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ABSTRACT In wireless sensor networks (WSNs), target coverage is an important issue which aims at
finding a set of sensors to monitor the targets for maximizing both the surveillance quality and network
lifetime. However, most of them assumed that each sensor is battery powered and the Boolean SensingModel
(BSM) is applied. Sensors powered by battery have a limited lifetime while the BSM is difficult to reflect
the physical features of sensing. This paper proposes target coverage mechanisms, called C-MMQT and D-
MMQT, which consider the solar-powered sensors and allows the battery to be recharged for maintaining
the perpetual lifetime of sensor networks. The proposed mechanisms apply the Probabilistic Sensing Model
(PSM) and consider that different targets have different importance. Two challenges have been overcome
in this paper. First, each sensor is well scheduled for switching between recharging and working states for
maintaining its perpetual lifetime since its battery is solar powered. Second, the sensors that are able to
monitor the common target are well scheduled for cooperative sensing to maximize the surveillance quality
since PSM is applied. Two efficient sensor schedules are proposed to maximize the surveillance quality of
the bottleneck target which has the lowest surveillance quality. Performance study shows that the proposed
mechanisms outperform the existingmechanisms in terms of Quality ofMonitoring, Average utility, Fairness
and Efficiency index.

INDEX TERMS Energy harvesting, scheduling, solar power, target coverage, wireless sensor networks.

I. INTRODUCTION
Wireless sensor networks (WSNs) are composed of many
sensor nodes that are randomly deployed in the monitoring
area. These sensors are tiny devices that are embedded with
microcontroller unit, sensing and communication hardware
components for supporting functions including data process-
ing, communication and sensing [1], [2].

In general, sensor devices have some resource limitations,
including battery life cycle, computational power and mem-
ory. Therefore, during the network operation, the energy effi-
ciency of nodes plays a major role because the replacement
of the battery is not possible in most of the applications [3].
According to different applications, coverage problems are
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classified into three categories. The first one is barrier cov-
erage which aims to schedule a minimal number of sensors
to detect the intruder crossing a boundary region. The second
one is area coverage, which aims to schedule a set of sensors
to monitor a given area such that the number of working
sensors is minimal while the monitoring region contains no
coverage hole. The last one is target coverage, which aims to
monitor a given set of targets with the highest surveillance
quality. In WSNs, the target coverage problem is one of the
most important issues where sensors are responsible for mon-
itoring the important targets and reporting if any suspicious
event occurs near these targets.

Since sensors are generally powered with batteries that
have limited energy, efficiently scheduling the sensors is an
important concern for better energy management of a given
WSN. Recent studies are divided into two categories for
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prolonging the network lifetime, the first category is energy
conservation technologies [1]–[5] while the second category
is energy transfer technologies [6]–[15].

Energy conservation techniques have been widely dis-
cussed in WSNs. In the past years, studies [1]–[5] proposed
several sleep-awake scheduling mechanisms for energy con-
servation of the sensor nodes. By applying the scheduling
mechanisms, sensors can periodically switch between sleep
and awake modes. The sensor saves its energy consumption
in the sleepmodewhile it performs the sensing and communi-
cation tasks in the awakemode. However, reducing the energy
expenditure rate can only prolong the network lifetime. The
sensors eventually exhaust their energy even when they apply
the efficient sleep-awake mechanisms.

To achieve the perpetual lifetime of sensor networks, recent
studies [6]–[15] proposed battery charging technologies. In
literature, these studies can be further classified into two
categories: wireless energy transferring and environmental
energy harvesting technologies.

The wireless energy transferring technologies [6]–[10]
mainly transmitted the electrical energy from a power trans-
mitter to a power receiver without the interconnecting wires.
The wireless power transmitter periodically moved towards
the sensor and then recharge its battery when the sensor
runs out of its battery. Studies [6]–[10] assumed that wire-
less power transmitters were mobile sinks and they can
recharge the sensor to support its perpetual lifetime. How-
ever, the wireless power transmitter took a long time and
consumed a large amount of energy to visit all the sensor
nodes, especially for a large-scale monitoring region. On the
other hand, environmental energy harvesting [11]–[15] is an
efficient way to cope with the energy problem. There are
lots of environmental energy resources, such as wind, solar,
thermal and so on. Solar power is the most promising among
all of the environmental energy resources [16]. Using solar
power, the sensors can recharge its battery without mobile
sink moving toward any sensor because the scale of sunlight
is extensive. As a result, environmental energy harvesting can
reduce the extra energy consumption.

To avoid the hardware cost for the replacement of battery
and the energy consumption of wireless power transmitters,
this paper investigates the target coverage issue for the solar-
powered sensor networks. The challenge is that energy har-
vesting is usually insufficient to support the uninterrupted
operations of sensors. In general, it is necessary to make a
duty cycle for scheduling each sensor staying in charging or
working states. It is a fact that the surveillance quality of each
target for a given time slot highly depends on the cooperative
sensing of those sensors staying in the working state in a
certain time slot. Consequently, how to schedule the sensors
such that the lowest surveillance quality can be maximized is
still a big challenge and needs to be further investigated.

This paper assumes that the sensor nodes can recharge its
battery while monitoring the point of interests (POIs) at the
same time, which reflects the capability of the most practical
sensors. The event detection probability for eachPOI depends

on the distance between the sensor and the POI. The problem
is how to design an activation schedule for the sensors to
achieve the highest surveillance quality while maintaining the
perpetual operation of the networks.

The key contributions of the proposedMMQTmechanisms
are itemized as follows:

A. MAINTAINING THE PERPETUAL NETWORK LIFETIME
The proposedMMQT mechanisms consider the working and
recharging schedules for maintaining their perpetual lifetime.
This strategy further guarantees that the recharged energy of
each sensor satisfies the required energy for working opera-
tions in each cycle.

B. CONSIDERING THAT POIs HAVE DIFFERENT
IMPORTANCE
Different from existing studies [11]–[15], the proposed algo-
rithm considered that different POIs might have different
importance since they play different roles depending on the
tasks. The proposedMMQT guarantees that the POIs with the
higher importance would have a higher quality of monitoring
(QoM).

C. THE PHYSICAL FEATURES OF THE SENSOR ARE TAKEN
INTO CONSIDERATION
This paper applies the PSM to evaluate the surveillance qual-
ity which can reflect the physical features of sensing. Most
of the existing works [12]–[15] applied BSM to develop the
target coverage algorithms. Their estimations of coverage
quality were not accurate and might result in coverage holes
in the applications.

D. ACHIEVING HIGH SURVEILLANCE QUALITY FOR EACH
POI
Study [14], [15] did not guarantee that all the POIs in the
sensor network are covered at any given time. The proposed
MMQT achieves high surveillance quality for each POI by
allocating an unscheduled sensor to cooperativelymonitor the
bottleneck POI which has the lowest surveillance quality. As
a result, the surveillance quality of the bottleneck POI can be
improved and hence the minimal surveillance quality of the
POIs is likely to be maximized.
The rest of the paper is organized as follows. Section II

reviews the related work and compares them with the pro-
posed MMQT. Section III presents the assumptions, net-
work model and problem formulation. Section IV gives
detailed descriptions of the activation scheduling algorithms.
SectionV investigates the performance improvements against
the existing studies. Finally, section VI gives the conclusion
and future work of this study.

II. RELATED WORK
This section presents the existing studies related to the target
coverage issue in WSNs. In literature, these studies can be
divided into two categories: energy conservation and the
solar-powered categories.
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TABLE 1. Comparisons of the proposed MMQT and existing mechanisms.

