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ABSTRACT The problem of computing the Sparse Fast Fourier Transform(sFFT) of a K -sparse signal of
size N has received significant attention for a long time. The first stage of sFFT is hashing the frequency
coefficients into B(≈ K ) buckets named frequency bucketization. The process of frequency bucketization
is achieved through the use of filters: Dirichlet kernel filter, aliasing filter, flat filter, etc. The frequency
bucketization through these filters can decrease runtime and sampling complexity in low dimensions. It is
a hot topic about sFFT algorithms using the flat filter because of its convenience and efficiency since its
emergence and wide application. The next stage of sFFT is the spectrum reconstruction by identifying
frequencies that are isolated in their buckets. Up to now, there are more than thirty different sFFT algorithms
using the sFFT idea as mentioned above by their unique methods. An important question now is how to
analyze and evaluate the performance of these sFFT algorithms in theory and practice. In this paper, it
is mainly discussed about sFFT algorithms using the flat filter. In the first part, the paper introduces the
techniques in detail, including two types of frameworks, five different methods to reconstruct spectrum and
corresponding algorithms. We get the conclusion of the performance of these five algorithms, including
runtime complexity, sampling complexity and robustness in theory. In the second part, we make three
categories of experiments for computing the signals of different SNR, different N , and different K by a
standard testing platform and record the run time, percentage of the signal sampled, and L0,L1,L2 error
both in the exactly sparse case and general sparse case. The result of experiments is consistent with the
inferences obtained in theory. It can help us to optimize these algorithms and use them correctly in the right
areas.

INDEX TERMS Sparse fast Fourier transform (sFFT), flat window filter, sub-linear algorithms,
computational complexity.

I. INTRODUCTION
The Discrete Fourier Transform(DFT) is one of the most
important and widely used techniques in signal processing
and mathematical computing. The most popular algorithm to
compute the DFT is the fast Fourier Transform(FFT) invented
by Cooley and Tukey. The algorithm can compute the DFT of
a signal of size N in O(N logN ) time and use O(N ) samples.
FFT dramatically simplifies the operation process; however,
with the emergence of big data problems, the FFT is no
longer fast enough. Furthermore, sometimes it is hard to
acquire a sufficient amount of data to compute theDFT. These
two problems become the major computational bottleneck in
many applications. It motivates the need for new algorithms
that can compute the Fourier Transform in sub-linear time
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and that use only a subset of the input data. People thought of
many ideas to realize such an algorithm. Later, they focused
on the study of the characteristics of the signal itself. The
research found that a large number of signals are sparse in the
frequency domain; only K frequencies are non-zeros or are
significantly large. This feature is universal and inherent in
signals that cover many fields(e.g., audio, video data, medical
image, etc.). In this case, when K << N , one can retrieve the
information with high accuracy using only the coefficients of
theK most significant frequencies. So the sFFT has been pro-
posed and achieved excellent results. The research of sFFT
has been a hot topic in signal processing research since its
birth; it was named one of the 10 Breakthrough Technologies
in MIT Technology Review in 2012.

The firsts stage of the sFFT algorithm is bucketization
such that the value of the bucket is the sum of the val-
ues of the frequency coefficients that hash into the bucket.
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The number of buckets is denoted by B, and the size of
one bucket is denoted by L. The process of bucketization is
achieved through the use of filters. The effect of the Dirichlet
kernel filter is to make the signal convoluted a rectangular
window in the time domain; it can be equivalent to the signal
multiply a Dirichlet kernel window of size L(L << N ) in the
frequency domain. The typical application using the Dirichlet
kernel filter is the AAFFT algorithm. The effect of the alias-
ing filter is to make the signal multiply a comb window in the
time domain; it can be equivalent to the signal convoluted a
comb window of size B(≈ K ) in the frequency domain. The
typical application using the aliasing filter is the FFAST algo-
rithm. The effect of the flat filter is tomake the signalmultiply
a mix window in the time domain; it can be equivalent to the
signal convoluted a flat window of size L(L << N ) in the
frequency domain. The typical application using the flat filter
is the sFFT1.0 algorithm. After bucketization, the algorithm
then focuses on the non-empty buckets and computes the
positions and values of the significant frequency coefficients
in those buckets in what we call the spectrum reconstruction
or identifying frequencies. As we can see as follows, more
than thirty algorithms are using the sFFT idea, and more
than ten sFFT algorithms are using the flat filter. A central
question now is how to analyze and evaluate the performance
of these algorithms for computing signals by the compare of
themselves or other types of algorithms. It should be proved
whether the runtime complexity, sampling complexity, and
robustness performance are consistent with the theory or not.
Are there any better ways to improve these algorithms when
using it in practice? The results of these performance analyses
are the guide for us to optimize these algorithms and use them
correctly in different areas.

The first sFFT algorithm [1] with sub-linear runtime and
sub-sampling property is a randomized algorithm with run-
time and sampling complexity O(K 2poly(logN )). It was later
improved to O(Kpoly(logN )) [2], [3] through the use of
binary search technique for spectrum reconstruction and the
use of unequally-spaced FFTs. The algorithm is the so-called
Ann Arbor fast Fourier Transform (AAFFT); the versions of
them are AAFFT0.5 and AAFFT0.9.

The sFFT algorithm so-called Fast Fourier Aliasing-based
Sparse Transform(FFAST) [4], [5], which focuses on exactly
K -sparse signals, is an efficient algorithm. Its approach is
based on the downsampling of the input signal using a
constant number of co-prime downsampling factors guided
by the Chinese Remainder Theorem(CRT). These aliasing
patterns of different downsampled signals are formulated as
parity-check constraints of useful erasure-correcting sparse-
graph codes. The FFAST algorithm costs O(K logK ) to com-
pute the exact signals and only use O(K ) samples. The
researcher adopted the FFAST framework to the case that
is corrupted by white Gaussian noise. The author showed
that the extended noise-robust algorithm R-FFAST [6], [7]
computes the DFT using O(K logK ) samples in O(K log4N )
runtime. These two algorithms perform well when N is a
product of some smaller prime numbers.

The new algorithm so-called sFFT by downsampling in the
time domain(sFFT-DT) [8] is proposed in the advantage of
the aliasing filter. The idea behind sFFT-DT is to downsample
the original input signal first, and then all subsequent oper-
ations are conducted on the downsampled signals. To over-
come the aliasing problem; the author considers the locations
and values of K non-zero entries as variables and the aliasing
problem is found to be equivalent to the moment-preserving
problem(MPP), which can be solved via orthogonal polyno-
mials or syndrome decoding with compressive sensing(CS)
based solver.

