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ABSTRACT To cope with the large state estimation error due to sensor delay, a novel flexible model is
explored to describe a linear dynamic system with multiple-step random delays in this paper. Compared with
existing models, this model is more consistent with the actual situation. Based on the new model, the main
difficulty, which is to determine the probability of any number of steps delayed, is overcome by applying
techniques of high-order Markov chain. Then, the Kalman filtering problem with measurement delays is
converted to random parameter matrices Kalman filtering(RKF), the new approximate state estimators are
proposed. For a n-step random delay model, we prove that it can be treated as a (2n − 1)th-order Markov
chain, making it theoretically feasible to apply the method in this paper to deal with any multiple-step delay
model. Some illustrative numerical examples are presented to demonstrate the efficiency of the new model
and superiority over existing algorithms.

INDEX TERMS High-orderMarkov chain, Kalman filtering, multiple-step random delay, random parameter
matrix.

I. INTRODUCTION
In practice, data received from the sensors may be randomly
delayed due to many uncertainties, such as sensor tempo-
ral failures, sensor saturated mechanisms, equipment failure
and heavy network traffic, causing out-of-order measurement
sequences [1]–[3], which greatly reduces the performance of
traditional Kalman filter in state estimation. Both in linear and
nonlinear systems, there have been a lot of research interest
in the state estimation problem with random delays owing
to its significant applications in fields such as signal pro-
cess, GPS integration navigation, target tracking, and radar
control [4]–[8].

The theory of random parameter matrix models is usu-
ally used to deal with state estimation. To mention a few,
Yaz [9] considered a general discrete-time stochastic bilinear
system model and derived the mean square optimal linear
unbiased estimator for random parameter matrix models.
Nahi [10] gave the minimum mean-square estimators of
recursive form for two different types of uncertain observa-
tion problem, in which methods and techniques in this paper
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have been used for references by many following researches.
Chen et al. [11] derived several conclusions on Kalman fil-
tering for conditionally Gaussian systems with randommatri-
ces. In addition, quite a few researchers proposed studies on
systems with random parameter matrices in NaNacara and
Yaz [12], Shen et al. [13], etc. In recent years, based on
random parameter matrix models, many models and tech-
niques have been proposed to handle random delay problems.
Many literatures only take one-step delay into considera-
tion, but the actual situation is that multiple-step random
delays often occur. Yaz and Ray [14] proposed a classi-
cal and concise model to characterize the nature of sensor
delay and gave unbiased minimum variance state estima-
tors. A least square linear estimator was investigated based
on the covariance information approach [15]. Furthermore,
Linares et al. [16] and Caballero-Águila et al. [17] extended
the result to multiple-step random delays and multiple-step
packet dropouts, respectively. It is worth mentioning that
the random delay was traditionally defined by a Bernoulli-
distributed sequence with a deterministic parameter, see e.g.
[2], [14], and [18]–[21]. Luo et al. [22] derived the recursive
state estimation of the random parameter matrices Kalman
filtering (RKF). In this paper, the new state estimators are
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proposed by RKF after we use a delay model to tranform
the original problem into the form that RKF can deal with.
However, there is a significant problem that a delay model
widely used in many previous studies, as in [14], does not
quite fit the actual situation, which will be explained in detail
in the next section. Then, a novel and more realistic model is
explored to describe a linear dynamic system with multiple-
step random delays.

In the past few years, the high-order Markov chain has
also attracted much attention. In terms of mathematical
theory, there are many literatures on high-order Markov
chain. Raftery conducted a series of researches on a spe-
cial kind of high-order Markov chain [23]–[25]. Adke and
Deshmukh [26] obtained the limit distribution of the high-
order Markov chain under conditions weaker than those
assumed by Raftery. Several other special high-order Markov
chains are also frequently studied in Pegram, Jacobs and
Lewis [27] and Logan [28]. The high-order Markov chains
discussed in the above studies are all special and conform to
specific rules. We use the definition of generalized higher-
orderMarkov chain in this paper, not focusing on its profound
mathematical properties, the main purpose is to apply it to
solving the key problem in state estimation. From the per-
spective of practical application, the application of high-order
Markov chain in various fields such as signal processing and
data transmission has been widely studied. Myint et al. [29]
investigated a second-order Markov-based 5G error model
to model the underlying error process in the 5G network.
Wang et al. [30] proposed a variable-order Markov model
based on kernel smoothing, to apply to the analysis of GPS
trajectories. Liu et al. [31] appliedMarkov chain to model the
case under the assumption that the random communication
delays exist both in the system state and in the mode signal.
In this paper, we also introduce high-order Markov chain, and
define the expression of its state space, then use it to express
our designed model in mathematical language. However,
the high-order Markov chain is not suitable for derivation and
calculation, thus we transform it into the standard Markov
chain by redefining(expanding dimension) the state space,
making it possible to calculate the probabilities of delay,
which is the key part of extending one-step delay model to
multiple-step delay model.

