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ABSTRACT Exercise therapy is seen as one of the major treatments for the rehabilitation for patients,
particularly using modern technologies, such as virtual reality or augmented reality. Computer-assisted
physical rehabilitation training involves measuring performance by analyzing the movement data collected
with a sensory system during prescribed rehabilitation exercises. Human activity recognition is a challenging
topic for machine learning in the present area of research. Since the sensor-based activity recognition seeks
deep knowledge from various low-level sensor readings concerning human activities. In this paper, the Smart
Sensor-based Rehabilitation Exercise Recognition (SSRER) system has been proposed using a deep learning
framework. For the recognition of rehabilitation exercise with sensor information, a convolutional neural
network (CNN) has been used on dynamic platform(D-CNN) where it has sensory data for physical
rehabilitation exercise body movement by Gaussian mixture models (GMM). The input signals and GMMs
are in various segments contains shapes for many CNN routes. To retrieve the state transition likelihood of
hidden states, the Sensor (S-CNN) utilizes the algorithm of improved lossless information compression as
discriminant features of various movements. Therefore, the hybridized CNN of the Sensor (S-CNN) and
D-CNN are combined with a deep learning classifier to assess every rehabilitation class exercise at different
levels. The categorized deep learningmethods show improved performancewith best-learned features for any
rehabilitation exercise. The difference between the best attribute and the test score analyzed mathematically
with our collected data and a variety of activity recognition datasets has been illustrated in this article with
test results.

INDEX TERMS Deep learning model, convolutional neural network, rehabilitation exercise recognition,
sensors.

I. BACKGROUND AND INTRODUCTION OF
REHABILITATION EXERCISE RECOGNITION
Rehabilitation is one of the main steps towards recovery
from operation, particularly after surgery with the joint dis-
ease [1]. In postoperative rehabilitation, a broad range of
musculoskeletal conditions participated in rehabilitation pro-
grams and physical therapy is important and necessary [2].
However, for all rehabilitation sessions, it is not practica-
ble and economically justifiable to provide patients with
access to a clinician [3]. Accordingly, existing health services
worldwide are centralized in a hospital with physicians under
direct supervision, followed by an initial part of rehabilitation

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Wei .

programs where patients do a series of controlled activities
in their own homes in an outpatient setting [4]. Literature
reports show that more than 92% of all treatment sitting in a
home-based setup [5]. Patients are asked to report their daily
process under such conditions and regularly visit the clinic for
progress evaluation [6]. Several healthcare sources suggest
lower patient adherence and motivation to the appropriate
rehabilitation exercise regimes that lead to longer treatment
times and higher healthcare costs [7]. Even though many
various factors that contribute to fewer compliance rates have
been identified, the main influence is a lack of ongoing
feedback and promptly monitoring of patient exercises by
the medical professionals in a home environment [8]–[10].
Figure 1 shows the human activities decomposition.
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FIGURE 1. Human activities decomposition.

As discussed in Figure.1. In rehabilitation, a home exercise
system is a general where a patient executes a series of
physical activities in his or her house [11]. Nevertheless,
these treatments do not always help patients to recover fully.
Further, one of the major challenges is that patients fail to
meet with the workout programs specified [12]. However, this
system does not have medical care and monitoring. In turn,
Action recognition has received increased attention in the
fields of machine learning and computer vision. Recognition
of activities can be divided into two categories–visual and
sensor-oriented approaches. Here, Human behavior can be
seen as a whole of Spatio-temporal shifts in expressions or
gestures for vision-based strategies [13].

For the identification of motion in video and still pictures,
approaches devoted to efficient visual representation which
include movement analysis, models and space-time volume.
While many visual techniques have been used in recent
decades, large differences in human occlusion, anatomy,
and change of perspectives often build this difficult. Sensor
technology has made significant progress, especially with
low power, wireless communications, high capacity, and
data processing, creating it possible for sensors to devel-
oped from lower-level information gathering to transition on
high-level deductions [14]. For information collection and
analysis, wearable sensors can be implanted in strips, clothes,
smartwatches, and mobile devices [15]. Several measures
are included in the rehabilitation movement. Contrary to the
recognition of actions that recognize the action as various
classes, the action assessment objective to evaluate the action.
This is especially significant for recovery, as it demonstrates
whether or not the patient can perform the procedure. The
score means that a particular injury recovers [16].