The deterministic algorithm so-called Gopher Fast Fourier
Transform(GFFT) [9], which based on the CRT, is an
aliasing-based search algorithm. The approximation error
bounds in [9] are further improved in [10]. Later, an algo-
rithm so-called Christlieb Lawlor Wang Sparse Fourier
Transform(CLW-SFT), which used the phase encoding
method, was given in [11], [12]. The noiseless version of this
algorithm is an adaptive algorithm [12], which has runtime
O(K logK ). The author developed this algorithm [11] by using
the multiscale error-correcting method to cope with high-
level noise with runtime O(K 2logK ). The author evaluated
the performance [13] of DMSFT (generated from GFFT) and
CLW-DSFT (generated from CLW-SFT) and compared their
runtime and robustness characteristics with other algorithms.
These four algorithms all have a hypothesis that the algo-
rithms can sample anywhere they want.

The sFFT algorithms using the flat window filter so-
called sFFT1.0-sFFT4.0 [14], [15] can compute the exactly
K -sparse signals in time O(K logN ) and the general K -sparse
signals in time O(K logN log(N/K )). These algorithms lever-
age characteristic of the flat filter. The sFFT1.0 and sFFT2.0
algorithms can identify and estimate the K largest coeffi-
cients in one shot. The sFFT3.0 algorithm can estimate the
position by using only two samples of the filtered signal
inspired by the frequency offset estimation in the exactly
sparse case. Later, a new robust algorithm so-called Matrix
Pencil FFT(MPFFT) [16] was proposed on the basis of the
sFFT3.0 algorithm. The major new ingredient is a mode
collision detector based on the matrix pencil method. The
method enables the algorithm to use fewer samples of the
input signal.

The paper [17] proposes an overview of sFFT technology
and summarizes a three-step approach in the stage of spec-
trum reconstruction and provides a standard testing platform
that can be used to evaluate different sFFT algorithms. There
are also some researches try to conquer the sFFT problem
from a lot of aspects: computational complexity [18], [19],
performance of the algorithm [20], [21], software [22], [23],
higher dimensions [24], [25], implementation [26], hard-
ware [27] and special setting [28], [29] perspectives.

The identification of different sFFT algorithms can be
known through a brief analysis as above. The Dirichlet kernel
filter is not efficient because it only bins some frequency
coefficients into one bucket one time. As to the aliasing filter,
it is difficult to solve the worst case because there may be
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many frequency coefficients in the same bucket accidentally
if B only can be supposed as a power of two because the
scaling operation is of no use. In comparison to them, using
the flat filter is very convenient and efficient.

This paper is structured as follows. Section II and
Section III provide a brief overview of the sFFT technique.
Section IV introduces and analyzes two frameworks and five
spectrum reconstruction methods of five algorithms. In the
one-shot framework, the sFFT1.0 and sFFT2.0 algorithm use
the voting method with the help of the stochastic character-
istics. In the iterative framework, the sFFT3.0 and sFFT4.0
algorithm use the phase encoding method with the help of
the time shift characteristics, and the MPSFT algorithm uses
the matrix pencil method with the help of the Prony model.
In section V, we do three categories of comparison experi-
ments. The first kind of experiment is to compare them with
each other. The second is to compare them with other sFFT
algorithms. The third is to compare themwith optimization to
them without optimization. The analysis of the experiments
satisfies theoretical inference.

II. NOTATION
In this section, we initially present some notation and basic
definitions of sFFT.We useωN = e−2π i/N as theN -th root of
unify. Let FN ∈ CN×N be the DFT matrix of size N defined
as follows:

FN [j, k] =
1
N
ω
jk
N (1)

The DFT of a vector x ∈ CN (consider a signal of size N ,
where N is a power of two) is a vector x̂ ∈ CN defined as
follows:

x̂ = FN x (2)

x̂i =
1
N

N−1∑
j=0

xjω
ij
N (3)

It is necessary to consider the inverse of the DFT matrix
above. F−1N ∈ CN×N defined as follows:

F−1N [j, k] = ω−jkN (4)

The inverse DFT of x̂ is a vector x defined as follows:

x = F−1N x̂ = F−1N (FN x) (5)

xi =
N−1∑
j=0

x̂jω
−ij
N (6)

For x−i = xN−i, we may define convolution as follows:

(x ∗ y)i =
N−1∑
j=0

xjyi−j (7)

For coordinate-wise product (xy)i = xiyi and the DFT of xy
is performed as described in Equation 8:

x̂y = x̂ ∗ ŷ (8)

For exact signals, x̂ is exactly K -sparse if it has exactly
K non-zero frequency coefficients while the remaining
N − K coefficients are zero. For general signals, x̂ is gen-
eral K -sparse if the largest K frequency coefficients �
remaining N − K coefficients. The goal of the sFFT is
to recover a K -sparse approximation x̂ by finding fre-
quency positions f and estimating values x̂f of the K largest
coefficients.

III. TECHNIQUES
In this section, we start with an overview of the techniques
that we will use in the sFFT.

A. RANDOM SPECTRUM PERMUTATION
The random permutation includes two operations; one is shift
operation, another is scaling operation. Let τ ∈ R be the
offset parameter. Let matrix Sτ ∈ RN×N representing the
shift operation, is defined as follows:

Sτ [j, k] =

{
1, j− τ ≡ k(modN )
0, o.w.

(9)

Let σ ∈ R be the scaling parameter. Let matrix Pσ ∈ RN×N

representing the scaling operation, is defined as follows:

Pσ [j, k] =

{
1, σ j ≡ k(modN )
0, o.w.

(10)

Suppose σ−1 ∈ R exists mod N , σ−1 satisfies σ−1σ ≡
1(modN ). If a vector x ′ ∈ CN , x ′ = SτPσ x, such that:

x ′i = xσ (i−τ )
x ′
σ−1i+τ = xi (11)

The random permutation isolates spectral components from
each other, and it is performed as follows: if x ′ = SτPσ x,
such that:

x̂ ′σ i = x̂iωστ i

x̂ ′i = x̂σ−1iω
τ i (12)

B. WINDOW FUNCTION
The window function is a mathematical tool and can be seen
as a matrix multiply the original signal. We introduce three
filters used in the sFFT algorithm mentioned in this paper.

