, the smaller the difference between the generated
image, the ground truth image and attention map 3 is.

V. DATASET
The severe weather images mainly include degraded images
caused by fog, rain streaks, raindrops or snowflakes, and
thus, we must collect the corresponding synthetic image
dataset. After collection and arrangement, the foggy images
come from the realistic single image dehazing (RESIDE)
benchmark dataset established by Li et al. [52]. The rain
streak images come from the dataset of Fu et al. [18]; the
raindrop images come from the dataset of Qian et al. [5]; and
the snowflake images come from the Snow100K dataset of
Liu et al. [14].
We select road traffic scene images from the datasets

for the training, validation and testing of the network. Our
severe weather image dataset is shown in Table 1. Note
that a pair of images represents one severe weather image
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FIGURE 5. Network structure of the discriminator. Conv is a convolution layer. Filter concat is a filter concatenation layer. FC is a
fully connected layer. The parameters of the Conv layer are (Width of filters)×(Height of filters)×(The number of filters).

TABLE 1. Our severe weather image dataset. Here, ‘‘-’’ indicates that the
number does not need to be counted.

and one corresponding ground truth image. First, we select
700 pairs of outdoor foggy images from the RESIDE outdoor
training set and 300 pairs of indoor foggy images from the
RESIDE indoor training set. Second, we select 1000 pairs
of rain streak images from the synthetic rain streak image
dataset and 1000 pairs of raindrop images from the raindrop
image dataset. Third, we select 422, 289 and 289 (1000 in
total) pairs of snowflake images from the large, medium and
small snowflakes of the Snow100k testing dataset. Finally,
we establish our dataset by these 4000 pairs of images.

To speed up the training and validation of the network,
it is necessary to convert the images into TFRecord (includ-
ing images and labels), which is the binary data format of
TensorFlow. The image sequence is shuffled by the program.

FIGURE 6. Five pairs of samples in our severe weather image dataset. The
top is the severe weather image, and the bottom is the ground truth
image. (a) Outdoor foggy image, (b) Indoor foggy image, (c) Rain streak
image, (d) Raindrop image, (e) Snowflake image.

Subsequently, 3400 pairs of images are randomly selected
to train, 200 pairs to validate and 400 pairs to test. Among
them, the original images are all adjusted to the JPG format
with 720× 480 size. When the TFRecord files are generated,
the images are resized to 448 × 308. During training and
validation, the images are automatically cropped to 420×280
at random. Finally, the image size can be set independently
during testing, which is 420 × 316 by default. Five pairs
of samples in our severe weather image dataset are shown
in Fig. 6.

VI. EXPERIMENTS
After the severe weather image dataset has been collected,
we must perform experimental research on RASWNet.
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The experiments consist of six parts. Section A is the study
of the Stacked autoencoder to optimize its network struc-
ture. Section B is the ablation study of RASWNet to verify
whether our proposed network model is effective. Section C
shows how RASWNet compares with the other algorithms
regarding the clarity enhancement results of synthetic images.
Section D shows how RASWNet compares with other algo-
rithms regarding the clarity enhancement results of real
images. Section E shows the running time of RASWNet com-
pared with other algorithms. Section F shows the improve-
ment in object detection results after using image clarity
enhancement algorithms.

The settings of the training and validation hyperparameters
are as follows. The initial learning rate is set to 0.0002.
Because the network model is divided into two parts, the dis-
criminator and the generator, the optimizer is different. The
Adam is used in discriminator optimization, and the SGD
with a momentum of 0.9 is used in generator optimization.
To achieve the best training effect, the number of iteration
steps is set to 200,000. The batch size is set to 1, which
is actually a pair of images. The GPU memory fraction
is 81% during training and 75% during validation because
Windows 10 takes up more GPU memory. The PSNR and
SSIM are used to evaluate the image quality during the train-
ing and validation.