Related studies fall in the energy conservation category
assumed that each sensor is battery powered. To extend the
network lifetime, most of them scheduled the sensor nodes
staying in sleep and the awake modes in turn. In studies
[1]–[3], the sensors decided their activation schedule in a
distributed manner according to the neighboring information.
The sensors were partitioned into a number of subsets, and
each of themwould take turns to cover thePOIs. Although the
proposed approaches can prolong the network lifetime, the
energy balance issue between different subsets of sensors did
not be considered. Study [4] proposed an activation schedul-
ing approach which further considered the density and the
energy consumption of each subset of the sensors. Study [5]
considered the communication of all sensors and proposed
a topology control protocol which can separate the sensors
into specific subsets, and maintain the communication of the
network. Although studies [1]–[5] can increase the network
lifetime of sensors, they did not consider that the sensors can
recharge its battery by the environmental energy harvesting.
As a result, the battery of the sensor will drain as time goes
by.

To provide the perpetual operation of wireless sensor net-
works, some other studies [11]–[15] fall in the solar-powered
category which assumed that the battery of each sensor can
be recharged by solar power. Study [11] proposed a robust
target coverage for energy harvesting wireless sensor net-
works. This study considered three novel robust coverage
requirements. First, sensor nodes must not expend more than
their total harvested energy over T time slots. Second, the
energy expenditure of each sensor node should not exceed the
energy harvested in each slot. Finally, the energy expenditure
of sensor nodes should not exceed the energy accumulated
in the current slot. Furthermore, they considered the random
energy arrivals in the network and ensures all the targets are
monitored continuously. However, it could not guarantee that
all the POIs are covered at any given time.
Study [12] addressed the target coverage problem in a

solar-powered sensor network where each sensor can control
its sensing range. Study [13] investigated the target coverage
problem and aimed at maximizing the network lifetime of
rechargeable wireless sensor networks. It scheduled sensors
in a way that one subset of sensors stayed in an active state

while other sensors stayed in a sleep state to recharge their
battery. It proposed a linear programming based solution to
determine the activation schedule of sensor nodes. Although
studies [12] and [13] considered the solar-powered sensors
and provides the perpetual operation of wireless sensor net-
works, they did not consider that differentPOIs have different
importance.

Study [14] considered the quality-aware target coverage
problem in an energy harvesting sensor network. For a given
monitoring period, the sensors were powered by renewable
energy sources and operated in a duty cycle mode. It sched-
uled a different subset of sensors to be activated in each time
slot. As a result, the coverage quality was increased with the
number of time slots in which a target was covered. Although
study [14] aimed to maximize the coverage quality of the
entire network, they did not consider how to balance the
QoM of each POIs at any given time and cooperative sensing
among sensors.

Study [15] proposed a greedy hill climbing activation
scheme which assumed that sensors can either recharge its
battery or monitor POIs at the same time. The detection
probability of a sensor to some POI depends on the distance
between the sensor and POI. The proposed approach firstly
calculated the ratio between the recharge and discharge time
as its charging period to ensure a sensor can supply the energy
which was consumed in the working period. Then it sched-
uled a sensor to be active in a time-slot aiming to maximize
the incremental utility together with the sensor previously
scheduled. Although it provided the perpetual operation of
wireless sensor networks and maximize theQoM of the entire
network, it cannot guarantee that all the POIs are covered at
any given time. Furthermore, it did not consider the different
importance of different POIs.

The studies [11]–[15] considered the schedule of sensors
and the efficiency of solar power. However, they did not
consider how to balance the QoM of each POIs at any given
time. Furthermore, they did not consider the issue that POIs
might have different importance. Table 1 summaries the com-
parisons between this paper and the existing studies which
considered the solar-powered sensor networks. This paper
investigates the target coverage problem by considering the
PSM. The objective of this paper is to maximize the QoM
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FIGURE 1. An example of the considered network.

of the target with minimal QoM. The cooperative sensing
is taken into account. The proposed approaches schedule
the sensors based on the two-dimensional space time points
which consist of different targets and the time slots of each
cycle. The cooperative sensing contribution of each sensor
will be calculated for each space time point. In each run, one
sensor that has the largest cooperative sensing contribution
to the bottleneck space time point will be scheduled to be
active at that point, aiming to maximize theQoM of the target
with the minimal QoM. As a result, the weakest QoM among
all targets will be maximized run by run while the perpetual
network lifetime can be maintained.

III. NETWORK ENVIRONMENT AND PROBLEM
FORMULATION
This section firstly introduces the network environment and
assumptions of the considered solar-powered sensor net-
works. Then, the problem formulation of this study is pre-
sented.

A. NETWORK ENVIRONMENT
This paper assumes that a set ofmPOIsO = {o1, o2, . . . , om}
is distributed over a two-dimensional region R with size L x
W , where L and W are the length and width of R, respec-
tively. Assume thatPOIs have different importance since they
play different roles depending on the executing tasks. Let wi
be the weight of POI oi. The POI with higher importance
would have a larger weight value. In region R, there are
a set of n solar-powered homogeneous sensors, denoted by
S = {s1, s2, . . . ,sn}, which are randomly deployed over
the monitoring region. The sensing radius of each sensor is
denoted by rs, which is the same for all the sensors and the
clocks of all sensors have been synchronized. Fig. 1 gives a
scenario of the considered network where the flag and node
represent the POI and sensor, respectively.

B. SENSING MODEL
In this paper, the Probabilistic Sensing Model (PSM) [17]
is applied. The following gives an example to illustrate the
PSM. As shown in Fig. 2, the red point denotes the POI
which is monitored by the sensor sj. The sensing range of
any sensor sj is divided into two regions, including the guar-
antee zone which is marked with a light violet color and the
uncertain zone which is marked with light green color. Let
Zgutee and Zuncer denote the guarantee and uncertain regions
of the sensing range of any sensor, respectively. Let rgs and rs

FIGURE 2. The applied Probabilistic Sensing Model.

denote the radiuses of Zgutee and Zuncer , respectively. When
the event occurs in the region Zgutee, the detection probability
of sensor sj is 100%. However, in case the event is occurred in
Zuncer , the detection probability of an event by the sensor sj
is decreased with the distance between the sensor sj and POI.

Let p
(
sj, oi

)
denote the detection probability of POI oi by

sensor sj. Let d
(
sj, oi

)
represents the Euclidean distance of

the sensor sj and the POI oi. Exp. (1) presents the detection
probability p

(
sj, oi

)
of sensor sj to POI oi.

p(sj, oi) =


1, if d(sj, oi) ≤ r

g
s

e−λ(d(sj,oi)−r
g
s )
γ

, if rgs < d
(
sj, oi

)
< rs

0, if rs ≥ d
(
sj, oi

) (1)

where the parameters λ and γ are the path-loss exponents of
the sensing signal strength and could be adjusted according
to the physical properties of the sensor. Assume that the
coordinates of sj and oi are

(
xsj , y

s
j

)
and

(
xoi , y

o
i

)
, respectively.

The distance d
(
sj, oi

)
in Exp. (1) can be calculated by

d
(
sj, oi

)
=

√(
xsj − x

o
i

)2
+

(
ysj − y

o
i

)2
.