The first filter is the frequency aliasing filter. Through the
filter, the signal in the time domain is subsampled such that
the corresponding signal in the frequency domain is aliased.
Let L ∈ Z+ be the subsampling factor. Let B ∈ Z+ be the
subsampling number. Let matrix DL ∈ RB×N representing
the subsampling operation, is defined as follows:

DL[j, k] =

{
1, k = jL
0, o.w.

(13)

Let vector yL,τ , ŷL,τ ∈ CB be the filtered signal obtained
by shift operation and aliasing filter. If yL,τ = DLSτ x,
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ŷL,τ = FBDLSτ x, we get formula (14). If τ = 0 we get
formula (15).

ŷL,τ [i] = x̂[i]ω−τ i + x̂[i+ B]ω−τ (i+B)

+ · · · x̂[i+ (L − 1)B]ω−τ (i+(L−1)B) (14)

ŷL,0[i] = x̂[i]+ x̂[i+ B]+ · · · + x̂[i+ (L − 1)B] (15)

The second filter is the frequency flat filter. We use a filter
vector G that is concentrated both in time and frequency
domain, G is zero except at a small number of time coordi-
nates with supp(G) ⊆ [−w/2,w/2] and its Fourier Transform
Ĝ is negligible except at a small fraction L (≈ εN ) of
the frequency coordinates (the pass region). The paper [14]
claim there exists a standard window functionG(ε, ε′, δ, w)
satisfies the formula (16). The filter can be obtained by con-
voluted a Gaussian function with a boxcar window function
and supp(G) = w = O(1/ε log(1/δ))). One can potentially
use a Dolph-Chebyshev window function with minimal big-
Oh constant. In this paper, we use filter G ∈ CN be an
(L/N , L/2N , δ, w) flat window. The width of the filter in
the time domain is denoted by w, the width of the passband
region in the frequency domain is denoted by L, the number
of buckets is denoted by B and B = N/L.∣∣∣Ĝi∣∣∣ ∈ [1− δ, 1+ δ] for i ∈ [−ε′N , ε′N ]∣∣∣Ĝi∣∣∣ ∈ [0, δ] for i /∈ [−εN , εN ]∣∣∣Ĝi∣∣∣ ∈ [0, 1] for |i| ∈ [ε′N , εN ] (16)

Let matrixQL ∈ CN×N be a diagonal matrix whose diagonal
entries represent filter coefficients in the time domain, is
defined as follows:

QL[j, k] =

{
Gj, j = k
0, o.w.

(17)

The third filter is the frequency subsampled filter. Through
the filter, the signal in the time domain is aliased such that the
corresponding signal in the frequency domain is subsampled.
Let matrix UL ∈ RB×N represents the aliasing operator as
follows:

UL[j, k] =

{
1, j− k ≡ 0(modB)
0, o.w.

(18)

Let vector yL , ŷL ∈ CB, be the filtered signal obtained by
the subsampled filter. If yL = ULx, ŷL = FBULx, we get
formula(19).

ŷL[i] = x̂[iL] (19)

C. FREQUENCY BUCKETIZATION
The process of bucketization in this paper is achieved through
the use of the flat filter, the subsampled filter, shift opera-
tion and scaling operation. It can be equivalent to the signal
multiply FBULQLSτPσ . The filtered signal is performed as
follows:

Lemma 1: If yL,τ,σ = ULQLSτPσ x, and ŷL,τ,σ =

FBULQLSτPσ x, such that:

ŷL,τ,σ [0] ≈ Ĝ L
2
x̂
σ−1

(
−
L
2

)ωτ
(
−
L
2

)
N

+ . . . Ĝ
−
L
2+1

x̂σ−1( L2−1)
ω
τ ( L2−1)
N

ŷL,τ,σ [1] ≈ Ĝ L
2
x̂
σ−1

(
L
2

)ωτ
(
L
2

)
N

+ . . . Ĝ
−
L
2+1

x̂
σ−1( 3L2 −1)

ω
τ ( 3L2 −1)
N

ŷL,τ,σ [i] ≈ Ĝ L
2
x̂
σ−1

(
(2i−1)L)

2

)ωτ
(
(2i−1)L

2

)
N

+ . . . Ĝ
−
L
2+1

x̂
σ−1( (2i+1)L2 −1)ω

τ ( (2i+1)L2 −1)
N (20)

Proof:

(P0)x ′ = SτPσ x ⇒ x̂ ′i = x̂σ−1iω
τ i

(P1)x ′′ = QLx ′ ⇒



x̂ ′′[0]
· · ·

x̂ ′′[L]
· · ·

x̂ ′′[iL]
· · ·

 =


x̂ ′[0]
· · ·

x̂ ′[L]
· · ·

x̂ ′[iL]
· · ·

 ∗


Ĝ[0]
· · ·

Ĝ[L]
· · ·

Ĝ[iL]
· · ·


(P2) |G[i]| =

{
≈ 1, i ∈ [−L

2 + 1, L2 ]
≈ 0, o.w.

(P3)ŷL,τ,σ = FBULx ′′ ⇒ ŷL,τ,σ [i] = x̂ ′′[iL]

(P4)ŷL,τ,σ = FBULQLSτPσ x

Based on the above-mentioned properties we get formula(20)
If the set I is a set of coordinates position, the position

f = (σ−1u)modN ∈ I , suppose there is no hash collision in
the bucket i, i= round(u/L), round() means to make decimals
rounded. Through formula(20), we can get the formula(21)

ŷL,τ,σ [i] ≈ ĜiL−ux̂σ−1uω
τu
N for

u ∈ [
(2i− 1)L

2
,
(2i+ 1)L

2
− 1]

x̂f ≈ ŷL,τ,σ [i]ω
−τu
N /ĜiL−u for

u = σ fmodN , i = round(u/L) (21)

As we see above, frequency bucketization includes three
steps: random spectrum permutation(x ′ = SτPσ x, it cost
0 runtime), flat window filter(x ′′ = QLx ′, it cost w run-
time and w samples), Fourier Transform of the aliasing
signal(ŷL,τ,σ = FBULx ′′, it cost BlogB runtime and 0 sam-
ples). So totally frequency bucketization one round cost
w+ BlogB runtime and w samples.

IV. ALGORITHMS ANALYSIS
As mentioned above the goal of frequency bucketization is to
decrease runtime and sampling complexity in the advantage
of low dimensions; after bucketization the filtered signal
ŷL,τ,σ can be obtained by original signal x. In this section, we
introduce two frameworks, five methods and corresponding
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FIGURE 1. A system block diagram of the one-shot framework.

algorithms to recover the spectrum x̂ of the filtered signal
ŷL,τ,σ in their own way.