A. STUDY OF THE STACKED AUTOENCODER
Before the study, we set the AttDenseGRU as structure A,
the Stacked autoencoder as structure B and the discrimina-
tor as structure C. Among them, structure B is necessary
to make the generated image. Therefore, to eliminate the
interference, only structure B is used in this experiment.
The study of the Stacked autoencoder mainly includes three
aspects: the first is to change the number of DilConv layers,
the second is to change the type of activation functions,
and the third is to change the number of feature maps. We
choose 5 images (20 images in total) from the test set of fog,
rain streaks, raindrops and snowflakes, respectively. Through
these three aspects of study, we verify their impact on the clar-
ity enhancement results and obtain the best network model
of structure B. Their experimental contents are described as
follows:

The first study is to change the number of DilConv layers
in structure B, from 0, 2, 4 to 6. Here, 0 represents that
all DilConv layers in Fig. 4 are replaced by Conv layers;
2 represents that DilConv layers 3 and 4 in Fig. 4 are replaced
by two Conv layers; 4 is consistent with the network in Fig. 4;
6 represents that Conv layers 4 and 5 in Fig. 4 are replaced by
two DilConv layers, and the dilation rate is 2, 2, 4, 8, 16 and
32 in successive order. The average PSNR and SSIM values
of the output images are shown in Table 2. It can be seen that
the PSNR and SSIM values of the four DilConv layers are
the highest, and the clarity enhancement results are not good
when there is no DilConv layer or too many DilConv layers.
Consequently, it is reasonable to use four DilConv layers in
structure B.

TABLE 2. Average PSNR and SSIM values of the output images after we
change the number of DilConv layers in structure B. The red numbers
indicate the best result.

TABLE 3. Average PSNR and SSIM values of the output images after we
change the type of activation functions in structure B. The red numbers
indicate the best result.

TABLE 4. Average PSNR and SSIM values of the output images after we
change the number of feature maps in structure B. The red numbers
indicate the best result.

The second study is to change the type of activation func-
tions in structure B. In addition to the Conv 8b layer, which
keeps the Tanh unchanged, the activation functions in the
network are compared by ReLU, LeakyReLU and Tanh. The
slope of the negative part of LeakyReLU is 0.2. The average
PSNR and SSIM values of the output images are shown
in Table 3. It can be seen that the result of using LeakyReLU
is basically the same as that of using ReLU. The SSIM value
of the former is slightly higher, and the PSNR value of the
latter is slightly higher, while the latter is better because the
operation of the former is more complex. Tanh is the worst
among the three. Consequently, it is reasonable to choose the
ReLU function in structure B.

The third study is to change the number of feature maps in
structure B, from 1/8 (one eighth of the original), 1/4 (a quar-
ter of the original), 1/2 (a half of the original) to the original.
The average PSNR and SSIM values of the output images are
shown in Table 4. It can be seen that the result of the original
number of feature maps is the best, the 1/4 number of feature
maps is second, and the other two are worse. Consequently,
it is reasonable to use the original number of feature maps in
structure B.

B. ABLATION STUDY OF RASWNET
To verify the effectiveness of our proposed RASWNet model,
it is necessary to conduct an ablation study. This study mainly
includes two aspects: the first is to change the number of
network parts that contain GRU in structure A to verify
the impact of the attention map on the clarity enhancement
result; the second is to change the different combinations of
structures A and B and C to verify the impact of each part on
the clarity enhancement result. Their experimental contents
are described as follows:
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FIGURE 7. Result of clarity enhancement after the number of network parts is changed. The four images are fog, rain streak, raindrop and snowflake,
from top to bottom. These images are not used for training. The red numbers indicate the best result. AVE means average. (a) Input, (b) n=2, (c) n=3,
(d) n=4, (e) n=5.

FIGURE 8. Effect of attention maps on the result of clarity enhancement. This is an image of raindrops, and it is not used for training. The red numbers
indicate the best result. (a) Input, (b) Attention map 1, (c) Attention map 2, (d) Attention map 3, (e) Output.

