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ABSTRACT Structure from Motion (SfM) is a series of methods for reconstructing scene structure
(i.e.three-dimensional space points) and camera motion (i.e.camera pose) from an image set. In this paper,
aimed at the low accuracy of the global reconstruction, the robustness to external points and the time-
consuming incremental reconstruction, a fast, closed-loop and high precision reconstruction method is
proposed. The method is based on the SIFT matching algorithm GeoMatch, which is constrained by
geometric structure of the scene and by numerical and statistical characteristics of feature invariant scale
transformation. Experiments show that GeoMatch outperforms both traditional tree-based and hash-based
matching methods in terms of time and accuracy.

INDEX TERMS Global reconstruction, incremental reconstruction, three dimensional reconstruction.

I. INTRODUCTION
Motion recovery structure(Structure from Motion, SfM)is a
series of methods to reconstruct scene structure (i.e. three-
dimensional space points) and camera motion (i.e. camera
pose) from image centralization. The typical methods are
incremental reconstruction and global reconstruction. Firstly,
for these two reconstruction methods, feature point matching
is the most time-consuming stage. Especially when there
is no prior information of matching order between images
in the image set (i.e. the disordered image set), all image
pairs need to be matched. Secondly, compared with global
reconstruction methods, incremental reconstruction methods
have the advantages of high reconstruction accuracy and
robustness to external points, while its disadvantages are large
time complexity caused by the selection of initial image pairs
and unable to stop the loop. Compared with incremental
reconstruction methods, global reconstruction methods have
the advantages of fast reconstruction speed, accurate closed-
loop, and its disadvantages are low reconstruction accuracy
and robustness to external points. Fast, closed-loop and high
precision reconstruction method is particularly important.
Based on the hybrid formula proposed in 2017, this paper
proposes a method aimed at improving the performance of
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feature point matching stage: a SIFT matching algorithm
GeoMatch(Geometric structure and SIFT-based Matching
algorithm)based on scene geometric structure constraints and
numerical statistical features of feature invariant scale trans-
formation(Scale Invariant Feature Transform, SIFT) is pro-
posed. Experiments show that GeoMatch outperforms both
traditional tree-based and hash-based matching methods in
terms of time and accuracy.

II. RELEVANT WORK
The known Structure from Motion (SfM) technology can be
roughly divided into two parts: one is the description and
matching of feature points, the other is the calculation of
motion and scene structure of two cameras.

A. DESCRIPTION AND MATCHING OF FEATURE POINTES
Feature point matching is essentially the Nearest Neighbor
retrieval problem (NN). The nearest neighbor search has the
following definition [1]: There is a non-empty point set TD
in D-dimensional space, if |TD| >1, then for ∀q∈TD, there
is NN (q) = argmin

pi ∈ TD − q
1 ≤ i ≤ |TD|

d(q, pi), where d(·, ·) is a vector

distance metric function [2], and Nearest Neighbor (NN) is
the nearest neighbor function notation.
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Generally, feature point matching methods can be divided
into two categories: standard matching technologies and
approximate matching technologies. The standard matching
technologies of feature points include linear search and
tree-based search. The basic idea of the linear search is to
select the nearest vector by comparing the distances of all
vectors in the set TD for any query vector Q. The advantage
of this method is that it is very simple to implement, but
the disadvantage is that it is very time-consuming [3]. The
query time complexity for a single feature point is O(|TD|).
Because the time complexity of the linear search is too
high, document [1] proposed Kd-tree for nearest neighbor
search, and the time complexity of single record query can
reach O(log|TD|). The literature [4] proposed a tree K-means
method for Nearest Neighbor retrieval. This method first
classifies data sets into K classes by K-means method and
then divides the K classes recursively. Although the original
Kd-tree search has been greatly improved compared with the
linear search and works well when the data dimension is low,
the time performance is not ideal with the increase of dimen-
sion in actual use [5]. In many cases, the time complexity is
even worse than the linear search [6]. Document [7] proposed
a tree-like K-means similar to document [4], which only uses
data points instead of clustering mean in clustering center.