A. THE sFFT1.0 ALGORITHM BY THE ONE-SHOT
FRAMEWORK
The first framework can directly reconstruct the spectrum by
one-shot does not need iteration. The process to reconstruct
the spectrum of the sFFT1.0 algorithm includes two kinds
of rounds, the first is location round and another is estima-
tion round. Every location round one time generates a list
of candidate coordinates Ir . Candidate coordinates i ∈ Ir
have a certain probability of being indices of one of the
K significant coefficients in spectrum. By running multiple
rounds, this probability can be increased, so it is certain to
vote the candidate coordinates with a high probability after
R(≈ logN ) times’ rounds. The next step is to do estimation
rounds used to exactly determine the value of identified fre-
quency x̂f isolated in the bucket in the reason of the value of
the bucket is approximate the frequency that identified in the
bucket if there is no hash collision. The block diagram of the
sFFT algorithms system of the one-shot framework is shown
in Figure 1. We explain the details as follows.

Stage1 Bucketization: Run R times’ round for set
τ = {τ1, τ2, · · · τR} and set σ = {σ1, σ2, · · · σR}, Calculate
ŷL,τ,σ = FBULQLSτPσ x representing the filtered spectrum.
Stage2-Step1 Location rounds: After R times’ round,

return R sets of coordinates I1, · · · IR(set Ir represent-
ing a union of 2K sets J from B sets J , J ∈{
Jr,0, Jr,1, · · · Jr,B−1

}
in the No.r’ round, set Jr,i ={

σ−1r
(2i−1)L

2 , σ−1r ( (2i−1)L2 +1), · · · σ−1r ( (2i+1)L2 − 1)
}
). Then

do the vote, count the number si of occurrences of each found
coordinate i, that is: si = ‖ {r|i ∈ Ir } ‖0 (‖ ‖0 representing
`0−norm). Only keep the coordinates occurred in at least fifty
percentage proportion(I = {i ∈ I1 ∪ · · · ∪ IR|si > R/2}).
Stage2-Step2 Estimation rounds: After location rounds,

the set I can be obtained then estimate R sets of frequency
coefficients x̂1, · · · x̂R. Themethod is if position f ∈ I , we can

get the value of position f through formula(21). For identified
position f , R different x̂rf can be obtained in R times’ round,
finally use the median value of the sets as the final estimator.

Finally, we analyse the performance of the sFFT1.0
algorithm. In stage1 it cost R(w+ BlogB) runtime, in stage2-
step1 it cost 2RK (N/B) runtime, in stage2-step 2 it cost 2RK
runtime, totally it cost O(R(w + BlogB + KN/B)) runtime.
And the runtime satisfies Lemma 2.
Lemma 2: Suppose R = O(logN ), w = Blog(N/δ),

δ = 1/(N c), it cost O(logN
√
NK logN ) runtime in the

sFFT1.0 algorithm
Proof:

O(R(w+ B logB+ KN/B))

= O
(
logN log(N/δ)B+ logNKNB−1

)
≥ O(logN

√
NK logN )( for B =

√
NK log−1(N/δ))

In stage 1 it needs w samples one time. In the first round,
the signal not chosen is in the probability of (N − w)/N ;
suppose the probability does not change; on average the
samples chosen after R times’ round is in the number of

N
(
1−

(N−w
N

)R)
= N

(
1−

(
N−
√
KN log(N/δ)
N

)(logN )
)

B. THE sFFT2.0 ALGORITHM BY THE ONE-SHOT
FRAMEWORK
As is shown in Figure 1, the sFFT2.0 algorithm is very
similar to the sFFT1.0 algorithm. Additionally, another buck-
etization and location round are used with the frequency
aliasing filter to restrict the locations of the large coefficient.
Let M be the size of the aliasing filter and M divides N ,
it does a pre-processing stage as follows. Firstly obtain
ŷM ,0 = FMDMS0x, then get a union of 2K sets from M
sets: {0,M , · · · (L−1)M}, · · · {M −1, 2M −1, · · ·N −1} by
selecting the 2K largest coefficients of magnitude ŷM ,0[i] for
i ∈ [0,M−1], the union of 2K sets is set I ′, assuming that all
large coefficients j have jmodM in I ′. That is, we restrict out
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sets Ir talked above to contain only coordinates i with i mod
M ∈ I ′, we expect that |Ir | ≈ 2K/M (2KN/B) rather than the
previous |Ir | ≈ 2KN/B.

Finally, we analyse the performance of the sFFT2.0 algo-
rithm. In stage1 it is the same as the sFFT1.0 algorithm, in
stage2-step1 it cost R(2K/M · 2K (N/B) + M ) + M logM
runtime, in stage2-step 2 it is the same, totally it costO(R(w+
BlogB + K 2N/(BM ) + M ) + M logM ) runtime. And the
runtime satisfies Lemma 3.
Lemma 3: Suppose R = O(logN ), w = Blog(N/δ),

δ = 1/(N c), it cost O
(
logN

(
K 2N log(N )

)1/3)
runtime in

the sFFT2.0 algorithm
Proof:

O(R(w+ BlogB+ K 2N/(BM )+M )+M logM )

= O
(
logN log(N/δ)B+ logNK 2NM−1B−1 +M logM

)
≥ O(logNK

√
log(N/δ)NM−1 +M logM )

≈ O(logNK
√
log(N/δ)NM−1 +M logN )

≥ O
(
logN

(
K 2N log(N )

)1/3)
Compared to the sFFT1.0 algorithm, the runtime the sFFT2.0
algorithm is a factor (N logN )1/6 smaller. On average the
samples of the sFFT2.0 algorithm chosen is in the number of
N
(
1−

(N−w
N

)R)
+M , compared to the sFFT1.0 algorithm,

B decreases so w decreases so that the samples decreases
as well.

C. THE sFFT3.0 ALGORITHM BY THE ITERATIVE
FRAMEWORK
Compared to the one-shot framework, the iterative framework
has two improvements. The first advantage of the iterative
framework is that once a frequency coefficient of the signal
was found and estimated, it can be subtracted from the signal.
This fact can be used to reduce the amount of work to be
done in subsequent steps. It is not necessary to update the
whole input signal. Instead, it is sufficient to update the
B-dimensional buckets. This way, the removal of the effects
of already found coefficients can be done in O(B) time. The
second important improvement in the iterative framework is
an improved method for finding the signal’s significant fre-
quency coordinates rather than the voting method by R times’
rounds. In the one-shot framework, R(≈ logN ) rounds are
run and their results combined in order to get correct locations
at a high probability. In the iterative algorithms, two or log2 L
rounds is enough in their own ways.