C. RECHARGING AND DISCHARGING MODEL
Assume that each solar-powered sensor is energy constraint
and rechargeable. Each sensor has four possible states,
including sensing-only, recharging-only, sensing & recharg-
ing and sleeping states. Each sensor consumes energy when
it stays in sensing-only state or sensing & recharging state.
A sensor staying in recharging-only state can be recharged
from the solar energy resource. In the sensing & recharging
state, each sensor can perform the sensing and recharging
operations simultaneously while the sensor staying in the
sensing-only state will turn on its sensing component aiming
to monitor the covered POIs. In the sleeping state, the sensors
will not participate in sensing and other operations until it
changes state. Since sensors can’t be recharged at night,
the sensor staying in sensing-only state can perform sensing
operation.

In the recharging-only state, each sensor has to consume
some energy to activate its solar-panel. Let emin be the
energy reserved for solar-panel activation. Let erec denote
the energy that the sensor can obtain from the solar-power
in the recharging-only state in one time slot. That is to say,
in the recharging-only state, the sensors would gain erec−emin

energy in one time slot. The sensors would collect some
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FIGURE 3. The residual energy of the sensor.

information from thePOIs which they covered in the sensing-
only state and transmit the information to the sink node after
the sensing-only state. Therefore, they have to reserve certain
energy for transmission after the sensing-only state. Let esen

denote the energy consumption of sensors in one time slot
in the sensing-only state, and erpt denote the reserve energy
for the transmission after the sensing-only state. Therefore,
the entire energy consumption of the sensors in the sensing-
only state in one time slot is esen + erpt and reserve at least
emin for triggering the recharge circuit. The energy of sensors
does not change in the sleeping state.

This work used a simple battery model with no energy
loss or leakage. Although the sensor can recharge its battery
by solar power, we assume that the battery capacity is limited.
As a result, the sensors cannot unlimitedly store the energy
in the battery capacity. Let emax be the upper bound of the
battery capacity. Once the sensors remaining energy is less
than emin, then the sensor is treated as dead.

Fig. 3 depicts an example of residual energy of sensor sj
at different time slots. It is assumed that the recharge and
discharge ratio is 4:1. Therefore, each sensor can stay in
a sensing & recharging state for one time slot and stay in
recharging-only state for the remaining four slots. Let ej,k
denote the remaining energy of sensor sj at the starting time
point of the slot tk . As shown in Fig. 3, if the sensor sj was
in the recharging-only state at time slot tk−1, the ej,k is the
smaller one between ej,k−1 plus the increased energy erec and
the upper bound of battery capacity emax . If the sensor sj was
in the sensing-only state at time slot tk−1, then ej,k is ej,k−1
minus the energy consumption erpt + esen at time slot tk−1.
The values of αrecj,k , α

sen
j,k and αslpj,k are defined in Exps. (5), (6)

and (7). Therefore, the residual energy of the sensor sj at time
slot tk is given in the Exp. (2).

ej,k =


min

(
ej,k−1 + erec, emax

)
, if αrecj,k−1 = 1

ej,k−1 −
(
esen + erpt

)
, if αsenj,k−1 = 1

ej,k−1, if αslpj,k−1 = 1

. (2)

Let τ denote the length of a time slot. There are three
physical parameters which impact the energy of each sensor,
including battery capacity, discharging rate and recharging
rate denoted by emax , usen and urec. The values of erec and
esen can be calculated by applying Exp. (3).

erec =
emax − emin

urec
and esen =

emax − emin

usen
(3)

Let κ denote the ratio of the discharging and recharging
rates. The value of κ is shown in Exp. (4).

κ =

⌈
erec

esen

⌉
(4)

The time line can be divided into several cycles, each cycle
is denoted by T , which consists of ϑ equal sized time slots
where ϑ = κ+1. It is obvious that the value of erec is κesen

such that each sensor can recharge energy for consuming
in the sensing state because each sensor has an identical
schedule in each cycle.

Let tk denote the k-th time slot in a cycle T . The following
further defines three Boolean variables αrecj,k , α

sen
j,k and αslpj,k ,

which represent the operation of sensor sj stays at time slot
tk . That is,

αrecj,k =

{
1, if sj performs recharging operation in tk
0, otherwise.

(5)

αsenj,k =

{
1, if sj perfroms sensing operation in tk
0, otherwise.

(6)

α
slp
j,k =

{
1, if sj sleeps in tk
0, otherwise.

(7)

For example, if the sensor sj stays in sensing & recharging
state at certain time slot tk , then we have αrecj,k = 1, αsenj,k = 1

and αslpj,k= 0.

D. PROBLEM FORMULATION
This paper addresses the target coverage problem for solar-
powered sensor networks. Our objective is to propose an
activation schedule algorithm for the sensors which aims to
maximize the monitoring quality of the POIwith the minimal
quality of monitoring among all POIs under the constraint of
perpetual network lifetime. This section initially introduces
the objective function and then the constraints which should
be satisfied when achieving the maximal value of the objec-
tive function.
Utility function: Let Si denote the set of sensors that are

able to monitor target oi. That is,

Si =
{
sj|d

(
oi, sj

)
< rs

}
(8)

Let Si,k denote the set of the activated sensors that can
monitor the POI oi at time slot tk . The value of Si,k can be
evaluated as shown in Exp. (9).

Si,k =
{
sj|d

(
oi, sj

)
< rs ∧ αsenj,k = 1

}
(9)

The following introduces the cooperative sensing probabil-
ity among sensors which monitor the common object at the
same time slot. The un detection probability of sensor sj to
target oi is 1 − p

(
sj, oi

)
. It implies that the probability of all

sensors sj∈Si,k not detecting the event occurred at the target
oi is ∏

sj∈Si,k

(
1− p

(
sj, oi

))
.
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Let pi,k denote the detection probability of POI oi for any
sensor sj ∈ Si,k at time slot tk . The value of pi,k can be derived
by Exp. (10).

pi,k= 1−
∏

sj∈Si,k

(
1− p

(
sj, oi

))
. (10)

Let ui,k denote the detection probability of POI oi at time
slot tk . This paper defines ui,k as the event detection proba-
bility pi,k divided by the weight of the POI oi. That is,

ui,k =
1−

∏
sj∈Si,k (1−p(sj, oi))

wi
,∀αsenj,k = 1 (11)

Definition: Quality of Monitoring (QoM)
Let ui represent theQoM of POI oi. As shown in Exp. (12),

the ui is defined as theminimumQoM ofPOI oi in all possible
time slots.

ui = min(ui,k )∀tk (12)

The following presents the objective function and the con-
straints of the solar-powered sensor networks.
Objective function:

Max(Min(ui)),∀tk ∈ T ,∀oi ∈ O (13)

The objective function of the proposed mechanism is to
maximize the minimal QoM at each time slot for a given set
of sensors S and the POIs O while maintaining the perpetual
lifetime of WSNs. Some constraints given below should be
satisfied.

Exp. (14) gives the state constraintwhich ensures that each
sensor can stay in one of the four possible states, includ-
ing sensing-only, recharging-only, sensing & recharging and
sleeping state, at any given time.

1) STATE CONSTRAINT(
αsenj,k + α

slp
j,k

)
≤ 1 and

(
αrecj,k + α

slp
j,k

)
≤ 1,∀j,∀k (14)

Recall that each cycle is denoted by T . The following active
constraint guarantees that the summation of numbers of the
active sensors in all time slots of a cycle is equal to or smaller
than the total number of the sensors in the entire network.

2) ACTIVE CONSTRAINT∑
tk∈T

αsenj,k ≤ |S| ,∀sj ∈ S (15)

As shown in Exp. (16), the energy constraint guarantees
that the energy consumption of the sensor during the network
lifetime is less than or equal to the energy harvested by the
solar power. This constraint guarantees the perpetual lifetime
of each sensor.