Pang et al. [32] explored a novel and more elaborate model
to describe a linear dynamic system with random delays and
presented state estimators. However, this model only works
under the assumption of one-step delay. In order to extend
the previous research results to multiple-step random delays,
a model is proposed in this paper to reasonably describe
a linear dynamic system with multiple-step random delays,
in which the model in Pang et al. [32] is a special case
of our model under the assumption of one-step delay. The
high-order Markov chain is used to process the multiple-
step delay model. It is proved that any n-th order Markov
chain can be transformed into a first-order Markov chain by
redefining the state space. Then, based on high-order Markov
chain, theKalman filtering problemwithmeasurement delays

is converted to random parameter matrices Kalman filter-
ing (RKF). We prove that a n-step random delay model
corresponds to a (2n − 1)th-order Markov chain. Treating
the converted problem as RKF, the new approximate state
estimators are proposed. The numerical examples show that
these new estimators work better than the existing algorithm
in many cases.

This paper is organized as follows. In Section II,
the new model featuring n-step random delay character-
istics is presented, and high-order Markov chain is intro-
duced. In Section 3, in the case of 2-step delay, the model
is transformed into the form of random parameter matri-
ces Kalman filtering(RKF) by applying third-order Markov
chain. Moreover, two approximate estimators for the linear
dynamic system are given. In section 4, in the case of n-step
delay, an important theorem on the order of the Markov chain
corresponding to the n-step delay model is proved, which
enables us to process any multiple-step delay models through
the same approach as in section 3. In section 5, numerical
examples are provided. Finally, a summary of our work is pre-
sented and possible future studies are discussed in Section 6.

II. PRELIMINARY
In this section, we will introduce some preliminaries.

A. MULTIPLE-STEP DELAY MODEL
Consider a linear dynamic system with state-space

description:

xk+1 = Fkxk + νk , (1)

zk = Hkxk + ωk , (2)

where Fk and Hk are n× n, q× n constant matrices, respec-
tively, with q ≤ n, {νk} and {ωk} are system and observation
noise sequences, respectively, with known statistical informa-
tion such as zero-mean and covariance matrices as follow:

Cov(νk ) = Rνk , Cov(ωk ) = Rωk .

To obtain optimal state estimators of the system with random
sensor delay, it is prerequisite to build a model that deli-
cately describe the nature of random delay. When random
delay exists, the measurement received by the filter at time
k , denoted as yk , may not equal to sensor output zk . The
universal measurement equation widely used in many former
studies is as follow, assuming that an observation may delay
up to n steps:

yk = ζ 1k zk + (1− ζ 1k )ζ
2
k zk−1 + (1− ζ 1k )(1− ζ

2
k )ζ

3
k zk−2

+ · · · + (1− ζ 1k )(1− ζ
2
k ) . . . (1− ζ

n
k )zk−n, (3)

where {ζ ik} is a sequence of independent Bernoulli ran-
dom variables(not necessarily i.i.d.). However, this equation
does not match the actual situation. For instance, under the
assumption that a measurement may delay one step at most,
the equation comes to yk = ζ 1k zk + (1 − ζ 1k )zk−1. If ζ

1
k = 0,

then yk = zk−1, indicating that the sensor output is delayed by
one step. Then at next step, yk+1 must equal to zk , or zk would
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be lost and this measurement equation would be invalid. The
model works worse when more steps delayed. Apparently,
this is not true in practice.

In this paper, a newmodel is proposed. To begin with, a few
definitions are given, as follows.
Definition 1 (Delay): Under the assumption that the time

stamp of the sensor output zk is unknown or inaccurate for the
filter, the sensor output zk is called delayed when zk arrives
at the filter later than some sensor output zn, (n > k).
Definition 2 (n-Step Delay): If the sensor output zk

arrives at the filter after sensor output zk+n, the k-th sensor
output can be called n-step delayed.

Consider a discrete time dynamic system (1) - (2) with
n-step random delays. The following is assumed.
Assumption 1: β0k is the probability that zk is not delayed;
(1− β0k )β

1
k is the probability that zk is one-step delayed;

(1 − β0k )(1 − β
1
k )β

2
k is the probability that zk is two-step

delayed.
...

(1−β0k )(1−β
1
k ) · · · (1−β

n−1
k ) is the probability that zk is

n-step delayed.
Thus, the model in Pang et al. [32] is a special case of our

model where n = 1.