The first ablation study is to change the number of network
parts in structure A. The structure of each network part is
shown in Fig. 3. Each network part generates an attention
map. We use four models to train, validate and test, and the

number of network parts of each model ranges from 2 to 5
(n=2, 3, 4, 5). The generated images and the PSNR and SSIM
values of each model are shown in Fig. 7. It can be seen that
the clarity enhancement result is the best when n = 3.
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FIGURE 9. Result of clarity enhancement after the combination of the three structures is changed. The four images are the same as in Figure 7. The red
numbers indicate the best result. AVE means average. (a) Input, (b) B, (c) A+B, (d) B+C, (e) A+B+C.

FIGURE 10. First comparison of the defogging results of the synthetic images. We selected three foggy images of road traffic scenes from the
RESIDE Outdoor Training Set [52]. They are not used for training. The red numbers indicate the best result. AVE means the average. (a) Input,
(b) DCP [8], (c) BCCR [9], (d) AOD-Net [23], (e) RASWNet.

On this basis, we continue to study the effect of atten-
tion maps on the results of clarity enhancement. We also
trained a model of only one network part (n=1) in structure

A. Subsequently, we compare the three network models of
n = 1 through 3. When n = 1 to 3, structure A outputs
attention maps 1 through 3 to structure B, respectively.
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The attention maps, the generated images and the PSNR
and SSIM values of each model are shown in Fig. 8. It can
be seen that the result of clarity enhancement is the best
when n = 3 and the worst when n = 1. It can be seen from
the attention maps that, when n = 1, the attention of the
model is mainly on the road surface, resulting in incomplete
removal of raindrops in the position of the road surface.When
n = 2, the attention of the model is mainly on the trees, and
the removal of raindrops in the position of the road surface
is better than the model of n = 1. When n = 3, the attention
of the model is basically on the raindrops, so the result is the
best.

The second ablation study is to change the combination
of structures A and B and C. Therefore, there are four com-
binations of network models: B, A+B, B+C and A+B+C.
We use four models to train, validate and test. The generated
images and the PSNR and SSIM values of each model are
shown in Fig. 9. It can be seen that the clarity enhancement
result of the B+C structure is slightly better than that of B,
the A+B structure is better than the former two, and the
result of the A+B+C structure is the best. Consequently, our
proposed network model is effective.

C. SYNTHETIC IMAGES
Because the ground truth images are available for refer-
ence, the clarity enhancement results of the synthetic severe
weather images can be verified from objective aspects. Our
proposed RASWNet will be compared with the image defog-
ging algorithms DCP [8], BCCR [9], DehazeNet [22] and
AOD-Net [23], the rain streak removal algorithms GSM [17],
DDN [18], and ID-CGAN [39], and the raindrop removal
algorithm ATT-GAN [5].

The first comparison of the defogging results of the syn-
thetic images and the corresponding PSNR and SSIM values
are shown in Fig. 10. It can be seen that RASWNet has the
best defogging quality, regardless of the detail or color. The
defogging quality of AOD-Net is common; the removal of the
fog is uneven, but the image color has no obvious distortion.
The blue sky in the defogging images of BCCR is obviously
distorted, the color is too saturated, and thewhite area is larger
than normal. The defogging images of DCP are better than
those of BCCR in the color of the blue sky, but the road color
is darker. From the average values of the PSNR and SSIM,
we can see that RASWNet is the best, BCCR is second in the
PSNR, and DCP is second in SSIM.

To further test the effectiveness of the image defogging
function of RASWNet, we also need to test it on the other
dataset. The selected dataset is the O-HAZE dataset of the
NTIRE 2018 Challenge on Image Dehazing [25]. The second
comparison of the defogging results of the synthetic images
and the corresponding PSNR and SSIM values are shown
in Fig. 11. It can be seen that RASWNet is also the best on
this dataset. The defogging results of DCP and BCCR are
similar to that of Fig. 10. DehazeNet’s result is not completely
defogged, and the color is darker.