In [8], a new data structure spill-tree is proposed, which
allows data to appear repeatedly in the node’s sub-nodes.
However, experiments show that the temporal and spatial
performance of multiple random Kd-trees is better than
spill-tree.

In [9], the author proposed a fast method of searching the
nearest neighbor in large-scale data.

The data structure used in this method is similar to that in
document [4] but only a single leaf node can be accessed.

When the scene is very large and complex, which leads to
a large number of descriptors, how to store a large number
of descriptors for fast retrieval is a very significant problem.
One is quantization [10], [11] and dimensionality reduc-
tion [3], [12], the other is hash-based method [13]. The
hash-based method not only expresses the original data more
compactly, but also calculates the distance on Hemingway
metric space more efficiently than Lp norm.

B. MOTION RECOVERY STRUCTURE
At present, the main method of monocular sparse reconstruc-
tion is the motion recovery structure (SfM). According to the
different methods of camera initial motion estimation, SfM
can be divided into Incremental Reconstruction [14]–[16],
Global Reconstruction [17]–[19] and Hybrid Reconstruc-
tion [20].

The main method of Incremental Reconstruction is to esti-
mate camera motion and structure by adding images to a
reconstructed system step by step. This estimation will iterate
over and over again. With the increase of images, the more
parameters need to be estimated and optimized, and the
iteration will be slower and slower. Besides, the cumulative
errors will lead to Scene Drift [21]. According to different
process of adding images, Incremental Reconstruction can

be divided into two kinds: one is to select several images
as the initial image group for reconstruction, and then add
new images for iteration; the other is to cluster the images
into several groups, reconstruct these groups separately, and
then incrementally merge these groups. The main processes
of Incremental Reconstruction are internal parameter extrac-
tion, feature point extraction, feature point matching, feature
point mismatching filtering, Fundamental Matrix, Essential
Matrix, Triangulation, and Bundle Adjustment.

There are many motion estimation methods for Global
Reconstruction. Documents [18], [19] uses a matrix decom-
position method based on rank theory to obtain camera
motion estimation and point depth estimation, but this kind of
method has the disadvantage of tracking corresponding points
on all frames. Literature [17] uses a linear fitting method to
estimate camera rotation before camera translation, but the
accuracy of this method is not high.

Compared with Incremental Reconstruction, Global
Reconstruction reduces the number of iteration optimization,
and the error will be globally or evenly dispersed in each cam-
erawithout accumulating. However, because of the sensitivity
to external points, the reconstruction accuracy is not as high
as Incremental Reconstruction.

III. FAST SIFT FEATURE MATCHING ALGORITHM BASED
ON GEOMETRIC TRANSFORMATION
In this paper, a fast SIFT feature matching algorithm (Geom-
etry transformation-based Feature Matching, GeoMatch)
based on geometric transformation is proposed. The algo-
rithm is divided into two stages, the first stage is initialization,
and the second stage is fast matching based on geometric
transformation. The initialization stage is divided into two
steps: the first step is to match QSearch with global descrip-
tors from rough to fine, and the second step is to reduce the
dimension of SIFT descriptors. A more detailed algorithm
flow of GeoMatch is shown in Table 1.

TABLE 1. Imaging procedure of GeoMath algorithm.
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Next, we will describe in detail the initialization phase and
fast matching based on geometric transformation.