B. MAIN CHALLENGE
Denote τ as the order of sensor outputs that arrive at the
sensor. Thus, at order τ , 2n + 1 observations may arrive at
the sensor. Denote the probability that yτ = zτ−n, yτ =
zτ−n+1, · · · , yτ = zτ+n as p−nτ , p−n+1τ , · · · , pnτ respectively.
The measurement equation at order τ can be described as:

yτ =



zτ−n = Hτ−nxτ−n + ωτ−n prob = p−nτ
zτ−n+1 = Hτ−n+1xτ−n+1 + ωτ−n+1 prob = p−n+1τ

· · ·

zτ = Hτ xτ + ωτ prob = p0τ
· · ·

zτ+n−1 = Hτ+n−1xτ+n−1 + ωτ+n−1 prob = pn−1τ

zτ+n = Hτ+nxτ+n + ωτ+n prob = pnτ
(4)

If the probability piτ (i = −n, · · · , n) is known, we can
estimate the state of (1) and (2) by RKF or RKF with finite-
step correlated noises. The key point here is to determine how
to calculate the probability piτ (i = −n, · · · , n) in (4).
Remark 1: For the one-step delay problem (n = 1),

the probability piτ (i = −1, 0, 1) can be calculated recur-
sively. Especially, when the delay probability β of each step
is constant, this model can be treated as a first order Markov
chain, where πτ+1 = (p−1τ+1, p

0
τ+1, p

1
τ+1) = πτP (see [32]).

However, this method is invalid in a multiple-step model.

C. HIGH-ORDER MARKOV CHAIN
For the one-step delay problem (n = 1), the probability

piτ (i = −1, 0, 1) can be calculated recursively. Especially,
when the delay probability β of each step is constant, this

model can be treated as a first order Markov chain, where
πτ+1 = (p−1τ+1, p

0
τ+1, p

1
τ+1) = πτP (see [32]). However,

for a multiple-step delay model, P depends not only on the
current step, but also on previous steps. Therefore, high-order
Markov chain is introduced as a tool to process the multiple-
step delay model.
Definition 3 (High-Order Markov Chain): A stochastic

process {Xn}with state spaceX is a m-th orderMarkov chain,
if for ∀n > m,

P(Xn = x|Xn−1 = xn−1, . . . ,X1 = x1)

= P(Xn = x|Xn−1 = xn−1, . . . ,Xn−m = xn−m). (5)

The following lemma shows that any n-th order Markov
chain can be transformed into a first-order Markov chain by
redefining the state space(dimension extension).
Lemma 1: For any m-th order Markov chain {Xn} with

state space X , {Xn} can be transformed into a first-order
Markov chain {X ′n}(n ≥ m) with state space Xm, which is
a m-th power Cartesian product of X .

Proof: For n ≥ m, define X ′n as a m dimen-
sional vector (Xn−m+1,Xn−m+2, · · · ,Xn). Thus, X ′n ∈ Xm.
By Definition 3,

P(X ′n = (xn−m+1, xn−m+2, · · · , xn−1, xn)|X ′n−1
= (xn−m, · · · , xn−1))

= P(Xn = xn|Xn−1 = xn−1, . . . ,Xn−m = xn−m)

= P(Xn = xn|Xn−1 = xn−1, . . . ,X1 = x1)

= P(X ′n|X
′

n−1,X
′

n−2 · · · ) (6)

From (6), {X ′n}(n ≥ m) is a first-order Markov chain, with
state space Xm. We call {X ′n}(n ≥ m) the corresponding first-
order Markov chain of {Xn}.

For the sake of notation simplicity, detailed procedures of
iteratively calculating piτ (i = −2, · · · , 2) using third-order
Markov chain in 2-step delay model will be proposed in
section 3. In section 4, an important theorem is given, which
enables us to generalize it to n-step delay without difficulty.

III. 2-STEP DELAY
Based on Assumption 1, the hypothesis tree of the two-step

delay model is presented in Fig. 1. It can be observed that the
sensor measurement at yτ relates to several previous states,
which reminds us of high-order Markov chain.

Apply the high-order Markov chain to describe our new
model. Define mτ as the corresponding random variable of
the observation at order τ as follow:

mτ =



−2 yτ = zτ−2
−1 yτ = zτ−1
0 yτ = zτ
1 yτ = zτ+1
2 yτ = zτ+2

(7)

It is obvious that {mi} is a high-order Markov chain.
Moreover, {mi} is a third-order Markov chain from the the-
orem in section 4, indicating that the value of any {mi} relates
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FIGURE 1. Multiple hypothesis tree of the two-step delay model.

TABLE 1. An example for transformation.

to three previous states at most. By Lemma 1, {mi} can
be transformed into a standard Markov chain, denoted as
{m′i}(i ≥ 3).

For instance, when y1 = z3, y2 = z1, y3 = z2, y4 = z4,
Table 1 shows the relationship between {zi}, {mi} and {m′i} as
an example.
Remark 2: Let the state space of the third-order Markov

chain {mi} be X , then the state space of the corresponding
standardMarkov chain {m′i} can be a true subset ofX 3 rather
than X 3 itself. The reason is that, firstly, most of cases such
as (2, 2, 2) in X 3 cannot happen according to settings of
the delay model. Secondly, in most cases, the value of mi
only relates to one or two previous states rather than three,
so some three dimensional vectors in X 3 can be combined
into numbers or two dimensional vectors, which reduces the
number of elements in the new state space. In this way,
the state space of {m′i} can be largely simplified. We directly
use simplified state space in this paper.