In this paper, the smart sensor-based rehabilitation exer-
cise recognition (SSRER) and evaluation using deep learning
framework has been designed and developed mathematically.
The problem of data synchronization is one of the issues
with sensor data for activity recognition. Where It can be
completely different from the start and finish time with the
speed required for the activities. The data includes noise and
differences when different persons perform the activity [17].
D-CNN is proposed to overcome this problem. Furthermore,
a State Probability Transition is proposed to show the tran-
sition likelihoods among states to capture the hidden states
of sensory data. For test rehabilitation activities, the spe-
cial matrix has been suggested and the learned classifier is
utilized for determining the best features of every class at
various levels. The article examines the efficiency of deep
networks of autoencoders for reducing dimensional data cap-
tured. Besides, the scoring functions are given for the scale in
the [0; 1] range of the output values tested. As the basis for
training the proposed deep neural networks (DNNs) in the
application of rehabilitation, the resulting movement quality
scores are used [18], [19].

The major goal of the paper has been listed as follows,
• The design of the Smart Sensor-based Rehabilitation
Exercise Recognition System (SSRER) approach using
a deep learning framework has been mathematically
formulated.

• A comparison of deep neural network architectures in
motion evaluation and the use of the auto-encoder neural
network to minimize rehabilitation data dimensionality
has been computed.

• The evaluation result is obtained by comparing the dis-
tance and the best feature of the current system has been
analyzed with the dataset https://github.com/niemasd/
UI-PRMD-Analysis [20].

The remainder of the paper articulated as follows:
Section 1 and section 2 discussed the introduction and exist-
ing methods of rehabilitation exercise recognition system.
In section 3 the smart sensor-based rehabilitation exercise
recognition (SSRER) mathematical model has been dis-
cussed. In section 4 the experimental results have been
demonstrated. Finally, section 5 finalizes the research paper.

II. RELATED SURVEY ON VARIOUS COMPUTATIONAL
AND MATHEMATICAL MODELS
Lun and Zhao [21], Capecci et al. [22] proposed the Hidden
semi-Markov Model (HSMM) for the assessment of rehabili-
tation exercise. The method extracts clinically related motion
features from the Red, Green and Blue depth (RGB-D)
camera’s skeleton joined trajectory and offers a result for
the output of the subject. This technique combines various
aspects of the law and design approaches. Here the Clinicians
are identified as practice descriptors for features and tested
them by an HSMM, trained in an exemplary sequence of
motion. The efficacy of the proposed solution will be tested
by analyzing the relationship between it and both a clinical
evaluation and Dynamic Time Warping (DTW) algorithms.
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Liao et al. [23] introduced the deep learning-based frame-
work (DBLF) for the rehabilitation exercises assessment. The
major parts of the system are the metrics for the quantity of
motion output, the scoring of performance assessment func-
tions for numerical motion quality ratings, and DNN models
for quality regressions of input motion through supervised
learning. A performance metric depends on the logic of an
encoding model where the Gaussian mixture identifies with
a deep neural network of the autoencoder which is suggested
in the paper. Various architectures of the deep network are
repurposed for the role and validated through a reinstruction
data set.

Zhu et al. [24] initialized the Multi-path CNN for the
recognition of rehabilitation exercise. Results of classifi-
cation accuracy demonstrated by the experiments that an
MP-CNN is highly efficient for sensor data acquisition.
Strong ensemble classification is either required for training
or powerful handmade feature depiction to meet a high level
of recognition precision. Deep learning recognition of action
reveals delegates characteristics and trains the classifier into a
complete model. When compared to those identified section
the other deep learning patterns, classification results are
superior and the assessment results are efficient for practical
applications.

Wang et al. [25] suggested Sensor-based activity recogni-
tion (SBAR) for utilizing deep learning. This research dis-
cusses the recent progress in sensor-based recognition in deep
learning model where the summarize the current literature:
deep model, sensory modality, and application. The detailed
insights have been provided into current work and suggest
significant future research challenges. Deep learning min-
imizes dependency on human-based features and achieves
improved efficiency compared with traditional pattern recog-
nition methods through automatic learning of high-level sen-
sor data representations. Recent advances are underlined in
three key groups: deep model, sensor mode, and application.
Here, the review and analysis has been reported in detail. Ulti-
mately, for future research, there are several big challenges
and practical solutions.