In the No.m’ iteration, let Km be the expected sparsity,
Rm be how many rounds in the No.m’ iteration, Bm be the
number of buckets, Lm be the size of one bucket, wm be the
support of filter G, ŷL,τ,σ be filtered spectrum, ŷupdate be
the spectrum have already gained, x̂m−1 be the last result,
ŷ′L,τ,σ be the spectrum need to recover, x̂ ′

m
be the recovered

spectrum, x̂m be the new result, set τ = {τ1, τ2, · · · τR} and
set σ = {σ1, σ2, · · · σR} be the parameter. It can be seen

that Rm = 2 in the sFFT3.0 algorithm, Rm = logl Lm in the
sFFT4.0 algorithm, Rm = log2 Lm in the MPSFT algorithm.
The detailed course in No.m’ iteration is shown in Figure 2
and explained as follows.
Step1: Run Rm bucketization rounds for Km,Bm,Lm, set σ

and set τ to calculate ŷL,τ,σ = FBULQLSτPσ x representing
the filtered spectrum.

Step2: Run Rm times’ rounds for x̂m−1, set τ , set σ and for-
mula(21) to obtain ŷupdate representing spectrum have already
gained.

Step3: ŷ′L,τ,σ = ŷL,τ,σ - ŷupdate representing the spectrum
need to recover.

Step4: recover the spectrum x̂ ′
m

of ŷ′L,τ,σ by different
methods.

Step5: x̂m = x̂m−1 + x̂ ′
m
representing the result of this

iteration.
Step6: If it is the last iteration, the final result is x̂m,

otherwise x̂m will be the input to make ŷupdate in the next
iteration.

It is sufficient to locate the position only using R(=2)
rounds instead of R(≈ logN ) rounds by the phase encoding
method in the sFFT3.0 algorithm in the exactly sparse case.
The process is in the first round we set τ1 = 0, and the
second round we set τ2 = 1, then suppose in the bucket i,
it contains only one large frequency, so we get ŷL,0,σ [i] ≈

ĜiL−uX̂σ−1(u)ω
0·(u)
N and ŷL,1,σ [i] ≈ ĜiL−uX̂σ−1(u)ω

1·(u)
N , then

ω
1·(u)
N ≈

ŷL,0,σ [i]
ŷL,1,σ [i]

so we can locate the position f =

(σ−1u)modN . As to estimate the value identified, it is similar
to the process of the sFFT1.0 algorithm. Finally, we analyze
the performance of the sFFT3.0 algorithm. And it satisfies
Lemma 4.
Lemma 4: In the sFFT3.0 algorithm, it cost O(K logN )

runtime and O(K logN ) samples.
Proof: In the first iteration, suppose w1 = B1 log(N/δ),

K1 = K , it cost 2(w1+B1 logB1+K1) = O(B1 logN ) runtime
and find at least K/2 true frequency, In the second iteration,
suppose B2 = B1/2, w2 = B2 log(N/δ), K2 = K/2, it cost
2(w2 + B2 logB2) runtime in the step1, it cost 2K1 runtime
in the step2, it cost 2B2 runtime in the step3, it cost 2K2
runtime in the step4, it cost K2 runtime in the step5, it total
cost O(w2 + B2 logB2 + K1) < O(B1 logN )/2 runtime in
the second iteration, so the total runtime is O(B1 logN ) +
O(B1 logN/2) + · · · = O(B1 logN ) = O(K logN ). As to
the sampling complexity, it is clear that the samples chosen
after two rounds in the first iteration is in the number of
2w1 = 2B1 log(N/δ) = O(K logN ), as to the samples of
the following iterations, the samples can be ignored because
of the decrease of B.

D. THE sFFT4.0 ALGORITHM BY THE ITERATIVE
FRAMEWORK
Compared with the sFFT3.0 algorithm, only step4 of the
sFFT4.0 algorithm is different. In the sFFT3.0 algorithm, it
is sufficient to locate the position only running two rounds in
the noiseless case in advance of it satisfies Lemma 5. In the

VOLUME 8, 2020 79139



B. Li et al.: On Performance of sFFT Algorithms Using the Flat Window Filter

FIGURE 2. A system block diagram of the iterative framework.

sFFT4.0 algorithm, it is sufficient to locate the position only
running R(= logl L) times’ round by the multiscale phase
encoding method in advance of it satisfies Lemma 6.(let l be
the multiscale parameter).
Lemma 5: In the bucket i, suppose the located position is

denoted by u′, the real position is denoted by u, the noise is
denoted by Sτ [i], it satisfied formula(22), so S0[i] is the noise
in the bucket i for τ = 0, S1[i] is the noise in the bucket i for
τ = 1, function 8(θ ) satisfies e8(θ )i = θ, 8(θ ) ∈ [0, 2π ).
In the sFFT3.0 algorithm, the algorithm guarantee must be
required as formula(23).

Sτ [i] = ŷL,τ,σ [i]− ĜiL−ux̂σ−1uω
τu
N (22)∣∣∣∣8( ŷL,0,σ [i]ŷL,1,σ [i]

)
−8

(
ŷL,0,σ [i]− S0[i]
ŷL,1,σ [i]− S1[i]

)∣∣∣∣ ≤ π

N
(23)

Proof:

ω
1·(u′)
N =

ŷL,0,σ [i]
ŷL,1,σ [i]

⇒ u′ = round(8(
ŷ0[i]
ŷ1[i]

)
N
2π

)

ω
1·(u)
N =

ŷL,0,σ [i]− S0[i]
ŷL,1,σ [i]− S1[i]

⇒ u = 8(
ŷ0[i]− S0[i]
ŷ1[i]− S1[i]

)
N
2π

in order to u′ = u⇒ absolute value ≤ 0.5

⇒

∣∣∣∣8( ŷL,0,σ [i]ŷL,1,σ [i]

)
−8

(
ŷL,0,σ [i]− S0[i]
ŷL,1,σ [i]− S1[i]