3) ENERGY CONSTRAINT∑
tk∈T

(
(ej,k + e

rec)αrecj,k

)
≥
(
esen + erpt

)
αsenj,k ∀sj ∈ S (16)

The following section presents the proposed scheduling
algorithm which aims to achieve our objective function given
in (13) while satisfying the constraints (14), (15) and (16).

IV. THE PROPOSED SCHEDULING ALGORITHM
This paper presents two scheduling approaches to the sensors,
called Centralized Target Coverage Mechanism (C-MMQT)
and Distributed Target Coverage Mechanism (D-MMQT).
The C-MMQT is executed in the base station which should
collect all information about the sensors and targets, includ-
ing their locations and the weight of each target. Then the
scheduling results are delivered to the corresponding sensors.
Alternatively, applying theD-MMQT, each sensor exchanges
its location information with neighbors, makes the decision
for its own schedule, and then notifies its schedule to the
neighboring sensors. Although the C-MMQTmechanism can
schedule the sensors with complete information, it has dis-
advantages including time and energy consumptions for data
collection and scheduling result notification, as well as high
computational complexity, as compared with the D-MMQT.
The following presents the details of the proposed MMQT
mechanisms.

A. C-MMQT MECHANISM
The proposed C-MMQT mechanism assumes that the loca-
tions of all sensors and POIs are known. The proposed C-
MMQT mechanism consists of two phases: Network Initial-
ization Phase (NI Phase) and Scheduling Phase (SC Phase).
In the NI Phase, the length of each cycle and the detection
probability of each sensor to each POI should be calculated.
In the SC Phase, the sensors will be scheduled one by one
according to current cooperative sensing probability.

1) PHASE I: NETWORK INITIALIZATION (NI PHASE)
In the NI Phase, the length of each cycle should be firstly
calculated. This paper uses the ratio between the recharge and
discharge times as its work period. For example, if there is a
sensor that uses two time slots to recharge its battery 50J, that
50J can support the sensor to coverPOIs only for a single time
slot. That is to say, a sensor can recharge 25J for each time
slot in the recharging-only state, but it consumes 50J for a
single time slot in the sensing-only state. Therefore, the ratio
between the recharge and discharge time is 2/1 and the length
of each cycle for all sensors is 2+1. The sensors can only
monitor the POIs for one time slot and have to recharge its
battery in the other two time slots to guarantee that the sensor
satisfies a perpetual lifetime. Assume that there are σ cycles
for the entire day. Among them, there are β cycles in the
daytime and σ − β cycles in the nighttime.

The sensors have to reserve some energy recharged in the
daytime tomonitor thePOIs in the nighttime since the sensors
are solar-powered and they cannot recharge their battery in
the nighttime. Let notation enight denote the reserved energy
of the sensors for the nighttime. Assume that the reserved
energy enight can support the energy consumption during the
nighttime. Therefore, the reserved energy enight have to be
greater than or equal to the energy consumption of the sensors
during the nighttime. That is,

(σ − β)(esen + erpt ) ≤enight (17)
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Hence, the sensors cannot utilize all of the energy emax in
the daytime. They have to deduct the reserved energy enight ,
and the energy required for sensors to activate its solar panel
emin. As a result, the energy that a sensor can utilize in the
daytime is shown in Exp. (18).

β(emax − emin)−enight (18)

In terms of recharging-only state, in order to make sure
that the energy consumption and harvesting is balancing,
the sensors have to supply the energy which was consumed
and apportion the reserved energy enight during each cycle in
the daytime. The required energy of each sensor during each
cycle in the daytime is shown in Exp. (19).

β(emax − emin)−enight

β
(19)

When the base station completes the calculation of the
energy consumption and the energy supplement of each sen-
sor during a cycle, it will calculate the recharging and dis-
charging times. The energy consumption of sensors in each
cycle is esen+erpt . Let ϕdaytime_sen denote the number of time
slots that sensors can monitor the POIs in the daytime. The
value of ϕdaytime_sen can be calculated by applying Exp. (20).

ϕdaytime_sen =

⌊
β(emax − emin)−enight

esen + erpt

⌋
(20)

The energy supplement of sensors of a time slot in the
recharging-only state is erec − emin. Therefore, the number
of time slots that sensors have to recharge its battery in the
daytime is shown in Exp. (21).

ϕdaytime_rec =

⌈
β(emax − emin)−enight

erec − emin

⌉
(21)

In the daytime, the proposedC-MMQTmechanismwill use
the ratio of recharging time ϕdaytime_rec and discharging time
ϕdaytime_sen to calculate the length of one cycle. Let notation
γ daytime be the ratio of recharging time and discharging time.
The γ daytime can be calculated by applying Exp. (22).

γ daytime =

⌈
ϕdaytime_rec

ϕdaytime_sen

⌉
(22)

The value of γ daytime can be derived by applying the fol-
lowing expression.

T = γ daytime + 1 (23)

Fig. 4 depicts the relation of cycles in the daytime and night-
time. Recall that τ denotes the length of time slot. According
to the recharging and discharging model, the length of esen

is τ and the length of erec is κτ . Let L denote the length
of a whole day. One day can be divided into two intervals:
daytime and nighttime which are denoted by Lday and Lnight

respectively. Obviously, we have L = Lday + Lnight and
they can be partitioned into a number of equal-length slots
as shown in Fig. 4.

Recall that notation enight denotes the energy consumption
of sensors in the nighttime. The number of time slots that

FIGURE 4. A cycle of daytime and nighttime.

sensors can monitor the POIs in the nighttime is shown in
Exp. (24). The base station will divide the nighttime into
γ nighttime_sen cycles. Each sensor only can monitor the POIs
in one of the time slots in a cycle and remain in the sleeping
state in rest of the time slots to make sure that the total energy
consumption in the nighttime is the reserved energy enight .

γ nighttime_sen =

⌊
enight

esen + erpt

⌋
(24)

After the NI Phase, the length of one cycle have been cal-
culated. Then the SC Phase will further schedule the sensors
in one cycle to achieve the maximal QoM of the lowest target
at any given time slot and to maintain the perpetual operation
of the network.

2) PHASE II: SCHEDULING PHASE (SC PHASE)
In the SC Phase, the base station will schedule the sensors for
one cycle in the daytime and then in the nighttime separately.

In this phase, there are three main tasks. First, the base
station will find the space time points which have the smallest
value. Second, it will find the sensors which canmaximize the
space time point that have the smallest value. Finally, it will
schedule one best sensor from the unscheduled sensors. The
above mentioned three tasks will be repeatedly performed
until all sensors have been scheduled in the cycle. In the
following, the three tasks will be described.

a: TASK 1: IDENTIFYING THE ‘‘BOTTLENECK SPACE TIME
POINT’’
This task aims to identify the bottleneck space time point of
the newly selected POI such that the cooperative detection
probability can be maximized.

To present the operations of this task, two matrices, includ-
ing the Msch

m×η and MQoM
m×η , will be introduced. Let Msch

m×η
be a two-dimensional space time scheduling matrix where m
denotes the number of targets and η denotes the cycle length.
Each element Msch[i, j] in Msch denotes the set of sensors
which have been scheduled to monitor POI oi ∈ O at time
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slot tj ∈ T . The space time matrix will be adopted to present
the current scheduling results of each POI oi ∈ O at time slot
tj ∈ T .