Qi et al. [26] proposed the Physical Activity Recognition
and Monitoring (PARM) monitoring for health care using
IoT. This paper offers a systematic review of PARM studies
objectively from a traditional IoT-funded viewpoint. Firstly,
it will sum up the latest state-of-the-art PARM method-
ologies, including visual, feature-extraction and recognition
strategies in the field of wellbeing. The paper further identi-
fies some new trends in research and challenges in the IoT
environments for PARM research and discusses some key
techniques for dealing with these. Finally, this article exam-
ines some of the successful cases in the field and examines
PARM’s potential future industrial uses in smart health.

To overcome these issues, in this paper, a Smart Sensor-
based rehabilitation exercise recognition system (SSRER)
using a deep learning framework has been proposed. The
recent development of deep learning allows high-level auto-
mated feature extraction to achieve promising performance in

numerous areas. Deep learning approaches for sensor-based
activity recognition operation have been widely adopted. Fur-
ther, Deep learning can greatly reduce the strain on features
that can acquire much higher and meaningful features by
training a neural end-to-end network. Furthermore, the deep
network structure is easier to perform uncontrolled and incre-
mental learning.

III. SMART SENSOR-BASED REHABILITATION
EXERCISE RECOGNITION (SSRER) SYSTEM
The process of rehabilitation includes more time-series
activities. There may only be one action in other move-
ments such as pushing the shoulders upwards. In this paper,
the Smart sensor-based Rehabilitation Exercise Recognition
system (SSRER) has been proposed with a deep learning
framework for the collection and classification of the action.
Here, SSRER consists of two sub-nets, S-CNN and D-CNN.

A. CONVOLUTIONAL NEURAL NETWORK: BASED ON
THE TRANSITION PROBABILITY
Features may conventionally be depicted by the probabilistic
changes between states with PFSA-probabilistic finite-state
automata. The estimation of transitional probabilities is how-
ever highly complex. Therefore, the CNN model has been
proposed the links between input signals and probabilities for
the changes between states to provide a more discriminatory
depiction of features. The PFSA-coded Lossless informa-
tion compression utilizes the Lossless information compres-
sion coding to symbolize the PFSA and sensor information
to calculate the probability of transition between hidden
states. It contains 3 stages: LIC, Quantization and PFSA
construction.

Figure 2 shows the Lossless information compression cod-
ing flowchart with the PFSA method. The raw data are uti-
lized as input for the training of S-CNN with two coding
and pooling layers. The outcomes obtained from the last
pooling layer are then utilized as input to the completely
associated layers. To find discriminatory classification fea-
tures, the S-CNN paradigm can be regarded as the regression
method for a map of sensor signals for the State probabil-
ity transient the Lempel-ZivWelch-coded Probabilistic Finite
State Automata learns.

B. QUANTIZATION
Every training signals are first linked and sorted in ascending
order into a single vector. Then the vector is divided into L
parts representing L Levels Each part’s boundaries reflect
the standard boundaries. Next, the raw data is symbolized
by every level limit in the level index so that raw data are
processed in a less complex way.

C. LOSSLESS INFORMATION COMPRESSION
CODING FLOWCHART
The Lossless information compression algorithm initially
determines the Lossless information compression table and
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FIGURE 2. Lossless information compression coded flowchart PFSA approach.

encodes the sequence with the table. The initial step is to
initialize the input stream form the coding table.
Corollary 1:

Condition check:
If (Q = b && A = C)
Delete(Q+ A) from the table;
Else If(Q=A)
Q = Q+ A;
Q = Q+ A = b;
Else if(A = a)
Delete(Q+ A) from the table;

Corollary.1 displays the symbolic data encoded with modi-
fied Lossless information compression. A states in each class,
the most often used for composing a state dictionary E, are
chosen to reduce the number of states. Therefore, by distance
has been calculated based on the state D and the dictionary
has been measured the condition which is not in dictionary E.
Apply the quantization as the following equation (1):

Wmap (wv) = minwl , l ∈ E levwv,wl (|wv| , |wl |) , (1)

As shown in the equation (1) where |wl | is the string of wl
state,wl = dictionarystate and |wv|−stringvariation, levwv,wl
(.)Levenshtein distance analyzer, wv is the state not in the
dictionary E, and Wmap is the mapping function to measure
the wv into wl .