After simplification, the state space of {m′i} is

{−2, (−1,−1), (1,−1), (2,−1), 0, (−2, 1), (0, 1), (1, 1),

(−1,−1, 1), (1,−1, 1), (2,−1, 1), 2}, (8)

which has only 12 elements.
Thus, the 12×12 transitionmatrix of {m′i} fromm′k tom

′

k+1,
denoted as Pk , can be obtained, as follows:

Pk (1, 5) = β0k+1; Pk (1, 6) = (1− β0k+1)β
0
k+2;

Pk (1, 12) = (1− β0k+1)(1− β
0
k+2); Pk (2, 5) = β0k+1;

Pk (2, 9) = (1− β0k+1)β
0
k+2;

Pk (2, 12) = (1− β0k+1)(1− β
0
k+2);

Pk (3, 1) = (1− β0k+1)(1− β
0
k+2); Pk (3, 5) = β0k+1;

Pk (3, 10) = (1− β0k+1)β
0
k+2; Pk (4, 2) = β1k ;

Pk (4, 11) = 1− β1k ; Pk (5, 5) = β0k+1;

Pk (5, 7) = (1− β0k+1)β
0
k+2;

Pk (5, 12) = (1− β0k+1)(1− β
0
k+2); Pk (6, 2) = β1k ;

Pk (6, 8) = 1− β1k ; Pk (7, 2) = β1k ;

Pk (7, 8) = 1− β1k ; Pk (8, 1) = 1; Pk (9, 3) = β1k ;

Pk (9, 8) = 1− β1k ; Pk (10, 3) = β1k ; Pk (10, 8) = 1− β1k ;

Pk (11, 1) = 1; Pk (12, 4) = 1,

where Pk (i, j) denote the i-th row and j-th column element of
the transition matrix Pk . Except for the above elements, all
the other elements in Pk are 0.

It can be seen that the transition matrix Pk matrix is sparse,
which reduces the computational burden. Also, if β0i , β

1
i

(i = 1, 2, · · · ) are constant, then {m′i} is positive recurrent,
aperiodic, irreducible and has invariant distribution π .

Recall that the probability of yτ = zτ−2, yτ = zτ−1,
yτ = zτ , yτ = zτ+1, yτ = zτ+2 are denoted as p−2τ , p−1τ , p0τ ,
p1τ , p

2
τ , respectively. Let Prτ , (p−2τ , p−1τ , p0τ , p

1
τ , p

2
τ ) and the

probability vector of Markov chain {m′i} at time point k πk ,
(πk,1, πk,2, · · · , πk,12) (the order of state is in accordance
with (8)). Now the probability recurrence formula of piτ can
be deduced as follows.
Lemma 2: Calculate piτ
Initial probability distribution

Pr1 , (p−21 , p−11 , p01, p
1
1, p

2
1)

= (0, 0, β01 , (1− β
0
1 )β

0
2 , (1− β

0
1 )(1− β

0
2 )), (9)

π1= (0, 0, 0, 0, β01 , 0, (1− β
0
1 )β

0
2 , 0, 0, 0, 0,

(1− β01 )(1− β
0
2 )), (10)

Recurrence formula

πk+1 = πkPk (11)

(p−2k , p−1k , p0k , p
1
k , p

2
k )= (πk,1, πk,2 + πk,3 + πk,4, πk,5, πk,6

+πk,7 + πk,8 + πk,9 + πk,10

+πk,11, πk,12) (12)
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Proof: Based onAssumption 1, (9) and (10) are obvious.
By law of total probability and (8),

p−2k = P(yk = zk−2) = πk,1;

p−1k = P(yk = zk−1) =
∑
i

P(yk = zk−2, yk−1 = zi)

= πk,2 + πk,3 + πk,4;

p0k = P(yk = zk ) = πk,5;

p1k = P(yk = zk+1) =
∑
i

P(yk = zk+1, yk−1 = zi)

= πk,6 + · · · + πk,11;

p2k = P(yk = zk+2) = πk,12. (13)
Thus, (12) immediately.
By Lemma 2, the measurement equation at time point τ is

yτ =



zτ−2 = Hτ−2xτ−2 + ωτ−2 prob = p−2τ
zτ−1 = Hτ−1xτ−1 + ωτ−1 prob = p−1τ
zτ = Hτ xτ + ωτ prob = p0τ
zτ+1 = Hτ+1xτ+1 + ωτ+1 prob = p1τ
zτ+2 = Hτ+2xτ+2 + ωτ+2 prob = p2τ ,

(14)

which can be written as

yτ = ξτZτ , (15)
where

P{ξτ = (I 0 0 0 0)} = p−2τ ,

P{ξτ = (0 I 0 0 0)} = p−1τ ,

P{ξτ = (0 0 I 0 0)} = p0τ ,
P{ξτ = (0 0 0 I 0)} = p1τ ,
P{ξτ = (0 0 0 0 I )} = p2τ ,

and

Zτ = (zTτ−2 zTτ−1 zTτ zTτ+1 zTτ+2)
T .