Based on the scheduling of the current space time schedul-
ing matrix Msch, each POI oi ∈ O will have a QoM value at
each time slot tj ∈ T . Let MQoM

m×η denote a two dimensional
space time QoM matrix where m denotes the number of tar-
gets and η denotes the cycle length. Each elementMQoM [i, j]
inMQoM denotes the QoM value of space time point of POI
oi ∈ O at time slot tj ∈ T . The space time QoM matrix will
be adopted to present the QoM value of each POI oi ∈ O at
time slot tj ∈ T of the current scheduling.
Let qi,j denote the QoM value of elementMQoM [i, j]. The

value of qi,j can be calculated by applying Exp. (25).

qi,j = 1−
∏

sk∈Msch[i,j]
(1− p (sk , oi)) (25)

Let qweaki,j denote the smallest value inMQoM [i, j]. That is,

qweaki,j = Min
qi,j∈MQoM [i,j]

qi,j (26)

Let (oi, tj) denote the space time point which is the coor-
dinates of MQoM associated with POI oi at time slot tj. This
task aims to identify the bottleneck space time point which
has the smallest QoM value inMQoM .
In this task, the base station will find the space time points

which have the smallest QoM value. Let (oweaki ,tweakj ) denote
the weakest space time point corresponding to qweaki,j . Let
STweak denote the set of all weakest space time points. We
have

STweak = {(oweaki ,tweakj )|MQoM [i, j] = qweaki,j } (27)

According to Exp. (27), this task can identify the set STweak

of all weakest space time points.
In the next two tasks, the base station will schedule one

sensor which has the largest contribution to the bottleneck
space time point, in terms of QoM.

b: Task 2: Selecting the Best Sensor for the ‘‘Bottleneck’’
This task aims to select the best sensor from the unscheduled
sensor set to improve the cooperative detection probability of
the weakest space time points (oweaki ,tweakj ) ∈ STweak .

Let Ssch denote the set of scheduled sensors. The value of
Ssch is shown in Exp. (28).

Ssch =
⋃

1 ≤ i ≤ m
1 ≤ j ≤ λ

M sch [i, j] (28)

Let Sun_sch denote the set of all unscheduled sensors. The
set of Sun_sch can be calculated by using the following equa-
tion.

Sun_sch = S \ Ssch (29)

The base station is responsible for repeatedly performing
this task until all the sensors which have a contribution to
(oweaki , tweakj ) ∈ STweak have been scheduled. Let ℘weak

denote the weakest space time point obtained from the first
task. That is,

℘weaki,j =

(
oweaki , tweakj

)
,∀℘weaki,j ∈ STweak (30)

Recall that this task aims to find the best sensor to be
scheduled to maximize the QoM of currentMQoM . Consider
each unscheduled sensor sx ∈ Sun_sch. The next issue is to
evaluate the contribution to the QoM of current MQoM if
sensor sx is scheduled.

Let bweaki,j,x denote the benefit of the sensor sx monitoring oi
at tj. The value of bweaki,j,x can be calculated by applying Exp.
(31).

bweaki,j,x = 1−
∏

sj∈Msch[i,j]∪{sx }

(
1− p

(
sj,Oi

))
− qi,j (31)

Let ρi,j be a Boolean variable representing whether or not
℘weaki,j belongs to STweak . That is,

ρi,j =

{
1 if ℘weaki,j ∈ STweak

0 otherwise
. (32)

Let Bweaki,j,x denote the total benefit of the sensor sx to all
weakest space time points in STweak .

Bweaki,j,x =
∑

oi∈Ox
bweaki,j,x .ρi,j (33)

Similarly, let Bnon_weaki,j,x denote the total benefit of the sen-
sor sx to all space time points not in STweak . We have

Bnon_weaki,j,x =

∑
oi∈Ox

bweaki,j,x .(1− ρi,j) (34)

LetOx denote the set of targets covered by a sensor sx . The
total benefit of the sensor sx to the QoM of all targets oi ∈ O.

Bi,j,x = ω
(
Bweaki,j,x

)
+ (1− ω)Bnon−weaki,j,x (35)

where ω is the weight for combining two benefits Bweaki,j,x and
Bnon−weaki,j,x .

Let Bbesti,j be the maximal benefit of the weakest space time
point (oweaki , tweakj ) obtained by considering all possible sx ∈
Si. We have

Bbesti,j = max
sx∈si

Bi,j,x (36)

Let sbesti,j denote the best sensor that has the largest contri-
bution to weakest space time point (oweaki , tweakj ). The sbesti,j
can be derived by applying Exp. (37).

sbesti,j = argmax
sx∈si

Bi,j,x (37)

The above sbesti,j is the best sensor for improving the certain
weakest space time point ℘weaki,j ∈ STweak . Since there might
be more than one ℘weaki,j in STweak , the weakest space time
point that could obtain maximal benefit from the help of
sbesti,j should be identified. Consequently, the best sensor to
be scheduled for improving the maximal QoM of the current
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weakest space time points ℘weaki,j ∈ STweak can be derived by
applying Exp. (38).

sbest = arg max
℘weaki,j ∈ST

weak
Bbesti,j (38)

Let Bbest
î,ĵ

be the maximal benefit obtained by comparing all

schedules to the weakest space time point in STweak . We have

Bbest
î,ĵ
= max
℘weaki,j ∈ST

weak
Bbesti,j (39)

Let ℘weak
î,ĵ

be the best space time point which can obtain

the maximal benefit from the help of sbest . We have

℘weak
î,ĵ
= arg max

℘weaki,j ∈ST
weak

Bbesti,j (40)

According to the Exp. (40), the base station selects the sbest

from the Sun_sch to monitor the space time point

℘weak
î,ĵ
= (oweak

î
, tweak
ĵ

)

If there is more than one sensor which can maximize the
cooperative detection probability of oweaki at tweakj , the base
station will select the best sensor sbest to monitor the target
oweak
î

at time slot tweak
ĵ

for obtaining the maximal benefit of
surveillance quality. In the following task, the base station
will schedule a sensor sbest to the bottleneck space time point.

c: TASK 3: SCHEDULING THE SENSOR FOR THE
‘‘BOTTLENECK’’
This task schedules the best sensor sbest obtained in the sec-
ond task to monitor the weakest space time point for improv-
ing its cooperative detection probability. First, the sbest should
join the space time scheduling matrix. That is,

Msch
[
î, ĵ
]
=Msch

[
î, ĵ
]
∪ {sbest } (41)

All elements in the ĵ-th column of space time QoM matrix
should be updated accordingly, as shown in Exp. (42).

MQoM
[
î, ĵ
]
= qî,ĵ = 1−

∏
sk∈Msch

[
î,ĵ
] (1− p (sk , oî))

(42)

for each oî in the coverage of s
best .After that, the sbest should

be removed from Sun_sch. That is,

Sun_sch = Sun_sch \ {sbest } (43)

The sensor sbest also needs to be included in the set Ssch of
scheduled sensors.

Ssch = Ssch ∪ {sbest } (44)

The new weakest space time point should be re-identified
by applying Exp. (27). The base station will repeatedly per-
form the three tasks designed in this phase until all the sensors
have been scheduled.