)∣∣∣∣ ≤ π

N
Lemma 6: In the bucket i, suppose L be the range in this

location, l be the multiscale parameter, r be the size of one
scale(r = L/l), u0 be the initial position, u′l be the located
value from located position u′(u′l = (u′ − u0)/r, u′l ∈ [0, l]),
ul be the real value from real position u(ul = (u−u0)/r, ul ∈
[0, l]), τ1 = 0, τ2 ≈ N/L, In the sFFT4.0 algorithm, the
algorithm guarantee must be required as formula(24),∣∣∣∣8( ŷL,τ1,σ [i]ŷL,τ2,σ [i]

)
−8

(
ŷL,τ1,σ [i]− Sτ1 [i]
ŷL,τ2,σ [i]− Sτ2 [i]

)∣∣∣∣ ≤ πl (24)

Proof:

ω
τ2u′
N =

ŷL,τ1,σ [i]
ŷL,τ2,σ [i]

⇒ (u0 + u′lr)τ2modN
2π
N
= 8(

ŷτ1 [i]
ŷτ2 [i]

)

ω
τ2u
N =

ŷτ1 [i]− Sτ1 [i]
ŷτ2 [i]− Sτ2 [i]

⇒ (u0 + ulr)τ2modN
2π
N

= 8(
ŷτ1 [i]− Sτ1 [i]
ŷτ2 [i]− Sτ2 [i]

)

in order to u′l = ul ⇒ absolute value ≤ 0.5

⇒

∣∣∣∣8( ŷL,τ1,σ [i]ŷL,τ2,σ [i]

)
−8

(
ŷL,τ1,σ [i]− Sτ1 [i]
ŷL,τ2,σ [i]− Sτ2 [i]

)∣∣∣∣ ≤ πl
It is clear that the restrictive conditions of formula(23) are

very harsh in the sFFT3.0 algorithm when N is large, so
the sFFT3.0 algorithm is not robustness. From the lemma6,
it is most robust when we use the binary search (l = 2),
because the confidence upper limit(π/2) is very big, but it
is not effective. We want to know how to set the confidence
upper limit of multiscale parameter l, we do it byMonte Carlo

experiment,
∣∣∣8 ( ŷL,τ1,σ [i]ŷL,τ2,σ [i]

)
−8

(
ŷL,τ1,σ [i]−Sτ1 [i]
ŷL,τ2,σ [i]−Sτ2 [i]

)∣∣∣ is denoted
by 18(θ ), we do two categories experiments to calculate
the logarithm of the error of phase log10(18(θ )) and com-
puting probability distribution function(PDF) of the value
log10(18(θ )) in all valuable buckets and all rounds by the
input signals of different N under different signal noise
ratio(SNR) circumstances only if the bucket is not aliasing,
then we get Figure 3. From Figure 3, we can see with the
development of SNR(from the red space to purple space),
the probability of small error increases. Compare of the two
cases: small N and big N under the condition of the same
K and same SNR, if N is big, it means in one bucket the
noisy has less energy compared with the effective signal,
it can be concluded both in theory and in experiments that
the variance of the error becomes smaller when N is big.
From Figure 3, if we want to keep the probability greater
than 0.99 under the condition of SNR = −20(red space),
the threshold should be more than 100.5 ≈ 3.2, it seems
impossible. Under the condition of SNR = −10(blue space),
the threshold should be more than 100 ≈ 1; it can be solved
by the binary search method because the confidence upper
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FIGURE 3. PDF of the logarithm of the error of phase log10(18(θ)) vs SNR. (a)K = 50 and N = 8192, (b)K = 50 and N = 1048576(red space, blue
space, yellow space, green space, black space, purple space individually representing SNR = −20, −10, 0, 20, 40, 120).

limit is π/2 ≈ 1.7. Under the condition of SNR=0(yellow
space), the threshold should be more than 10−0.5 ≈ 0.3,
and under the condition of SNR>0, it is certain to keep the
high probability if the threshold is more than 0.3. Under
the condition of SNR=120(purple space), if the threshold
is π/N = π/8192 ≈ 0.004 > 10−3, or the threshold is
π/N = π/1048576 ≈ 0.000003 > 10−6, it can also keep
the high probability to satisfy the formula(23)(Remarks: It is
easy to know the PDF of the error of phase will not change
much with different τ and different σ ).

In the real sFFT4.0 algorithm, we use l =8; the confidence
upper limit is π/8 ≈ 0.4, it can keep the high probability
to satisfy formula(24) under the condition of SNR≥0. As to
the runtime complexity, we can easy to know it should run
logl L(= log8(N/B)) times’ rounds instead of two times’
rounds in every iteration, so the runtime and sampling com-
plexity is O(K logN log8(N/K )).

E. THE MPSFT ALGORITHM BY THE ITERATIVE
FRAMEWORK
Compared with the sFFT4.0 algorithm, only the discrimi-
nant equation to the location of the MPSFT algorithm is
different. The matrix pencil method, like the Prony method,
is a standard technique in signal processing for mode fre-
quency identification. In this section, we use thematrix pencil
method into the MPSFT algorithm to achieve two effects.
Firstly, it identifies modes muchmore accurately. Secondly, it
helps detect errors in our mode identification step and greatly
reduces the number of spurious modes being found. Rely
on these; we can use only a little cost to solve the collision
problem.

Suppose the number of significant frequencies in the
bucket i is denoted by a. In most buckets a = 0,
in a part of buckets a = 1, only in a small part of
buckets a >= 2. Then the formula(21) can be trans-
lated to the formula(25), the problem to reconstruct spec-
trum is translated to how to calculate 2a variables as
follows: a amplitudes(Ĝpoly(f0)x̂f0 · · · Ĝpoly(fa−1)x̂fa−1 ) and a
positions(ωf0σ , · · ·ωfa−1σ ). It needs 2a equations, where

ŷL,τ,σ [i] is known and denoted by mτ = ŷL,τ,σ [i] using fixed
L and σ , pj representing unknown ĜiL−σ fj x̂fj , zj representing

unknown ω
σ fj
N . By taking the above into consideration, the

problem can be formulated by BCH codes as formula(26) by
using τ = 0, 1, · · · , 2a− 1.