A. LINEAR SEARCH BASED ON CROSS QUADTREE
Two images with the same content should satisfy the polar
geometric relationship. The polar geometric relationship
between two-dimensional image points is described by the
basic matrix F:

xT2 Fx1 = 0 (1)

In (1), x1 and x2 denote a matching pair of image pixels,
F = KT

2 EK1 is the basic matrix, where K1 and K2 are
the internal parameter matrices corresponding to two images
respectively, E is the essential matrix, describing the corre-
sponding relationship between three-dimensional points, and
T represents the transposition. This formula shows that if
the image points x1 and the basic matrix F are already in
existence, a polar line xTFx1 = 0 can be determined in
image 2. Solving the nearest neighbor is converted to solving
the equation xTFx1 = 0. Since the solution obtained is not
necessarily the desired feature point, it is necessary to search
along the epipolar line to find the most matching feature point
of the descriptor. In this way, the two-dimensional search
problem is transformed into a one-dimensional search prob-
lem. However, if the scene described by an image is on a plane
or an approximate plane, the projective mapping matrix (i.e.
homography Matrix) can be used to describe the geometric
relationship between points more accurately. Because the
homographymatrix is needed in feature matching, the deriva-
tion of the homography matrix is briefly introduced below.

Suppose the plane equation is nTP+ d = 0, nT is a plane
normal vector, D is a plane intercept and P is a 3D point.
We can get the following equation.

−
nTP
d
= 1 (2)

Suppose there are two cameras: Camera 1 and
Camera 2, whose projection transformation parameters are
K1,R1, t1,K2,R2, t2, Combining (2), the following deduc-
tions are made:

p2 = K2 (R2P+ t2)

= K2

(
R2P+ t2

(
−
nTP
d

))
= K2

(
R2 + t2

(
−
nT

d

))
P

= K2

(
R2 + t2

(
−
nT

d

))
RT1 (K

−1
1 p1 − t1) (3)

When calculating the homography matrix, we need to take
an image as a reference image, and then take image 1 as a
reference. There are K1 = E, t1 = 0, substitution (3), there
are:

p2 = K2

(
R2 + t2

(
−
nT

d

))
K−11 p1 = Hp1 (4)

In formula (4), H = K2

(
R2 + t2

(
−
nT
d

))
K−11 is the

corresponding matrix. In feature matching, because there is
no prior knowledge of whether the feature points are coplanar
or not, the matrix with small re-projection error between
H and F is generally used as the transformation matrix in
actual matching operations.

When using H and F to match, H and F need to be cal-
culated beforehand. The calculation of H requires 4 pairs of
matching points, and the calculation of F generally requires
8 pairs of matching points. Therefore, a certain number of
matching points (20 to 30 pairs) needs to be calculated first.
To get the initial matching point pairs as simple as possible,
this paper uses a linear search. But the efficiency of the linear
search is too low, so a linear search QSearch algorithm based
on cross-Quadtree is proposed to speed up the search process.

The so-called cross-Quadtreemeans that the different areas
divided by Quadtree are not completely independent, which
have certain cross-areas as shown in Figure 1. Assuming a
plane as shown by dotted lines, the plane is evenly divided by
dotted lines and the upper left area is marked by black dotted
lines. However, to increase matching accuracy (explained
below), the actual coverage of the upper left area is marked
by the blackened solid line. It can be seen that the four larger
areas intersect with each other.

FIGURE 1. Cross-Quadtree diagram. (b) Search strategy diagram.

In order to match feature point descriptors, QSearch par-
titions the image plane several times and then calculates a
global descriptor in each partitioned sub-region. All images
are partitioned and the descriptor is computed in this way.
For the two images that need to be matched, a coarse-to-
fine search strategy is adopted. Firstly, the global descriptor
is matched to get the approximate matching region, and then
the feature point descriptor is matched in thematching region.
As shown in Figure 1, firstly, the matching of global descrip-
tors is performed from four largest regions to obtain the most
matched region 1 (the region marked by dots and lines);
secondly, the most matched sub-region 2 (marked by dots
and lines) is obtained from the four sub-regions of region 1;
finally, the most matched sub-region 3 is obtained from the
four sub-regions of region 2. After region 3 is obtained,
feature point descriptors are matched in the region.
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If there is no coverage between regions, the features
appearing at the boundary of one image region are likely to
be transferred to adjacent regions in the next image. In order
to solve this problem, when dividing space into sub-regions,
sub-regions will overlap with each other partially.