Fig. 5 gives an example of selecting the best sensor to
improve the QoM of the weakest space time point. Assume

FIGURE 5. An example of selecting the best sensor s2 to improve the
QoM of space time point ℘weak

î,ĵ
=(oweak

2 ,tweak
3 ).

that S ={s1, s2, s3, s4} is the set of sensors and O ={ o1, o2,
o3} is the set of POIs. Each sensor si ∈ S calculates its
detection probability to o1, o2 and o3 by applying Exp. (31).
As shown in Fig. 5, there is a set of weakest space time points
shown in STweak . To schedule the sensor s4 for monitoring
℘weak
î,ĵ
= (oweak3 , tweak1 ), it has very small contribution to the

POIs o1 and o2 because of its cooperative detection proba-
bility. But sensor s2 has a large contribution to the POIs o2
and o3, as compared to the sensor s4. Therefore sensor s2 is
selected as the best sensor to improve the best weakest space
time point ℘weak

î,ĵ
= (oweak2 , tweak3 ). Hence, the values in the

MQoM [2, 3] and MQoM [3, 3] are updated according to the
schedule of sensors.

Though the proposed centralized algorithm C-MMQT can
efficiently schedule all sensors aiming to maximize the QoM
of the target with the minimalQoM, it assumes that the infor-
mation of all sensors and POIs are known to each sensor. The
following subsection further presents a distributed algorithm,
called D-MMQT, which only needs to maintain the local
information for each sensor.

B. D-MMQT MECHANISM
This section proposed a distributed scheduling algorithm,
called D-MMQT. Assume that each sensor is only aware of
the information of its neighbors. All sensors are clock syn-
chronized. There are several challenges when designing D-
MMQT. The first challenge is that the local informationmain-
tained by all nodes might be different, even though they are
neighbors. The contradiction among local decisions made by
neighbors might exist. To cope with this problem, D-MMQT
should guarantee that the larger benefit of the local decision
will be the final decision when the decisions exist contra-
diction. Second, the broadcast packets containing the local
decisions might have collisions. The D-MMQT should avoid
collision occurrence. To cope with the decision-contradiction
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FIGURE 6. An example of three phases of D-MMQT.

and packet collision problems, the proposedD-MMQTmech-
anism consists of three phases: Scheduling Phase (SC Phase),
Random Back-off Phase (RB Phase) andDecision Announce-
ment Phase (DA Phase), as shown in Fig. 6. In the SC phase,
each sensor identifies theweakest space time point and selects
the best sensor to improve theQoM of the weakest space time
point based on its local information.

In the RB phase, each sensor waits for a back-off time
based on the contribution of its scheduling decision. After
waiting for the back-off time, each sensor enters the DA
phase which broadcasts its decision to notify its neighbors.
All neighbors will update its space time QoM and space time
scheduling information according to the received decision
from neighbors. The following presents the details of each
phase.

1) PHASE I: SCHEDULING (SC PHASE)
Each sensor, say sv, in SC phase should perform four tasks.
The first task is to calculate the probability of each neighbor-
ing sensor to each target covered by sv. Let Ov denote the set
of targets in the sensing range of sensor sv. Let Nv denote the
set of neighbors of sensor sv. That is,

Nv = {si|d (si, sv) < rc} , sv ∈ S (45)

Let lsensori and l targetj denote the locations of neighbor si ∈
Nv and target oj ∈ Ov, respectively. Based on the information
including locations lsensori of all neighbors si ∈ Nv and
locations l targetj of all targets oj ∈ Ov, the probability P(si, oj)
can be calculated by applying Exp. (1).

The second task is to calculate the cycle time which can be
calculated by applying Exps. (20), (21), (23) and (24). The
third task is to find the weakest space time point. Similar to
the global matricesMsch

m×η andM
QoM
m×η as defined in SC phase

of C-MMQT approach, we define that Msch,v
mv×ηv and MQoM ,v

mv×ηv
denote the local space time scheduling and QoM matrices
of sensor sv, respectively, where mv denotes the number of
targets covered by sv and ηv denotes the cycle length. Let qvi,j
denote theQoM value of an elementMQoM ,v[i, j]. Let qweak,vi,j

denote the smallest value inMQoM ,v[i, j]. That is,

qweak,vi,j = Min
qvi,j∈M

QoM ,v[i,j]
qvi,j (46)

Similarly, let ℘weak,vi,j = (ovi , t
v
j ) denote the weakest space

time point corresponding to qweak,vi,j and STweak,v denote the
set of all weakest space time points. We have

STweak,v = {(ovi ,t
v
j )|M

QoM ,v[i, j] = qweak,vi,j } (47)

Let Dv = (svu, o
v
i , t

v
j ) denote the decision made by a sensor

sv, which schedules sensor su∈Nv∪ sv to monitor the weakest
space time point ℘weak,vi,j = (ovi , t

v
j ). According to Exp. (38),

the best sensor svu inDv can be derived. Similarly, the weakest
space time point ℘weak,vi,j = (ovi ,t

v
j ) can be derived according

to Exp. (40). Let Bv denote the benefit obtained from the
decision Dv. The value of Bv can be derived according to
Exp. (39).

2) PHASE II: RANDOM BACK-OFF PHASE (RB PHASE)
In the RB Phase, each sensor waits for a random time. Two
major reasons for applying the random back-off policy in
the second phase. First, the decisions Dk = (sku, o

k
i , t

k
j )

of neighbors sk ∈ Nv might contradict to the decision
Dv = (svu, o

v
i , t

v
j ) made by a sensor sv. The design of ran-

dom back-off policy should guarantee that the better decision
should be announced earlier and the worse decision should
be given up accordingly. Another important reason for apply-
ing the random back-off policy is to avoid packet collisions
occurred among neighbors. To cope with the contradiction
problem and guarantee that better decision should be adopted,
the waiting time of each sensor sv should be determined
according to the contribution of its own decision. Let Rv
denote the random back-off time of the sensor sv. Since
the random back-off time should guarantee two criteria: (1)
decision with larger benefit should be announced earlier and
(2)collision avoidance, the value ofRv can be determined by
applying Exp. (48).

Rv = 1/(|N v| × Bv) (48)

It indicates that Rv is inversely proportional to the benefit
Bv and the number of neighbors of sensor sv. All the sensors
would countdown from its back-off time to 0. As shown in
Fig. 6, sensors sv and sk have made their decisions Dv and
Dk , respectively. However, the two decisions contradict to
each other because both of them schedule the same neigh-
boring sensor su to work in different time slots (tvj 6= tkj ).
In this example, sk has a larger random back-off value than
sv because that Dv leads to a larger benefit than Dk . Dur-
ing the random back-off period, if sv receives the decision
Dk = (sku, o

k
i , t

k
j ) from its neighbor sk , it will check if its

own decision Dv = (svu, o
v
i , t

v
j ) contradicts to the received

decision Dk = (sku, o
k
i , t

k
j ). If it is the case, sensor sv will

give up its decision. Otherwise, the sensor sv can still keep
its decision and wait for the counter Rv achieving zero for
broadcasting its decision. Herein, it is noticed that no matter
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whether or not decisions Dv and Dk have a contradiction, all
sensors which have received the decision Dk should update
its space time scheduling and QoM matrices according to
decision Dk = (sku, o

k
i , t

k
j ). Continue the example shown

in Fig. 6, Sensor sk should give up its decision Dk in the next
phase.

The following presents the check conditions for identifying
if the contradiction existed between two decisionsDv andDk .
Let ξ i,vsensor be the Boolean variable representing whether or
not siu is equal to the svu. That is,

ξ v,ksensor =

{
1 if svu = sku
0 otherwise

(49)

Similarly, let ψv,k
time denote the Boolean variable represent-

ing whether or not tvj is equal to t
k
j . That is,

ψ
v,k
time =

{
0 if tvj = tkj
1 if tvj 6= tkj

(50)

Decisions Dv and Dk exist contradiction if the following
condition holds.