ŷL,τ,σ [i] ≈ ĜiL−σ f0 x̂f0ω
στ f0
N + · · · + ĜiL−σ fa−1 x̂fa−1ω

στ fa−1
N

(25)
z00 z01 · · · z

0
a−1

z10 z11 · · · z
1
a−1

· · · · · · · · · · · ·

z2a−10 z2a−11 · · · z2a−1a−1



p0
p1
· · ·

pa−1

 =


m0
m1
· · ·

m2a−1

 (26)

Mam =


m0 m1 · · · mam−1
m1 m2 · · · mam
· · · · · · · · · · · ·

mam−1 mam · · · m2am−1


am×am

(27)

Suppose there are at most am significant frequencies in
the bucket. By singular value decomposition(SVD) of the
matrixMam defined as for formula(27) in bucket i, we obtain
am singular values for each frequency. For example, we can
set am equal to two, so we obtain two singular values by
SVD. If two singular values are both small, it means there
is no significant frequency. If there is only one big singular
value, it means there is one significant frequency. If both of
them are big, it means there are more than one significant
frequencies. The way to solve the collision problem is as
above, as to distinguish the position of the frequency, the
method is very similar to the sFFT4.0 algorithm using binary
search and the discriminant is inspired by the matrix pencil
method. The detail can see [16]. It is sufficient to locate the
position and estimate the value of frequencies only using
R(= 2 log2 L) times’ rounds in the MPSFT algorithm, the
runtime and sampling complexity of the MPSFT algorithm
is approximately equal to O(K logN log2(N/K )).

After analyzing two types of frameworks, five differ-
ent methods to reconstruct spectrum and corresponding
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TABLE 1. The performance of sFFT algorithms and fftw algorithm in
theory.

algorithms, Table 11 can be concluded with the additional
information of other sFFT algorithms and fftw algorithm.

From Table 1, we can see the sFFT3.0 algorithm has
the lowest runtime and sampling complexity, but it is non-
robustness. Other algorithms using the flat window are good
robustness but compare them with other sFFT algorithms it is
no advantage in the sampling complexity except the sFFT4.0
algorithm.

V. EXPERIMENTAL EVALUATION
In this section we evaluate the performance of five sFFT
algorithms using the flat window filter: sFFT1.0, sFFT2.0,
sFFT3.0, sFFT4.0 and MPSFT algorithm. All of them are
implemented in C or C++ language to empirically evalu-
ate their runtime characteristics. We firstly compare these
algorithms’ runtime, percentage of the signal sampled and
robustness characteristics with each other. Then we com-
pare these algorithms’ characteristics with other algorithms:
fftw, sFFT-DT, FFAST and AAFFT algorithm. Finally, we
compare these algorithms’ runtime characteristics with them-
selves optimized. All experiments are run on a CentOS7.6
computer with 4 Intel(R) Core(TM) i5-4570 3.20GHz CPU,
a cache size of 6144 KB and 8 GB of RAM.

A. EXPERIMENTAL SETUP
In the experiment, the test signals are gained in a manner
thatK frequencies are selected fromN frequencies uniformly
at random and assigned a magnitude of 1 and a uniformly
random phase and the rest frequencies are set to zero in the
exact case. When in the general sparse case, the test signals
are gained similarly but they are combined with additive
white Gaussian noise, whose variance varies depending on
the SNR required. Each point in the figure is the average
result over 5 runs with 5 different instances as desired. The
parameters of these algorithms are chosen so that can make a
balance between time efficiency and robustness.

1The performance of algorithms using the flat window is got as above.
The performance of other algorithms is got from [2], [3], [5], [6], [8]. The
analysis of robustness will be explained in the next section.

B. COMPARISON EXPERIMENT ABOUT DIFFERENT
ALGORITHMS USING THE FLAT FILTER OF THEMSELVES
We plot Figure 4 representing runtime vs signal size and vs
signal sparsity for sFFT1.0, sFFT2.0, sFFT3.0, sFFT4.0 and
MPSFT algorithm in the exactly sparse case.2 As mentioned
above, the runtime is determined by two factors. One is
how many rounds(it manly depend on R) and how much
time cost in one round(it manly depend on w). So from
Figure 4 we can see 1)The runtime of these five algorithms
are approximately linear in the log scale as a function of N
and in the standard scale as a function of K . The reason is
R and w is with the growth of logN and K . 2)Results of
ranking the runtime complexity of five algorithms is sFFT3.0
> sFFT4.0 > sFFT2.0 > sFFT1.0 >MPSFT. The reason is their
individual’s R is about 2, 2 log8 L, approximate logN , logN
and 2 log2 L.

FIGURE 4. Runtime of five algorithms using the flat filter in the exactly
sparse case. (a) vs signal size, (b) vs signal sparsity.

We plot Figure 5 representing the percentage of the signal
sampled vs signal size and vs signal sparsity for sFFT1.0,

2The general sparse case means SNR=20db is very similar to the exactly
sparse case except the sFFT3.0 algorithm. The detail of code, data, report
can be provided in https://github.com/zkjiang/-/tree/master/docs/sfft project
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FIGURE 5. Percentage of the signal sampled of five algorithms using the
flat filter in the exactly sparse case. (a) vs signal size, (b) vs signal sparsity.

sFFT2.0, sFFT3.0, sFFT4.0, and MPSFT algorithm in the
exactly sparse case.3 As mentioned above, the percentage of
the signal sampled is also determined by two factors: how
many rounds and how many samples sampled in one round.
So from Figure 5 we can see 1)The percentage of the signal
sampled of these five algorithms are approximately linear in
the log scale as a function of N and in the standard scale as a
function of K . 2)Results of ranking the sampling complexity
of five algorithms is sFFT3.0 > sFFT4.0 >MPSFT > sFFT2.0
> sFFT1.0 because of the different R.

We plot Figure 6 representing the runtime and L1-error vs
SNR for sFFT1.0, sFFT2.0, sFFT3.0, sFFT4.0, and MPSFT
algorithm.4 From Figure 6 we can see 1)The runtime is
approximately equal vs SNR. 2) To a certain extent, these
four algorithms are all robustness, but when SNR is low,
only MPSFT satisfies the ensure of robustness. When SNR
is medium, sFFT1.0 and sFFT2.0 can also meet the ensure of
robustness. And only when SNR is bigger than 20db, sFFT4.0

3The general sparse case is very similar to the exactly sparse case except
the sFFT3.0 algorithm.

4the L0-error, L1-error L2-error of all experiments can be provided in
https://github.com/zkjiang/-/tree/master/docs/sfft project /experiment data

FIGURE 6. (a) Runtime of four algorithms using the flat filter in the
general sparse case vs SNR, (b) L1-error of four algorithms using the flat
filter in the general sparse case vs SNR.

can deal with noise interference. The reason is that the way
of binary search is better than voting method under the large
noisy situation. And the way of multiscale search is not good
when it use in noisy situation according to the formula(26)
and Figure 3.