B. REDUCED DIMENSION MATCHING OF SIFT FEATURE
DESCRIPTORS
Natural and non-natural images. Natural images are two-
dimensional snapshots of the real world. They are digital
images captured by imaging equipment under certain illumi-
nation conditions. They have the characteristics of the gradual
gray transition of pixels. Non-natural images are not reac-
tions to the objective world, including images generated in a
computer (such as cartoons, hand drawings, etc.) and realistic
images generated by graphic technology. These images are
not objective reactions of the real world, so there are twomain
problems: first, the gray level of pixels may change dramati-
cally in a certain region; second, the geometric relationship of
image response is not significant. Therefore, natural images
should be selected as far as possible in three-dimensional
image reconstruction. Natural images are used in all exper-
iments in following chapters.

Planar and non-planar structures. The foreground object
of the natural image is sometimes planar structure (such as
the side of buildings, murals, etc.). Because all information
of the planar structure is displayed on the two-dimensional
plane without the information of the third dimension, using
panoramic mosaics and other means will have a better obser-
vation effect in this case, and restoring the depth information
of planar structure will not have practical application value.
Therefore, the reconstruction of a single plane should be
avoided as far as possible, and the image set should have a
clear hierarchical structure. The images used in this paper are
all-natural images with an obvious hierarchical structure.

In the process of studying SIFT characteristic values, it is
found that all SIFT values (assuming that they are not nor-
malized, i.e. the range of values is 0-255) tend to be smaller
on the whole. To use this rule in nearest neighbor retrieval,
the value of SIFT features is counted in this section.

In this section, the Oxford data set [22] is used for sta-
tistical feature experiments. The Oxford data set contains
eight image sets and five image changes. These changes
include blurring change, viewpoint change, distances and
rotation change, illumination change and JPEG compression
losses to varying degrees. Each image set contains six images
and five transformation files, which are img1.ppm-img6.ppm
and H1to2p-H1to6p respectively. In H1to2p, the single strain
transformation matrix from img1.ppm to img2.ppm is saved.
For a pair of matching SIFT key points calculated in
img1.ppm and img2.ppm, we can calculate the expected posi-
tion in img2.ppm of the key point of img1.pmm by H1to2p.
If the distance error between the expected position and the
calculated position is within the set threshold, it is considered
to be a correct match.

In this section, statistics of SIFT numerical frequency
distribution and cumulative distribution are made for four
scenarios in the Oxford data set. The statistical results are
shown in Figure 2 and Figure 3.

FIGURE 2. SIFT characteristic numerical frequency distribution.

FIGURE 3. SIFT characteristic numerical frequency cumulative
distribution.

As can be seen from Figures 2 and 3, the numerical fre-
quency characteristics of SIFT features of different images
are highly consistent. Firstly, from the frequency distribution,
we can see that the frequency of numerical value 0-10 is
above 2%, and that of 10-255 is below 2%. Secondly, it can
be seen from the cumulative distribution that the probability
of the value appearing in the interval [0,100] is about 90%.
This shows that if a numerical value x is sampled from
several SIFT features of a natural image, the probability of
X appearing in the interval [0,100] is 90%. Finally, it can
be seen from the frequency distribution chart that the larger
value [101,255] will still appear with a lower probability
(about 10%).

In summary, two statistical features of SIFT can be
obtained: one is that the probability of arbitrarily sampled
values from several SIFTs falling into the interval [0,100]
is 90%, and the other is that the probability of arbitrarily
sampled values from several SIFTs falling into the interval
[101, 255] is 10%.
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Based on the above two features, it can be further deduced
that when matching features, 128 dimensions of one feature
can be matched from large to small, and only a few of the
small dimensions need to be matched. It’s not necessary to
match all the dimensions, to achieve the goal of dimension-
ality reduction.