D. PFSA CONSTRUCTION
The PFSA collects the probability of state change for the data
symbolized by the LIC code. The Probabilistic finite-state
automata is a state representation that records the possibilities
for the transition between every state. The probabilities for
state transition can be estimated as the following equation (2):

Q
(
pj |pi

)
=

M (pi, pj)∑m
j=1M (pi, pj)

∀pi, pj ∈ P, 1 ≤ j, i ≤ m

(2)

As shown in equation (2) where M (pi, pj) is the number of
transitions from pi to pj, m is the number of states, and P is

Algorithm 1 Modified Lossless Information Compression
Encoder Algorithm
Operation 1: Encoding the series W and determining the
Lossless information compression table R
Initialize: Table R based on W
Check Code-C and Table-R
Begin
If (Q= F_C)- Character analysis (First variable)
Delete(w)
A=next input character in W
Else If Q+A is in table R
Q=Q+A
Else
Add Q+A to the table R
Q=A
End if
Check(Q)
End(w)
A=next input character in W
If Q+A is in table R
Q=Q+A
Else
Output the code for Q
Q=A
End if
Output code for Q

the set of states. Thus, the state probability transition can be
depicted by π matrix as the following equation (3)

π =

 Q(p1 |p1 ) · · · Q(pm |p1 )
...

. . .
...

Q(p1 |pm ) · · · Q(pm |pm )

 (3)

As shown in algorithm 1 the Lossless information com-
pression coding with PFSA construction has been demon-
strated. Our system provided the input signal from three-axis
accelerometers and the transition probability which has been
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obtained by utilizing State probability transition Convolu-
tional Neural Network. Features are extracted from raw
input to train the second element, the Dynamic Convolu-
tional Neural Network. A fixed sliding window is used for
pre-processing the raw information. The signal is then stan-
dardized to[ 0, 1]. Here, Amedian filter (size: 4) is utilized for
signal noise removal. The signal linked with the acceleration
of gravitation is the gravitational feature. Without gravity
acceleration, the signals respect to the body features.

E. DYNAMIC CONVOLUTIONAL NEURAL NETWORK
The problem of data alignment is one of the difficulties
of utilizing sensor data to recognize the activity. The start
and end times of the exercises can be varied in practical
applications. The data includes noises and variations when
different people perform the exercise. A Gaussian Mixture
Regression-GaussianMixtureModel (GMR-GMM) is, there-
fore, being proposed for a complex CNN. The GMM is
used as a reference norm for each operation. During the
research, two operations are used to match the data and
the GMM, namely information and channel fitting to the
proposed dynamic assignment process. The corresponding
data will then be utilized as the input for the channel in the
Convolutional Neural Network method. Figure 3 shows the
D-CNN for rehabilitation exercise recognition.

F. GAUSSIAN MIXTURE REGRESSION - GAUSSIAN
MIXTURE MODEL (GMR-GMM)
Gaussian Mixture Regression-Gaussian Mixture Model is
utilized for modeling the various activities ’ distributions.
This overcomes the variations of the internal class when
sensor data are obtained for one activity. Let’s assume ht =(
t, hy (t) , hx (t) , hz (t)

)
, ht ∈ T 4, t = 1, . . . .R, where time

size is R and at =
(
t, ay (t) , ax (t) , az (t)

)
, at ∈ T 4, t =

1, . . .R. L-components with GMM are utilized to model at
and ht . The covariance matrix and mean vector defined as∑

l ∈ T
4×4 and µl ∈ T 4 and for ht , where l = 1, . . .L.

GMR is utilized to identify the covariance and mean matrix at
time t for l-th GMM element. To divide the acceleration and
temporal values in µl and

∑
l
as the following equation (4):

µl =
{
µtl , µ

b
l

}∑
l

=

∑tt

l

∑tb

l∑bt

l

∑bb

l

 (4)

The expected acceleration mean µ̂bl of the lth element at

time t and the linked covariance matrix
bb∑
l
can be stated as

equation (5): µ̂
b
l = µ

b
l +

∑bt

l
(
∑tt

l
)−1(t − µtl )∑bb

l
=

∑tt

l
−

∑bt

l
(
∑tt

l
)−1

∑tb

l

(5)

The
bb∑
l
and µ̂bl are combines by the likelihood αl of the lth

element at time t to estimate the expected covariance matrix

∑bb and acceleration µb at time index t, as the following
equation (6):

αl =
q (l) q(t |l )∑L
i=1 q (i) q (t |i )

=
πlM(t;µtl ,

∑tt
l )∑L

i=1 πi(t;µ
t
i ,
∑tt

l )
, (6)

µb =
∑L

l=1
αlµ̂

b
l

∑bb
=

∑L

l=1
α2l

∑bb

l
(7)

As shown in the above equation where M is the Gaussian
distribution function. Thus, the covariance and mean acceler-
ation matrix at time t in the series R has been calculated to
create the GMR-GMM model.