ξ v,ksensor × ψ
v,k
time = 1 (51)

This occurs because of that sensors sv and sk schedule the
same sensor su to monitor certain targets at different time
slots. In case that Condition (51) holds, sensor sv should
give up its decision and then update its scheduling and QoM
matrices according to decision Dk .

3) PHASE III: DECISION ANNOUNCEMENT PHASE (DA
PHASE)
In the DA Phase, each sensor simply broadcasts its decision
which is made in SC phase and updates its scheduling matrix.

V. PERFORMANCE EVALUATION
This section evaluates the performance improvement of the
proposed C-MMQT, D-MMQT against the existing Quality
Aware Target Coverage Mechanisms (C-QATC, D-QATC)
and Greedy Hill-Climbing Activation Scheme (GHCAS). The
QATC algorithm [14] aimed to schedule different subsets of
sensors. Each sensor set was activated in some certain time
slot, which leads to the situation that different subsets of
targets can be covered at some certain time slots. TheGHCAS
algorithm [15], is presented to address the utility based tar-
get coverage problem by scheduling a sensor into a time-
slot to maximize the incremental utility together with the
sensor which is previously scheduled. The following firstly
illustrates the simulation environment and then presents the
simulation results.

A. SIMULATION MODEL
The simulation parameters are given in Table 2. In the exper-
imental study, the MATLAB is used as the simulation tool.
The sensor nodes and the POIs are randomly deployed in the

TABLE 2. Simulation settings.

monitoring area as shown in Fig. 7. The size of themonitoring
region is 400m×400mwhile the number of deployed sensors
is ranging from 500 to 2000. The communication radius is
20m while the sensing radius is 10m. The guarantee sensing
range for sensor detection is 5m. Let emax and emin denote
the initial energy and the energy consumption of sensors to
activate its solar panel, which is set at 1210 Joule and 10 Joule
respectively. The recharging and discharging rates of the solar
battery is 25 Joule/hour and 50 Joule/hour, respectively. That
is to say, the ratio of recharging over discharging time periods
is 2, and the cycle length is 3 time slots.

B. SIMULATION RESULTS
Fig. 8 compares the quality of monitoring of the five algo-
rithms by varying the number of sensors and the number of
POIs. The number of sensors is varied ranging from 500 to
2000 while the number of POIs is varied ranging from 20 to
110. As shown in Fig. 8, the monitoring qualities of the five
compared algorithms significantly increase with the number
of sensors. This occurs because more sensors can participate
in the monitoring task in each time slot, leading to a high
quality of monitoring. On the other hand, the monitoring
qualities of five algorithms generally decrease with the num-
ber of POIs. It occurs because when the number of POIs is
increased, more sensors are required to monitor each POIs.
In comparison, the proposed C-MMQT outperforms the other
four algorithms in terms of quality of monitoring and almost
achieves 1 when the number of deployed sensors is 2000
and the number of POIs is 20. This occurs because that the
proposed C-MMQT applies PSM and selects the sensor with
the largest contribution to improve the quality of each bot-
tleneck space time point. As a result, the C-MMQT achieves
the best performance as compared with the other four existing
algorithms.

Fig. 9 further investigates the average utility of C-MMQT,
C-QATC, D-MMQT, D-QATC and GHCAS by varying the
number of POIs. The number of sensors varies from 500 to
1500 and the number of POIs varies ranging from 20 to 110.
Let A (1500), A (1000) and A (500) denote the 1500 sensors,
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FIGURE 7. A scenario that sensors and POIs are randomly deployed in a
monitoring area with size 400m∗400m.

FIGURE 8. Comparison of C-MMQT, C-QATC, D-MMQT, D-QATC and GHCAS
in terms of monitoring quality by varying the number of sensors and the
number of POIs.

1000 sensors and 500 sensors deployed by applying algo-
rithm A, respectively, where A can be C-MMQT,C-QATC, D-
MMQT, D-QATC and GHCAS. The average utility is defined
as the utility achieved per target per time slot. As shown
in Fig. 9, the average utility of the C-MMQT is better than
those by applying C-QATC, D-MMQT, D-QATC andGHCAS
algorithms. This occurs because the proposed C-MMQT
adaptively finds the weakest space time point and schedule
the best sensor to maximize the QoM of the weakest space
time point. As a result, the proposedC-MMQTmaximizes the
quality of the target with the minimal quality. The average
QoM achieved by the proposed C-MMQT is 0.9987. When
the number of deployed sensors is 1500, the achieved average
QoM is larger than 0.9 in all cases. Finally, when the number
of sensors is 500, the average QoM is no less than 0.81.

Fig. 10 further compares the QoM of randomly selected
9 targets by applying the C-MMQT, C-QATC, D-MMQT,
D-QATC and GHCAS. In the experiment, the area of the
monitoring region is 400m ∗ 400m and the number of sen-
sors is set in 2000. In comparison, the proposed C-MMQT

FIGURE 9. Comparison of C-MMQT, C-QATC, D-MMQT, D-QATC and GHCAS
in terms of average utility by varying the number of POIs.

FIGURE 10. Comparison of C-MMQT, C-QATC, D-MMQT, D-QATC and
GHCAS in terms of quality of monitoring by selecting the targets.

algorithm outperforms the C-QATC, D-MMQT, D-QATC and
GHCAS in terms of the quality of monitoring of randomly
selected targets. This occurs because the proposed C-MMQT
considers the bottleneck quality of monitoring of the targets
and maximizes the minimal QoM of targets at any time slot
and balance their QoM which results in high quality of mon-
itoring. Besides, the C-QATC, D-QATC and GHCAS algo-
rithms aim to maximize the overall coverage quality for the
monitoring region. This policy might lead to the imbalanced
QoM of each target at any given time because it is possible
that a target with the minimal quality still remain with the
lowest QoM while the other target with the highest quality
obtains the QoM improvement.
Fig. 11 further studies the fairness indices of the compared

five algorithms. The number of sensors is varied ranging from
500 to 2000 while the number of POIs ranging from 20 to
110. The Fairness Index ζfairness of quality of monitoring is
defined as shown in Exp. (52). Let n denote the number of
sensor nodes and xi denote the quality of monitoring of sensor
node si in each cycle.

ζfairness =

(∑n
i=1 xi

)2
n
∑n

i=1 x
2
i

(52)

In comparison, the proposed C-MMQT outperforms the
other four algorithms in terms of the fairness index. This
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FIGURE 11. Comparison of C-MMQT, C-QATC, D-MMQT, D-QATC and
GHCAS in terms of Fairness Index.

occurs because the C-QATC, D-QATC and GHCAS did not
consider the importance of POIs and the lowest quality of the
target. Therefore, in some time slots, some POIs are unde-
tected which results in low fairness. The proposed C-MMQT
considers the importance of POIs, finds the weakest space
time points and schedules the best unscheduled sensor to
improve the quality of the weakest space time point. There-
fore, the fairness index of C-MMQT is close to 1.

Fig. 12 compares the fairness indices of QoM of 9 ran-
domly selected targets. The observed locations are similar to
those as shown in Fig. 10. The fairness index of quality of
monitoring can be calculated for a given n time slots or given
m locations. Let qi,j denote the quality of monitoring of j-th
location at i-th time slot in one cycle. Let ζj and ζi denote the
fairness indices of the j-th location for n time slots and the
i-th slot on m locations respectively. The value of ζj and ζi is
defined as shown in Exp. (53) and Exp. (54), respectively.