IV. COMPLEXITY ANALYSIS
A. COMPLEXITY OF INITIALIZATION PHASE
The complexity of initialization depends on the implemen-
tation strategy. Specifically, it depends on the selection and
calculation of global descriptors and the height of Quadtree.
Assuming that the image size is w∗h, the height of Quadtree
is H, and the global descriptor is a gray histogram which
takes O

(
w∗h
4H

)
to compute and requires O (1) space. If the

bottom-up global descriptor method is adopted, the time com-
plexity of computing all global descriptors is as follows

O
(
w∗h
4H

∗

4H+4H−1+4H−2+· · ·+4
)
=O

(
w∗h+4H

)
,

Spatial complexity is O
(
4+ 42 + · · · + 4H

)
= O(4H+1).

B. MATCHING COMPLEXITY BASED ON GEOMETRIC
TRANSFORM
The complexity of this stage depends on the transformations
used.

Assuming that the average number of vectors in the queried
area is M, the average number of vectors in the queried area
is N (finding the matching vectors of N vectors among M
vectors), the dimension of the query is d, and the dimension
of the feature is D.

Firstly, for each feature, it is necessary to select
the dimension before selecting the eigenvalue from the
128-dimensional eigenvector, which depends on the specific
algorithm. If relying on sorting algorithm, the heap sorting
with the best average time complexity can be used to solve the
problem with big D. The time complexity is O (128 ∗ logD),
because the constant 128 is larger than D, so the constant is
not ignored here. The experiment uses a faster nth_element
method with the average time complexity of O(128).

Secondly, each feature needs to search the nearest
neighbors linearly on the selected d dimensions. Since the
d dimensions used for each query may be different, Kd-tree
acceleration is not appropriate here. The time complexity of
the linear search is O(M∗d).
Therefore, the optimal average time complexity of a query

is O (128 +M ∗ d).
Also, to query efficiently, the algorithm uses O (M∗D)

auxiliary space to save the transpose of the feature matrix
in the database to index the value of one dimension of all
features.

V. EXPERIMENTAL DESIGN
In this experiment design, SIFT features are extracted from
two data sets: Oxford data set [22] and Tsinghua data set [23].

In order to evaluate the speed and accuracy of the pro-
posed algorithm GeoMatch, two typical matching strategies
are selected: linear search BruteForce and random Kd-tree
matching. Besides, CasHash (Cascade Hash) proposed by
literature [3] is added as a comparison according to the results
of literature retrieval in the last three years.

The experimental environment is desktop PC,Windows 10
64 bit operating system, i5-4590 CPU, 8GB memory, C++
language. To be fair, the experiment shuts down all mul-
tithreaded acceleration, using only one thread. Because
CasHash has no available CPU version on the public website,
this experiment has compiled a single-threaded CPU version
of CasHash.

A. EXPERIMENTS ON OXFORDS DATA SET
This experiment uses the standard Oxford data set [22] to
evaluate the acceleration ratio [3] and accuracy [24] of four
algorithms in SIFT feature matching.

The acceleration ratio of Kd-tree, CasHash, and GeoMatch
to linear search BruteForce was measured. Accelerate Rate
is defined as AR = t (BruteForce) / T (current algorithm).
GeoMatch algorithm has several main parameters: the global
descriptor used, the height of Quadtree and the dimension
used for matching. In this experiment, the global descriptor
uses the gray histogram, the height of Quadtree is 4 and the
dimension setting standard is that GeoMatch algorithm has
the same recall rate as CasHash. The experimental results are
shown in Table 2.

TABLE 2. Acceleration ratio at the same recall rate.

As can be seen from Table 2, the proposed algorithm has
the best time performance under the same recall rate when
matching SIFT features.

The evaluation criteria used in the algorithm are from the
literature [3]. The accuracy and recall rates of the algorithm
are tested under four scenarios (far-near rotation, ambiguity,
JPEG compression, viewpoint change). According to the con-
vention, the accuracy rate needs to be converted to the error
rate, i.e. 1-Precision. The experimental results are shown
in Fig. 4.