The GMR-GMM model will be trained to fit the input
signal in a sectoral way to the GMR-GMM model with
the dynamic assignment approach. The dynamic assignment
includes two levels: information and fitting the channel. In the
database. For each activity class, the GMR-GMM model is
trained. The model is then split into m parts, corresponding
to the D-CNNM channels. Functions are divided intoM parts
as well. Features equal to the same model component go
to the same channel on the Dynamic Convolutional Neural
Network by channel fitting. In channel movement, distance
can be calculated by the distance from the divided character-
istics and the model component. The signal to Mahalanobis
distance at time t to the paradigm component can be stated as
equation (8) as the denotation yt as the acceleration of triaxle
signal at time t:

et =

√(
yt − µbt

)R (∑bb

t

)−1 (
yt − µbt

)
(8)

The Euclidean distance between two motion data Xw,r and
Yw′,r ′ has been generally utilized for motion evaluation and it
is stated as

eD
(
Xw,r ,Yw′,r ′

)
=

∑R

t=1

∥∥∥x(t)w,r − y(t)w′,r ′∥∥∥
=

∑R

t=1

√∑E

e=1
(x t,ew,r − y

t,e
w′,r ′ )

2
(9)

As shown in the above equation where
bb∑
t
and µbt are covari-

ance and mean matrix of the paradigm at time t and for
w,w′ ∈ W and r, r ′ ∈ Tw. The Dynamic time warp-
ing (DTW) algorithm for aligning time series data with
non-linear warping tominimize the spacing of the time series.
The Euclidean distance is the most commonly used remote
function of DTW.DTWcalculates the optimal alignment path
by reducing the cumulative distances of the two-time series
from the minimum distances of the neighboring points.

eDTW
(
Xw,r ,Yw′r ′

)
= eD

(
Xw,r ,Yw′r ′

)
+ h

(
Xw,r ,Yw′r ′

)
(10)

Thus, the distance between the model and separated features
the section can be calculated as the following equation (11):

e =
1
m

∑m

t=1
dt (11)

As shown in the equation (11) where m is the partitioned
feature size.
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FIGURE 3. Convolutional neural network for rehabilitation exercise recognition.

G. PREDICTION LOSS
The data has been labeled as several categories, including
four classes of actions. Every class of acts had three levels
of assessment: good, average and poor. The bilinear interpo-
lation has been utilized, raw action signals has been resized
to the same scale. Then a three-layer long short term memory
has developed to predict the type, followed by the Softmax
layer model and three fully connected layers. Kq is known as
the loss function expressed as (12):

Kq = crossEntropy(y, x) (12)

H. CONDITION LOSS
The weight of the final Long short term memory layer is used
as a classifier in this segment once the LSTM is trained. The
feature depiction of every class can be reversed by the use
of a classifier and a particularly intended loss of condition.
Such a feature is called the general or good feature for every
action class level. The feature denoted as f ∈ TM , and N is
the number of action classes. Thus, total classes Q = N ×K .
The classifier dimension isM×Q since the output is Q classes
and the dimension of feature is M. K is the number of stages.
Score matric can be defined asW ∈ TQ×Q.

W =
{
wt,t = 1, where t = n.N + k

otherwise 0
(13)

This implies that the input of wt,t (equal to one) of the other
entries (equal to null) should be the largest (equals to one)
of the same row. The condition loss Ka can be defined as the
following equation (14):

Ka = ‖H × A-W‖2 (14)

The goal is to reduce the distance between H∗A andW, where
W is the ground truth score. The class signal n and stage lmust
have the highest value in the input wt,t by minimizing the

loss function. When the classifier training is completed,
A and W are set to find H for one training iteration. This
general feature to get the largest score in W.

I. EVALUATION LOSS
Figure 4 shows the assessment system of rehabilitation exer-
cise using sensor input. The CNNs ’ inputs are pairs of
repeat data and quality values. The trained networks in a
controlled way, with the output as a predicted movement
quality value for a repetition of data. For network training,
motion quality scores are used depends on the Gaussian
Mixture Model log-likelihood features estimated with min-
imized auto-encoder information. Only the inter-subject case
is reviewed as the number of iterative per subject is too low
for CNN training in the internal subject cases.