ζj =

(∑n
i=1 qi,j

)2
n
∑n

i=1 q
2
i,j

(53)

ζi =

(∑m
j=1 qi,j

)2
n
∑m

j=1 q
2
i,j

(54)

The fairness indices of the 9 randomly selected target loca-
tions being approximate to 1 which indicates that the quality
of monitoring is stable. Fig. 12(a) compares the fairness
indices of three time slots on 9 random locations. As shown
in Fig. 12(a), the proposed C-MMQT outperforms the other
four C-QATC, D-MMQT, D-QATC, and GHCAS algorithms
in terms of fairness index and almost achieves 0.987 for
all cases. This occurs because the C-MMQT considers the
bottleneck POIs and allocates an unscheduled sensor to coop-
eratively monitor the bottleneck POIs with the lowest quality
of monitoring. Similar to the results of Fig. 12(a), Fig. 12(b)
depicts that the proposedC-MMQT outperforms theC-QATC,

FIGURE 12. Performance comparison of the fairness index at 9 observed
target locations and observed timeslots.

D-MMQT, D-QATC and GHCAS algorithms in terms of the
fairness index for the observed time slots.

Fig. 13 compares the efficiency of the five compared algo-
rithms by varying the number of sensors and the number of
POIs. The number of sensors is varied ranging from 500 to
2000 whereas the number of POIs is varied ranging from
20 to 110. As shown in Fig. 13, the efficiencies of the five
algorithms increase with the number of sensors and decrease
with the number of POIs. The performance of the proposed
C-MMQT is better as compared with theC-QATC, D-MMQT,
D-QATC and GHCAS algorithms in most cases. This occurs
because the proposed C-MMQT considers the QoM of each
POI, which accurately evaluates the quality of monitoring of
all the POIs in all the time slots. The proposed algorithm
identifies the target with the lowest quality of monitoring
and schedules a sensor in order to maximize its quality of
monitoring. As a result, the quality of monitoring of all the
POIs can be significantly increased, which leads to higher
efficiency. However, when the number ofPOIs increases each
sensor can monitor a higher number of POIs in each time slot.
Therefore, the contribution of each sensor is high which leads
to higher efficiency.

Fig. 14 investigates the quality of monitoring of C-MMQT,
C-QATC, D-MMQT, D-QATC and GHCAS algorithms by
varying the coverage range and the number of POIs. The
number of sensors deployed in the monitoring region is 500.
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FIGURE 13. Comparison of C-MMQT, C-QATC, D-MMQT, D-QATC and
GHCAS in terms of efficiency index by varying the number of sensors and
the number of POIs.

FIGURE 14. Comparison of C-MMQT, C-QATC, D-MMQT, D-QATC and
GHCAS in terms of quality of monitoring by varying the coverage range
and the number of POIs.

The coverage range of each sensor is set at 10m, 20m, 30m
and 40m. The number of POIs is varied ranging from 20 to
110. As shown in Fig. 14, a common trend of five compared
algorithms is that the QoMs of targets are increased with
the coverage range of a sensor but are decreased with the
number of POIs. This occurs because when the number of
deployed sensors is fixed and the coverage range of sensor
increases, each sensor can have a larger coverage area that
can cover more POIs. Therefore, each POIs is much easier
to be covered by any sensor which increases the quality of
monitoring. On the other hand, the QoMs of targets decrease
with the number of POIs. This occurs because when the
number of sensors is fixed, some sensors should move to
monitor the weakest time slot. Then all the other sensors have
smaller monitoring opportunities when the number of POIs
increases. Hence, all the other POIs have a lower quality of
monitoring. In comparison, the proposedC-MMQT algorithm

FIGURE 15. Comparison of C-MMQT, C-QATC, D-MMQT, D-QATC and
GHCAS in terms of quality of monitoring vs VIP ratio.

FIGURE 16. Comparison of C-MMQT, C-QATC, D-MMQT, D-QATC and
GHCAS in terms of fairness index vs VIP ratio.

outperforms the other four algorithms in terms of the quality
of monitoring. This occurs because that the proposed C-
MMQT balances the QoM of each POIs at any given time
and applies PSM to evaluate the sensing probability which
can reflect the physical features of the sensing behavior which
results in high quality of monitoring.

Fig. 15 further compares the quality of monitoring by
varying the VIP ratio. The number of sensors and the number
of POIs is set at 500 and 50, respectively. There are three
types of different POIs: the low, middle and high importance
of POIs. The VIP ratio represents the ratio of the number of
each type of PIOs to the total number of POIs. For instance,
VIP ratio= (20%, 20%, 60%) represents that the numbers of
types 1 and 2 of POIs are equally (20%) while the number
type 3 of POIs is 60%, as compared to the total number
of POIs. The experimental results show that the C-MMQT
outperforms the other four algorithms. This occurs because
the C-MMQT considered the importance of POIs and always
schedules the sensor to the POIs with higher importance.
The third VIP ratio (60%, 20%, 20%) has a higher quality of
monitoring when compared to the other two VIP ratios. The
main reason is that when the POIs 1 is more important, some
sensors which are monitoring the unimportant POIs will be
scheduled to monitor POIs 1, leading to a high quality of
monitoring of the proposed C-MMQT, as compared with the
other four algorithms.

Fig. 16 compares the fairness index by varying the VIP
ratio. The number of sensors and the number of POIs is set at
500 and 50, respectively. The experimental results show that
the proposed C-MMQT has better fairness when compared
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to the other four algorithms. A common trend as shown
in Fig. 16 is that the fairness index gradually increases with
the different VIP ratios. In the case of the first VIP ratio
(20%, 20%, 60%), fairness is lowwhen compared to the other
VIP ratios. This occurs because when the number of sensors
is fixed and the maximum number of sensors are scheduled
to monitor POIs 3 results in low fairness. On the contrary,
the fairness of the C-QATC, D-QATC, GHCAS algorithms is
very low compared to the proposed algorithms. Regardless
of the VIP ratio, the C-QATC, D-QATC, GHCAS algorithms
schedule the sensors to monitors the POIs. Hence, some of
the very important POIs are undetected in some time slots
which results in low fairness.

VI. CONCLUSIONS
This paper proposes two efficient sensor activation sched-
ules, called C-MMQT and D-MMQT, aiming at balancing
the QoM of the POIs at any time slots by scheduling the
solar-powered sensors. The proposed mechanisms apply the
PSM by considering the importance of POIs and guarantees
that all POIs can be well monitored at any given time slot.
To maintain the sensor network with a perpetual lifetime,
each sensor is carefully scheduled to maximize the minimal
QoM of bottleneck POIs at any time slot. The proposed
C-MMQT is a centralized approach that identifies the weakest
space time point and schedules the sensor which has the
maximal contribution for monitoring that point. On the con-
trary, the proposed D-MMQT is a distributed approach which
only maintains the neighboring information and makes its
own decision using the local information. Since the decisions
among neighbors might contradict to each other, a random
back-off policy is adopted based on the contributions of
the local decisions. Experimental results show that the pro-
posed C-MMQT achieves better performance than C-QATC,
D-MMQT, D-QATC and GHCAS in all cases in terms of
quality of monitoring.

The future work would relax the constraints of this paper
and allow that sensors are partially recharged and with
adjustable sensing range. Furthermore, wewould like to study
the heterogeneous sensor networks where different sensors
have different charging and recharging pattern at the same
time.
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