Directly deduced from (1) and (2),

zτ−2 = Hτ−2F
−1
τ−2F

−1
τ−1xτ − Hτ−2F

−1
τ−2F

−1
τ−1ντ−1

−Hτ−2F
−1
τ−2ντ−2 + ωτ−2,

zτ−1 = Hτ−1F
−1
τ−1xτ − Hτ−1F

−1
τ−1ντ−1 + ωτ−1,

zτ = Hτ xτ + ωτ ,
zτ+1 = Hτ+1Fτ xτ + Hτ+1ντ + ωτ+1,
zτ+2 = Hτ+2Fτ+1Fτ xτ + Hτ+2Fτ+1ντ+Hτ+2ντ+1+ωτ+2.

Thus, yτ = ξτZτ is equivalent to

yτ = ξτhτ xτ + ξτWτ , (16)

where

hτ =


Hτ−2F

−1
τ−2F

−1
τ−1

Hτ−1F
−1
τ−1

Hτ
Hτ+1Fτ

Hτ+2Fτ+1Fτ

 ,

Wτ =


ωτ−2 − Hτ−2F

−1
τ−2F

−1
τ−1ντ−1 − Hτ−2F

−1
τ−2ντ−2

ωτ−1 − Hτ−1F
−1
τ−1ντ−1

ωτ
ωτ+1 + Hτ+1ντ

ωτ+2 + Hτ+2Fτ+1ντ + Hτ+2ντ+1

 .

Let E(ξτ ) = ξ τ , so ξτ = ξ τ + ξ̃τ . Substitute it into (16), then
the measurement equation can be transformed into

yτ = ξ τhτ xτ + ω̃τ , (17)

where

ω̃τ = ξ̃τhτ xτ + ξτWτ . (18)

Next, two approximate estimators for the new model (1)
and (17) are presented by using RKF without consideration
of correlations and RKF with one-step correlated noises,
respectively, based on the recurrence formula.
Algorithm 1: Approximate state estimators(using RKF)
Step 1. predict

xτ |τ−1 = Fτ−1xτ−1|τ−1, (19)

Pτ |τ−1 = Fτ−1Pτ−1|τ−1FTτ−1 + Rντ−1 , (20)

Step 2. update

Kτ = Pτ |τ−1(ξ τhτ )
T (ξ τhτPτ |τ−1h

T
τ ξ

T
τ + Rω̃τ )

†, (21)

xτ |τ = xτ |τ−1 + Kτ (yτ − ξ τhτ xτ |τ−1), (22)

Pτ |τ = (I − Kτ ξ τhτ )Pτ |τ−1, (23)

where

Rω̃τ =E(ω̃τ )(ω̃τ )
T
≈ E(ξτR1ξTτ )+ E (̃ξτhτEτh

T
τ ξ̃

T
τ ), (24)

R1=EWτW T
τ

= diag(Rωτ−2+Hτ−2F
−1
τ−2F

−1
τ−1Rντ−1 (Hτ−2F

−1
τ−2F

−1
τ−1)

T

+Hτ−2F
−1
τ−2Rντ−2 (Hτ−2F

−1
τ−2)

T ,Rωτ−1

+Hτ−1F
−1
τ−1Rντ−1 (F

−1
τ−1)

THT
τ−1,Rωτ ,Rωτ+1

+Hτ+1RντH
T
τ+1,Rωτ+2+Hτ+2Fτ+1Rντ (Hτ+2Fτ+1)

T

+Hτ+2Rντ+1H
T
τ+2), (25)

Eτ = Exτ xTτ = Fτ−1Eτ−1FTτ−1 + Rντ−1 , (26)

x0|0 = Ex0, (27)

P0|0 = Var(x0), (28)

E0 = Ex0xT0 = Ex0ExT0 + P0|0. (29)

Next, take into account one-step correlated noises. The
global optimal state estimators for dynamic system with one-
step correlated noises are given in Pang et al. [32], according
to which the approximate estimators are given in the follow-
ing algorithm by treating remodeled system (1) and (17) as
RKF with one-step correlated noises.
Algorithm 2: Approximate state estimators (using RKF

with one-step correlated noises). Step 1. predict

xτ |τ−1 = Fτ−1xτ−1|τ−1 + Rντ−1ω̃τ−1L
†
τ−11yτ−1, (30)

Pτ |τ−1 = Fτ−1Pτ−1|τ−1FTτ−1 + Rντ−1

−Fτ−1Jτ−1L
†
τ−1R

T
ντ−1ω̃τ−1

−Rντ−1ω̃τ−1L
†
τ−1J

T
τ−1F

T
τ−1

−Rντ−1ω̃τ−1L
†
τ−1R

T
ντ−1ω̃τ−1

, (31)
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Step 2. update

xτ |τ = xτ |τ−1 + JτL†τ1yτ , (32)

Pτ |τ = Pτ |τ−1 − JτL†τ J
T
τ , (33)

1yτ = yτ − ξ τhτ xτ |τ−1 − R
T
ω̃τ−1,τ

L†τ−11yτ−1, (34)