The results show that the proposed algorithm GeoMatch
is equal to Kd-tree on the whole but significantly better than
CasHash inmatching accuracy and recall rate experiments for
SIFT features.

B. EXPERIMENTS ON TSINGHUA DATA SET
The purpose of this experiment is to test the impact of dif-
ferent matching algorithms on the final dense reconstruc-
tion, mainly focus on the accuracy and completeness of the
model [24]. Assuming that the reconstructed model is R,
the real model is G, the set of points corresponding from
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FIGURE 4. Recall rate curve on Oxford data set.

R to G is RG, and the set of points corresponding from G to R
is GR (usually, RG and RG are not the same), RG should
remove the case that points in multiple R correspond to
points in one G. Accuracy is a dimensionless distance, which
depends on how the model scales up and down. If R and G
are aligned according to the actual size, then R and G are
dimensionless. If R and G are relatively aligned, then there is
dimensionless distance. It is defined as follows: If the set RG
is not empty, the elements in RG are sorted from small to large
according to the distance between corresponding points.With
proportion X∈[0, 1], the distance between the corresponding
points represented by the

⌊
|RG|∗ X

⌋
elements in RG. Among

the formula, | · | denotes the number of elements in a set,
which is also called the base of a set. And b·c is a downward
integer operation. The concept of completeness is similar to
accuracy, just by exchanging the contents of R and G.

The data set used in the experiment is the Tsinghua School
and Tsinghua Life Sciences Building in document [22],
the Campus data set with 1040 images [29], and Trafalgar,
with 4591 images [30]. There are 193 and 102 images
respectively in Tsinghua School and Tsinghua Life Sciences
Building data set. Meanwhile, the data set gives the real

TABLE 3. Time performance of three-dimensional reconstruction on
Tsinghua data set.

value data of buildings obtained by Riegl-LMS-Z420i laser
scanner. The main body of the program used in the exper-
iment is Bunlder [26] andi PMVS2 [25], which only need
to modify the key points of matching module. Because the
coordinate scale and spatial orientation used between R and
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TABLE 4. Accuracy of three-dimensional reconstruction on Tsinghua data set.

TABLE 5. Integrity of three-dimensional reconstruction on Tsinghua data set.

TABLE 6. Time performance of three-dimensional reconstruction on
Campus data set.

TABLE 7. Time performance of three-dimensional reconstruction on
Trafalgar data set.

G are inconsistent, the model needs to be scaled and aligned
before calculating accuracy and completeness. In this experi-
ment, point fixing inMeshLab [27] and ICP (Iterative Closest
Points) methods are used for rotation and translation and
scaling is used to align the scale of R with that of G.

The main variable of GeoMatch is the number of dimen-
sions used. The main variable of CasHash is the number of
bits encoded by hash bucket. The best of the number of bits
is 8 according to literature [3].

FIGURE 5. Result of 3D reconstruction on ‘‘Life Science Building’’ and
‘‘Tsinghua School’’.

The experimental results are shown in Tables 3, 4, 5, 6, 7.
As can be seen from Tables 3, 6, 7, the algorithm proposed
in this chapter has the best performance in terms of time
complexity and acceleration ratio at the appropriate sacrifice
of the number of point clouds. As can be seen from
Tables 4 and 5, the algorithm presented in this chapter is the
best in most sensitivity tests.
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In Fig. 5, the left one is a real building and the right one is
a reconstruction building. Intuitively speaking, the matching
algorithm proposed in this paper can perform feature points
matching well to complete the reconstruction task.

VI. TOTAL CONCLUSION
A fast matching algorithm GeoMatch for SIFT features is
proposed based on the contrapole geometry and SIFT numer-
ical distribution statistics of the scene. Experiments show
that GeoMatch can greatly improve the matching speed of
SIFT descriptors at the expense of a small number of three-
dimensional points. At the same time, it can get a good
guarantee of accuracy and integrity.
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