The output of the final layer in the long short term memory
and the general feature is utilized to calculate the evaluation
score. The cosine Angle is utilized to calculated two vector
similarity and the angle to standardize is the range of 0 to 1.
The expression can be formulated as (15):

score =
−1
π
×Across

(
featureLSTM × feature

R
Gen∥∥featureLSTM∥∥× ∥∥featureGen∥∥

)
+1

(15)

As shown in the equation (15) where featureLSTM is the last
layer in the long short term memory feature extraction and
featureGen is the general feature. Then a scaling interval is
multiplied to obtain the final assessment:

Evaluation = max(score)× interval (16)

The evaluation is scaled to 0 to 100 if the interval is set to 100.
To update the paradigm with cross-entropy, the score turns
into a label. For each level, they typically set the same levels.

77566 VOLUME 8, 2020



W. Zhang et al.: Rehabilitation Exercise Recognition and Evaluation Based on Smart Sensors

FIGURE 4. Assessment system of rehabilitation exercise.

If the assessment is within the range, the label is marked. The
formula is defined in (17):

Evaluationlabel

=

0, subject evaluation score = {y |0 ≤ y < 33 }
1, subject evaluation score = {y |33 ≤ y < 66 }
2, subject evaluation score = {y |66 ≤ y < 100 }

(17)

Now the assessment label has been obtained: The loss func-
tion Kd can be determined using the assessment label and
ground truth xtrue:

Kd = crossentrophy(xtrue, assessmentlabel) (18)

The overall loss function for updating our model is provided
by (19):

Ktotal = βKq + αKa + δKd (19)

As shown in equation (19) where δβ, and α and are three
loss terms of balancing parameters. Kq, Ka,Kd are evaluation
loss, prediction loss, and condition loss correspondingly. The
results of the evaluation model are the performance score
after the model has been trained. To see their performance
at three stages: good, mean or poor the users can match the
range of values defined by Equation (17).

The scaled values of performance metrics comparison has
been done with the proposed notion of separation degree.
For any positive number y,x separation degree is stated as
WE (y, x),

WE (y, x) =
1
nm

∑n

j=1

∑m

i=1
WE (yj, xi) (20)

Separation degree values similar to 1 or -1 indicate that both
sequences are well differentiated. The sequences do not sep-
arate well and nearly mix, on the other hand, for values of the
degree of separation near 0. The separation grade indicates
that the metric is better able to distinguish between correct
and wrong exercise repetitions when applying to the values
of the distance metrics.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. PREDICTION RATIO MATHEMATICAL PREDICTION
The results are expressed as a distance from the configura-
tion of the reference sensor consisting of five sensors used.

For exercise type, a positive distance is greater than the
accuracy of the reference configuration. The numbers rep-
resent prediction errors in the case of strength prediction
and should, therefore, be less and negative for better results.
Figure 5 shows the different sensor combinations. Con-
cerning training times, the average classification time has
reduced substantially to millisecond predictions. In conjunc-
tion with active learning, a stacked denoising auto-encoder
offers excellent for automated labeling and feature extraction
for intense exercise recognition. To track daily living activi-
ties, the stacked denoising automatic encoder implementation
is important for the morbidity prediction of the sensor.

The feature extracted using the backpropagation neural
network has predicted for energy expenditure. The prediction
data set has however obtained from sensors mounted on the
string, which do not indicate the direction of movement.
Therefore, data from sensors mounted on the hand, chest
or ankle should be tested to detect accurately and to track
total body movements of human activity models by trans-
lating the sensor value into a binary number and extracting
discriminatory features using a convolutional neural network.
The sensor value must be calculated. Figure 6 shows the
prediction ratio of the proposed SSRER method.

B. ACCURACY RATIO ANALYSIS
The test results showed that the SSRER approach offers a
high classification of activity types and incorrect identifica-
tion of the movement. The incorrect identification accuracy
considers the misclassified types of exercise to be below the
accuracy of the identification of the exercise type classifica-
tion. The accuracy of the classification of exercise compas-
sionate artificial errors that appeared during the user could
not achieve the motion criteria would influence this result.
Figure 7 shows the accuracy ratio of the proposed SSRER
method. The proposed SSRER method achieves a high accu-
racy ratio for rehabilitation exercise classification.