Jτ = Pτ |τ−1hTτ ξ
T
τ −(Fτ−1Jτ−1 + Rντ−1ω̃τ−1 )L

†
τ−1Rω̃τ−1,τ ,

(35)

Lτ = ξ τhτ Jτ+Rω̃τ−R
T
ω̃τ−1,τ

L†τ−1(J
T
τ−1F

T
τ−1 + R

T
ντ−1ω̃τ−1

)

hTτ ξ
T
τ − R

T
ω̃τ−1,τ

L†τ−1Rω̃τ−1,τ , (36)

where

Rω̃τ = E(ω̃τ )(ω̃τ )T ≈ E(ξτR1ξTτ )+ E (̃ξτhτEτh
T
τ ξ̃

T
τ )

+E(ξτR2hTτ ξ̃
T
τ )+ E (̃ξτhτR

T
2 ξ

T
τ ), (37)

Rω̃τ−1,τ = E(ω̃τ−1)(ω̃τ )T ≈E(ξτ−1R3ξTτ )+E(ξτ−1R4h
T
τ ξ̃

T
τ )

+E (̃ξτ−1hτ−1Eτ−1FTτ−1h
T
τ ξ̃

T
τ ), (38)

Rντ ω̃τ = E(ντ )(ω̃τ )T ≈ R5ξ
T
τ , (39)

and

R2 = EWτν
T
τ−1 =


−Hτ−2F

−1
τ−2F

−1
τ−1Rντ−1

−Hτ−1F
−1
τ−1Rντ−1
0
0
0

 , (40)

R3 = EWτ−1W T
τ =


D11 0 0 0 0
D21 0 0 0 0
0 Rωτ−1 0 0 0
D41 D42 Rωτ 0 0
D51 D52 0 D54 D55

 (41)

where

D11 = Hτ−3F
−1
τ−2Rντ−2 (Hτ−2F

−1
τ−2)

T

D21 = Rωτ−2 + Hτ−2F
−1
τ−2Rντ−2 (Hτ−2F

−1
τ−2)

T

D41 = −HτRντ−1 (Hτ−2F
−1
τ−2F

−1
τ−1)

T

D51 = −Hτ+1FτRντ−1 (Hτ−2F
−1
τ−2F

−1
τ−1)

T

D42 = −HτRντ−1 (Hτ−1F
−1
τ−1)

T

D52 = −Hτ+1FτRντ−1 (Hτ−1F
−1
τ−1)

D54 = Rωτ+1 + Hτ+1RντH
T
τ+1

D55 = Hτ+1Rντ (Hτ+2Fτ+1)
T

and

R4=EWτ−1ν
T
τ−1 =


0
0
0

HτRντ−1
Hτ+1FτRντ−1

 , (42)

R5=EντW T
τ =

(
0 0 0 RντH

T
τ+1 Rντ (Hτ+2Fτ+1)

T ), (43)

Eτ =Exτ xTτ = Fτ−1Eτ−1FTτ−1 + Rντ−1 . (44)

and R1 is identical to (25).

Remark 3: Algorithm 2 provides the approximate state
estimators for the linear dynamic system with one-step cor-
related noises. Similarly, the finite-step correlated noise
approximate estimators can be proposed. However, this
would bring heavy notations. Hence, the derivation process
is omitted.

IV. N-STEP DELAY
Similarly, the new model under the assumption of n-step

delay can be described with high-order Markov chain by
applying the same method as section 3. Define mτ as the
corresponding random variable of the observation at order τ
as follow:

mτ =



−n yτ = zτ−n
−n+ 1 yτ = zτ−n+1
...

...

0 yτ = zτ
...

...

n− 1 yτ = zτ+n−1
n+ 1 yτ = zτ+n.

(45)

Then {mi} is a high-order Markov chain corresponding to the
n-step delay model. As for the order of {mi}, a theorem is
given as follow.
Theorem 1: Let {mi} denote the high-order Markov chain

corresponding to the n-step delay model, then {mi} is a (2n−
1)th-order Markov chain.

Proof: Denote the order of {mi} as ord{mi}. Obviously,
ord{mi} = 2n− 1⇔ ord{mi} ≥ 2n− 1 and ord{mi} ≤ 2n− 1.
To prove ord{mi} ≥ 2n − 1, we only need to find one case

where the probability distribution of current measurement
relates to at least 2n − 1 previous steps. We pick out two
branches of the multiple hypothesis tree of the n-step delay
model independently(Fig. 1 is an example of 2-step delay
model), as follows:

FIGURE 2. The case where the measurement at y2n relates to that at y1.

In this case, previous 2n − 2 measurements(from y2 to
y2n−1) are the same in Branch1 and Branch2 while the pre-
vious 2n − 1-th measurements(at y1) are not. If we can
deduce that the probability distributions of the current mea-
surements(at y2n) are different, then ord{mi} ≥ 2n− 1.