C. COMPARISON EXPERIMENT ABOUT ALGORITHMS
USING THE FLAT FILTER AND OTHER ALGORITHMS
We plot Figure 7 representing run times vs signal size and
vs signal sparsity for sFFT1.0, sFFT4.0, AAFFT, R-FFAST,
SFFT-DT and fftw algorithm in the general sparse case.5

From Figure 7, we can see 1)These algorithms are approxi-
mately linear in the log scale as a function of N except the
fftw algorithm. These algorithms are approximately linear
in the standard scale as a function of K except the fftw
and SFFT-DT algorithm. 2) Results of ranking the runtime
complexity of these six algorithms is sFFT4.0 > sFFT1.0 >
AAFFT > SFFT-DT > fftw > R-FFAST when N is large.

5The exactly sparse case is very similar including the sFFT3.0 algorithm
and FFAST algorithm. The FFAST and R-FFAST algorithm are not available
when K is very large
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FIGURE 7. Runtime of two typical algorithms using the flat filter and
other four algorithms in the general sparse case. (a) vs signal size, (b) vs
signal sparsity.

The reason is the Least Absolute Shrinkage and Selection
Operator(LASSO) method used in the R-FFAST algorithm
costs a lot of time. And the SVD and CS method used in
the SFFT-DT also cost a lot of time. 2)Results of ranking the
runtime complexity of these six algorithms is fftw > SFFT-
DT > sFFT4.0 > sFFT1.0 > AAFFT > R-FFAST when K
is large. The reason is algorithms using the aliasing filter
saving the time by using a small number of buckets in the
first stage compared to algorithms using the flat filter when
K is large.

We plot Figure 8 representing the percentage of the signal
sampled vs signal size and vs signal sparsity for sFFT1.0,
sFFT4.0, AAFFT, R-FFAST, SFFT-DT and fftw algorithm in
the general sparse case.6 From Figure 8, we can see 1)These
algorithms are approximately linear in the log scale as a
function of N except the fftw and SFFT-DT algorithm. The
reason is sampling in low-dimension in sFFT algorithms can

6The exactly sparse case is very similar including the sFFT3.0 algorithm.
The FFAST and R-FFAST algorithms are not available when K is very large.
It is a limit to the size of bucket in the SFFT-DT algorithm(L is not allowed
more than 1024).

FIGURE 8. Percentage of the signal sampled of two typical algorithms
using the flat filter and other four algorithms in the general sparse case.
(a) vs signal size, (b) vs signal sparsity.

decrease sampling complexity, and it is a limit to the size of
the bucket in the SFFT-DT algorithm by using the CS and
SVD method. These algorithms are approximately linear in
the standard scale as a function of K except the R-FFAST
and SFFT-DT algorithm. The reason is algorithms using the
aliasing filter saving the time by using less number of buckets.
2)Results of ranking the sampling complexity of these six
algorithms is R-FFAST > sFFT4.0 > AAFFT > SFFT-DT >
sFFT4.0 > fftw when N is large. 2)Results of ranking the
sampling complexity is SFFT-DT > sFFT4.0 > AAFFT >
sFFT1.0 > fftw when K is large. The reason is that algo-
rithms using the aliasing filter need less buckets than other
algorithms, the number of buckets they use in the R-FFAST
algorithm is only connected to the prime numbers gained
by N and the number of buckets they use in the SFFT-DT
algorithm is only connected to limit to the size of the
bucket.

We plot Figure 9 representing runtime and L1-error vs SNR
for sFFT1.0, sFFT4.0, AAFFT, SFFT-DT and fftw algorithm.
From Figure 9 we can see 1)the runtime is approximately
equal vs SNR. 2)To a certain extent, these five algorithms are
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FIGURE 9. (a) Runtime of two typical algorithms using the flat filter and
other four algorithms in the general sparse case vs SNR, (b) L1-error of
two typical algorithms using the flat filter and other four algorithms in
the general sparse case vs SNR.

all robustness, but when SNR is low, only the fftw algorithm
satisfies the ensure of robustness. When SNR is medium,
the sFFT1.0, AAFFT and SFFT-DT algorithm can also meet
the ensure of robustness. And only when SNR is bigger
than 20db, the sFFT4.0 algorithm can deal with the noise
interference.

D. COMPARISON EXPERIMENT ABOUT THE SAME
ALGORITHM WITH OPTIMIZATION AND WITHOUT
OPTIMIZATION
We plot Figure 107 representing runtime vs signal size and
vs signal sparsity for sFFT1.0-mit, sFFT2.0-mit, sFFT1.0-eth
and sFFT2.0-eth algorithm in the general sparse case.
From Figure 10, we can see the runtime of the same
algorithm is accelerated a lot by the use of software
optimization.

7sFFT1.0-mit, sFFT2.0-mit, sFFT1.0-eth and sFFT2.0-eth represent the
sFFT1.0 and sFFT2.0 algorithm designed by MIT University and optimized
by ETH University

FIGURE 10. Runtime of sFFT1.0-mit, sFFT2.0-mit, sFFT1.0-eth and
sFFT2.0-eth algorithm. (a) vs signal size, (b) vs signal sparsity.

VI. CONCLUSION
In the first part, the paper introduces the techniques used
in sFFT algorithms including random spectrum permutation,
window function and frequency bucketization. In the second
part, we analyze five typical algorithms using the flat filter
in detail including the sFFT1.0 algorithm using the voting
method, the sFFT2.0 algorithm using the heuristic voting
method by one-shot framework and the sFFT3.0 algorithm
using the phase encoding method, the sFFT4.0 algorithm
using the multiscale phase encoding method, the MPSFT
algorithm using the matrix pencil method by the iterative
framework. We get the conclusion of the performance of
these five algorithms including runtime complexity, sampling
complexity and robustness in theory in Table 1. In the third
part, we make three categories of experiments for computing
the signals of different SNR, different N , and different K
by a standard testing platform through nine different sFFT
algorithms and record the runtime, the percentage of the
signal sampled and L0,L1,L2 error in every different sit-
uation both in the exactly sparse case and general sparse
case. The analyse of the experiments satisfies theoretical
inference.
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The main contribution of this paper is 1)develop a stan-
dard testing platform which can test a lot of typical sFFT
algorithms in different situations on the basis of the old
platform. 2)get a conclusion of the character and performance
of five typical sFFT algorithms using the flat window filter:
the sFFT1.0 algorithm, the sFFT2.0 algorithm, the sFFT3.0
algorithm, the sFFT4.0 algorithm, and the MPSFT algorithm
in theory and practice.
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