The comparison of the deraining and desnowing results of
the synthetic images and the corresponding PSNR and SSIM
values are shown in Fig. 12. RASWNet basically removes
the rain streaks. The small and medium raindrops have been
removed, but there are some black artifacts after removing
large raindrops. It can remove most of the small and medium
snowflakes, and only some of the larger snowflakes have
residues (see Fig. 12(f)). ID-CGAN can remove most of the
rain streaks, and it has the best result of the other three rain
streak removal algorithms. It cannot remove raindrops and
snowflakes, basically (see Fig. 12(e)). ATT-GAN can remove
raindrops slightly better than RASWNet. However, it cannot
remove rain streaks. The ability to remove snowflakes is
worse than that of RASWNet (see Fig. 12(d)). DDN can
remove most of the rain streaks, but the result is not as
good as that of RASWNet and ID-CGAN. It cannot remove
raindrops and snowflakes, basically (see Fig. 12(c)). GSM
can only remove some of the finer rain streaks. It cannot
remove raindrops and snowflakes (see Fig. 12(b)). From the
average value of the PSNR and SSIM, it can be seen that
RASWNet is the best, and ATT-GAN is second.

D. REAL IMAGES
The evaluation of the clarity enhancement results of the real
images is different from that of synthetic images because
there are no ground truth images. We use DCP [8], DDN [18]
and ATT-GAN [5] to compare with RASWNet. Compar-
ison of the clarity enhancement results of the real severe
weather images is shown in Fig. 13. From the foggy images,
RASWNet is the best because it has strong defogging ability
and no color distortion; DCP is the second best except that the
sky color is distorted and the brightness is darker; ATT-GAN
can remove a thin layer of fog; and DDN is basically useless.
From the rain streak images, DDN is the best, RASWNet
is the second best, ATT-GAN is the third best, and DCP
cannot remove the rain streaks. From the raindrop images,
RASWNet is better than ATT-GAN, while DCP and DDN
cannot remove the raindrops. From the snowflake images,
RASWNet is the best, and ATT-GAN can remove the smaller
snowflakes, while DCP and DDN are basically useless.

E. RUNNING TIME COMPARISON
The average running times of the clarity enhancement algo-
rithms are shown in Table 5. We select 20 images (foggy,
rain streaks, raindrops and snowflakes, 5 images each) from
the test set for the algorithms to run on the same machine
(Intel Core-i7 7700K CPU, 16 GB of memory and a Nvidia
GeForce GTX 1070 GPU). Experimental results show that
the running speed of RASWNet is in the middle of the
seven algorithms: slower than AOD-Net [23], GSM [17], and
ATT-GAN [5] but faster than DCP [8], DDN [18] and BCCR
[9]. Of course, the result is obtained by GPU acceleration.

F. EVALUATION ON OBJECT DETECTION
Image defogging, deraining and desnowing algorithms can
be used as a preprocessing step to improve the performance
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FIGURE 11. Second comparison of the defogging results of the synthetic images. We selected three foggy images from the O-HAZE
Dataset of the NTIRE 2018 Challenge on Image Dehazing [25]. The red numbers indicate the best result. AVE means the average.
(a) Input, (b) DCP [8], (c) BCCR [9], (d) DehazeNet [22], (e) RASWNet.

FIGURE 12. Comparison of the deraining and desnowing results of the synthetic images. We selected three rainy and snowy images of road traffic
scenes. From the top to the bottom, the first image is from the synthetic rain streak image dataset [18], the second image is from the raindrop image
dataset [5], and the third image is from the Snow100K testing dataset [14]. They are not used for training. The red numbers indicate the best result.
AVE means the average. (a) Input, (b) GSM [17], (c) DDN [18], (d) ATT-GAN [5], (e) ID-CGAN [39], (f) RASWNet.

of other high-level vision tasks, such as face recognition and
object detection [5], [6], [14], [23], [26]. However, the above
algorithms can only handle one or two severe weather
conditions and cannot be used in all weather conditions.
Consequently, to demonstrate the performance improvement
obtained after clarity enhancement using RASWNet, we eval-
uated Faster-RCNN [54] on the VOC 2012 dataset.