By (45) and Assumption 1,

P(m2n|m2n−1 = 1, · · · ,m2 = −1,m1 = n− 1)

= P(y2n|y2n−1 = z2n, · · · , y2 = z1, y1 = zn)
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6= P(y2n|y2n−1 = z2n, · · · , y2 = z1, y1 = zn+1)

= P(m2n|m2n−1 = 1, · · · ,m2 = −1,m1 = n), (46)

and Fig. 2 shows the probability distribution of measurements
at y2n in Branch1 and Branch2, respectively.
Thus, ord{mi} ≥ 2n− 1.
Next, we prove that ord{mi} ≤ 2n− 1.
Assume that the measurements of previous 2n − 1 steps

in arbitrary two independent branches are the same, and the
measurements at ym are unknown(m > 2n), as follows:

FIGURE 3. Z1 and Z2 must be i.i.d. when measurements of previous
2n− 1 steps are the same.

Denote Z1 as the measurement at ym in Branch3, and Z2
as the measurement at ym in Branch4. Z1 and Z2 are random
variables.

Regardless of the measurements at any step before
ym−(2n−1), when measurements from ym−(2n−1) to ym−1
(2n-1 steps) in Branch3 and Branch4 are the same, if we can
deduce that Z1 and Z2 are i.i.d., then ord{mi} ≤ 2n− 1.

Assume that Z1 and Z2 are not i.i.d.. Then there must be
one of the following four scenarios.

(1) When P(Z1 = zk |∀k < m) = 0 or P(Z2 = zk |
∀k < m) = 0.

First of all, prove that P(Z1 = zk |∀k < m) = 0⇔ P(Z2 =
zk |∀k < m) = 0.

Without loss of generality, assume P(Z1 = zk |∀k <

m) = 0 and ∃l < m, s.t. P(Z2 = zl) > 0.
Given that the measurements of 2n − 1 steps before in

Branch3 and Branch4 are the same, then in Branch4, ∃p ≥ m
and q ≤ m− 2n s.t. yp = zq.
Note that |p− q| > n. Contradictory. Then we have

P(Z1 = zk |∀k < m) = 0⇔ P(Z2 = zk |∀k < m) = 0. (47)

Thus,

P(Z1 = zm) = β0m, P(Z1 = zm+1) = (1− β0m)β
0
m+1, · · · ,

P(Z2 = zm) = β0m, P(Z2 = zm+1) = (1− β0m)β
0
m+1, · · · .

(48)

By (48), Z1 and Z2 are i.i.d., contradictory.
(2) When ∃k1 < m, k2 < m, s.t. P(Z1 = zk1 ) > 0 and

P(Z2 = zk2 ) > 0.
By Assumption 1, if the set of possible values of Z1 and

Z2 is equal, then Z1 and Z2 have the same probability distri-
bution. Note that Z1 and Z2 are not i.i.d. by our assumption.
Without loss of generality, assume that P(Z2 = zk1 ) = 0.
Thus k1 6= k2.
Since zk1 , zk2 ∈ {zm−n, zm−n+1, · · · , zm−1} and k1 6= k2,

then k1 > m− n or k2 > m− n, say k1 > m− n.

zk1 cannot be lost in Branch4, and the measurements of
the previous 2n − 1 steps are the same in the two branches.
Therefore, in Branch4, ∃p ≤ m− 2n, s.t. yp = zk1 .
Note that |p − k1| > n, which is not possible in a n-step

delay model, contradictory.
(3) When P(Z2 = zk |∀k < m) = 0, and ∃k1 < m, s.t.

P(Z1 = zk1 ) > 0.
In Branch4, there is no such zl(l ≥ m) that came to the

filter before ym. Otherwise, ∃k < m, s.t. P(Z2 = zk ) > 0,
contradictory.
In Branch3, ∃q ≥ m and yp ∈ {ym−n, ym−n+1, · · · , ym−1},

s.t. yp = zq, which is to say, there must be such zq(q ≥ m) that
came to the filter before ym. Otherwise, P(Z1 = zk1 |∀k1 <
m) = 0, contradictory.
Thus, the 2n− 1 measurements before ym in Branch3 and

Branch4 are not the same, contradictory to the assumption.
(4) When P(Z1 = zk |∀k < m) = 0, and ∃k2 < m, s.t.

P(Z2 = zk2 ) > 0.
Similar to (3), contradictory.
To sum up, Z1 and Z2 are i.i.d.. Therefore, ord{mi} ≤ 2n−1.

Recall that we already proved ord{mi} ≥ 2n− 1, the order of
{mi} is exactly 2n− 1.
With knowing the order of {mi} corresponding to the n-step

delay model, {mi} can be transformed into a standard Markov
chain through the method in section 2, denoted as {m′i}. The
same approach as in section 3 can be ported to n-step(n > 2)
delay model unchanged.

V. NUMERICAL EXAMPLE
Consider the system of (1) and (2), the new estimators are
applied in this section. Some common linear dynamic sys-
tems with 2-step random delay are given as simulation exam-
ples, and the results show that the newmodel proposed in this
paper works better both in estimation accuracy and stability.