C. PERFORMANCE RATIO FOR NUMERICAL CONSISTENCY
A CNN automated encoder is utilized to decrease the
dimensionality of the skeleton information collected during
recovery repetition exercises. Therefore, the low-dimensional
representation of the data is probabilistically modeled by
a GMM and the movement repetition logic is used as
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FIGURE 5. Sensor combination evaluation. Black spots represent sensor locations on body silhouette.

FIGURE 6. (a) The adaptable motion label provides the identical labels in
changing movements, (b) motion label estimates the confidence interval
in movement schedule (c) Prediction ratio of training and test set.

FIGURE 7. Accuracy ratio analysis.

a performance measurement metric. A scoring function
maps the values in movement quality values for the per-
formance metric. A deep NN model is developed for each
rehabilitation exercise to learn the relationship between
motion data and quality outcomes and to produce qualita-
tive results for unknown rehabilitation exercises. The per-
formance ratio of the proposed SSRER system is high

FIGURE 8. Performance ratio for numerical consistency.

FIGURE 9. Efficiency ratio analysis.

when compared to other existing methods. Figure 8 demon-
strates the performance ratio of the proposed SSRER
method.
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FIGURE 10. Recognition rate.

TABLE 1. Performance Evaluation for numerical consistency.

Table 1 demonstrates the performance evaluation of the
SSRER system. The test results show that movements quality
values derived from the proposed deep learning framework
keeps the score of ground truth quality for motion closely
and confirm the possibility of deep learning methods for
rehabilitation exercises.

D. EFFICIENCY RATIO ANALYSIS
The program proposed proved efficient by enhancing user
engagement and performance outcomes. The findings show
that biomechanical criteria are useful for the understanding
ofmovements in the rehabilitation exercises to direct patients.
An automated method will make the administration of daily
rehabilitation programs efficient and cost-effective. The pro-
posed SSRER method has a high-efficiency ratio when com-
pared to other existing HSMM, DBLF,MP-CNN, SBAR, and
PARM methods (Figure 9).

TABLE 2. Efficiency analysis.

Table 2 shows the efficiency analysis of the proposed
SSRER method. A proposed algorithm has been used for
the study and analysis of movement data by machine
learning. The model has a prototype that offers com-
fortable and energy-efficient equipment used in standard
processes. SSRER offers effective features for efficient
training.

E. RECOGNITION RATE DETERMINATION
A movement recognition focused upon biomechanical con-
cepts has a consequence of the possibility of direct a right and
accurate movement. The system improved the engagement
and quality of the exercise of users. A blind experiment
has been conducted to verify the paradigm by iteratively the
recognition process to retrieve new feature sets from the mea-
suring information on the proposed exercises. The filtering
criteria for calculating the enveloped spectrum has given by
both diagrams. The suggestive features has then acquired via

VOLUME 8, 2020 77569



W. Zhang et al.: Rehabilitation Exercise Recognition and Evaluation Based on Smart Sensors

the enveloped spectrum, to improve the model and, conse-
quently, to enhance recognition. Figure 10(a and b) demon-
strates the recognition rate of the proposed SSRER method.

Hence based on the experimental results the S-CNN and
D-CNN with a deep learning classifier are proposed to
assess the general depicted of every rehabilitation class exer-
cise at different levels. Then, test results show outperforms
best-learned features for any rehabilitation exercise.

V. CONCLUSION
In this paper, the Smart Sensor-based Rehabilitation Exercise
Recognition (SSRER) system using a deep learning frame-
work. This paper proposes a CNN and an action assess-
ment approach. The proposed system consists of S-CNN and
D-CNN models. Different signal segments can be allocated
by D-CNN to the same CNN. Therefore, the issue of data
noises data convergence and other distinction can be better
addressed. Results of classification accuracy demonstrated
by these experiments have demonstrated that SSRER is very
efficient for sensor data exercise recognition. Compared to
new machine learning-based approaches, strong ensemble
classifications or powerful characteristics are required to
achieve high accuracy of recognition. Besides, a GMM is
probabilistically used for the low-dimensional data represen-
tation and the dynamics ofmovements replicated are used as a
metric for performance evaluation. A scoring function maps
the results into motion quality values. A deep NN model is
trained for each rehabilitation exercise to learn the relation
between movement data and quality results and to generate
quality scores for undiscovered rehabilitation exercises.
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