First, we selected 102 images of road traffic scenes from
the VOC 2012 test set as ground truth images. Using the

Weather function of CorelDRAW, these images were made
into an equal number of foggy, rain streak and snowflake
images. Subsequently, we used RASWNet to process the
degraded images and used the pretrained Faster-RCNN
model to detect the objects. In this process, the defogging
algorithm DCP [8] and the deraining algorithm DDN [18]
were also used to compare with the RASWNet. The mean
average precision (mAP) and F1-measure values of the object
detection results are shown in Table 6. It can be seen that
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FIGURE 13. Comparison of the clarity enhancement results of the real severe weather images. We selected four images from the multiclass weather
image (MWI) dataset [53] collected by Zhang et al. From top to bottom, they are fog, rain streak, raindrop and snowflake images. (a) Input,
(b) DCP [8], (c) DDN [18], (d) ATT-GAN [5], (e) RASWNet.

FIGURE 14. Samples of object detection (Faster-RCNN [54]) results after using clarity enhancement algorithms. From top to bottom, they are fog,
rain streak and snowflake images. (a) Degraded images, (b) Processed by DDN [18], (c) Processed by DCP [8], (d) Processed by RASWNet, (e) Ground
truth images.

Faster-RCNN can only achieve a very low average precision
for degraded images. DDN slightly improved the average
precision of rainy images, DCP improved the average pre-
cision of foggy images, and RASWNet improved the average
precision of all images by approximately 47%.

The samples of object detection results after using clarity
enhancement algorithms are shown in Fig. 14. It can be
seen that Faster-RCNN has poor detection ability in degraded
images and can only detect one person from the snowy
image. After the deraining process by DDN [18], the same
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TABLE 5. Comparison of average running times of the algorithms (unit:
second, image size: 480× 360). The red numbers indicate the best result.

TABLE 6. Object detection performance using Faster-RCNN [54] on the
VOC 2012 dataset. The red numbers indicate the best result.

detection model can detect two targets from the rainy image
and one more person from both foggy and snowy images.
After the defogging process by DCP [8], the same detection
model detects the same number of persons from the foggy
image as the ground truth image and detects one more person
from the rainy image. After the clarity enhancement process
by RASWNet, the detection results of all images can be
improved. The detection result of foggy and snowy images
is basically the same as that of the ground truth images, and
the detection result of the rainy image is better than that of
DDN.

VII. CONCLUSION
In this paper, we build a comprehensive severe weather imag-
ing model that can represent the features of fog, rain streaks,
raindrops and snowflakes in an image. Subsequently, we pro-
pose an algorithm called RASWNet that can remove all of
the severe weather features from a degraded image. Based
on the GAN, it uses the visual attention mechanism to locate
the regions of fog, rain streaks, raindrops and snowflakes;
it uses the GRUs to memorize these regions; and it uses
dense blocks to extract features from the image.We verify the
effectiveness of each structure in the algorithm model by per-
forming a study of the Stacked autoencoder and an ablation
study of RASWNet. We also use various synthetic images
and real images to test our algorithm, and we compare it with
some commonly used defogging, desnowing and deraining
algorithms. The experimental results show that RASWNet
is not only better than the commonly used algorithms in its
clarity enhancement capacity but also useful in any severe
weather condition, and it is suitable for ADAS andmonitoring
systems. However, RASWNet runs at a slower speed, and in
the future, we will increase the speed while maintaining the
clarity enhancement ability of the algorithm.
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