Tracking performance of an algorithm can be evaluated by
estimating the square of Euclidean norm of the tracking error.
To reduce errors that may arise from contingency, apply the
Monte-Carlo approach for 100 runs, as follows:

Error2τ =
1
100

100∑
i=1

||x(i)τ |τ − xτ ||
2.

Example 1: Let the state transition matrix be

Fτ =
(
1 1
0 1

)
and the measurement matrix be

Hτ =
(
1 0

)
.

The initial state x0 = (50, 1)T , x0|0 = Ex0, P0|0 = Var(x0),
and E0 = E(x0xT0 ) = Ex0ExT0 + P0|0. The covariance of the
noises are

Rντ =
(
1 0
0 0.1

)
, Rωτ = 0.5.

Fig. 4 provides the simulation results with β0i = 0.1,
β1i = 0.4. In Fig. 4, the performance of estimators in our
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FIGURE 4. Comparisons of the new, old delay model and KF
(β0

i = 0.1, β1
i = 0.4).

model is compared with the commonly used old model men-
tioned in section 2, and the traditional Kalman filter where
delay is not taken into consideration. Under the settings of
lower β0i and β1i , the probabilities of one-step delay and
two-step delay are both relatively high. It can be seen from
Fig. 4 that the curves of the average estimation errors of
two algorithms in this paper are below the curves of the old
delay model and traditional KF, which indicates that estima-
tions given by the new model are more accurate. Moreover,
the curve shape of the average estimation error of algorithms
in this paper is smoother than that of the other two algorithms,
which indicates that estimations given by the new model
are more stable. It can be observed that the the old model
even performs worse than traditional KF, which is because
the settings of the old model are not reasonable, and this
disadvantage is further magnified in the case of multiple-
step delay. In the comparison of the two estimators proposed
in this paper, the performance of the estimators obtained
by using RKF directly and by considering one-step corre-
lated noises is almost the same, the latter is very slightly
better.

In Fig. 5, β0i = 0.6, β1i = 0.7, indicating that the
probabilities of two-step delay and one-step delay are both
relatively low. Similar to what Fig. 4 shows, the new filter
proposed in this paper also has the advantages of more accu-
rate and stable estimation, but the advantages are reduced to
some extent. Thus, the new model performs best when the
probability of delay is high. Several other sets of tests are
also done by controlling variables, the results show that the
change of β0i has much more effect than β1i on the estimation
results.
Example 2: The dynamic system is modeled as (1) and (2).

The state transition matrix

Fτ =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1



FIGURE 5. Comparisons of the new, old delay model and KF
(β0

i = 0.6, β1
i = 0.7).

FIGURE 6. Comparisons of the new, old delay model and KF
(β0

i = 0.1, β1
i = 0.4).

and the measurement matrix

Hτ =
(
1 0 0 0
0 0 1 0

)
are constants. The initial state x0 = (50, 1, 50, 1)T , x0|0 =
Ex0, P0|0 = Var(x0), and E0 = E(x0xT0 ) = Ex0ExT0 + P0|0.
The covariances of the noises are:

Rντ =


1 0 0 0
0 0.1 0 0
0 0 1 0
0 0 0 0.1

, Rωτ =
(
0.5 0
0 0.5

)
.

According to Fig. 6 and 7, the performance characteristics
of each model are basically the same as those of the previous
example. In general, the estimators of the new model are
better than others in terms of accuracy and stability. However,
when β0i and β1i are large, after 90 time points, RKF contin-
ued to work steadily, while the average estimation error of
RKF with one-step correlated noises increases sharply with
time, RKF with one-step correlated noises lose its stability
since then.
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FIGURE 7. Comparisons of the new, old delay model and KF
(β0

i = 0.6, β1
i = 0.7).

Remark 4: In Fig. 4-Fig. 7, it can be seen that the average
estimation error increases slowly as time steps increase. For
a linear dynamic system with random delay, the estimation
error will accumulate with the increase of steps, so it is
natural that the tracking error will increase slowly. It is worth
mentioning that we also run the simulation for far more
than 100 steps, the result shows that the tracking error will
increase very slowly as time steps increase. It can be expected
that the estimation error will not be largely divergent.

VI. CONCLUSION
In this paper, the multiple-step random sensor delay of a

general linear dynamic system was modeled more accurately
and reasonably. The high-order Markov chain was applied
to process the delay model so that it can be generalized
as a mathematical model. Moreover, two approximate state
estimators were proposed based on using RKF and RKF
with one-step correlated noises, respectively. Some illustra-
tive numerical examples were given to show that the new
algorithm greatly outperforms those in former studies in both
accuracy and stability. From a critical point of view, noises in
the new model are infinitely correlated. Although RKF with
one-step correlated noises has been tried in order to reduce
the impact of infinite correlation, the results showed that it
almost changed nothing, even worse in some cases, thus it is
an issue to be investigated in future research.
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