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ABSTRACT Cloud-based filtering, as the most commonly used distributed denial of service attack
mitigation method in the industry, has flaws that can cause privacy leaks and delays like other cloud
applications. A new DDoS mitigation method which moving cloud filtering services to edge servers is
proposed in this paper. In this method, the edge servers are deployed at various router locations and run
classifiers to filter the traffic passing through. For cutting attack traffic, reserving user traffic and reducing
inspection delays, a novel deep reinforcement learning framework is developed to balance the deployment of
computing resource and tasks allocation, in which graph neural network used to coding the network structure
information transformation as vector, and the traffic information to input into Q-Network to obtain the best
allocation results. The simulation experiments show that our method has advantages in optimizing effects
and computing time compared with other deployment methods.

INDEX TERMS Edge computing, distributed denial of service attack, reinforcement learning, graph
convolutional network.

I. INTRODUCTION
With the advent of the Internet of Everything, more and more
devices are connected to the Internet, and they produce more
data. These explosive growth data have brought huge conve-
nience to people’s lives, brought huge challenges to the exist-
ing network systems as well, especially network security. One
of the most serious danger in the current network is caused
by distributed denial of service(DDoS) attacks(e.g. [1], [2]),
which target the availability of a system or service. A DDoS
attack is a traffic attack which exhausts resources(bandwidth
or service) of the target. An attacker controls a large number
of hosts (called bots) that send attack trafficwhen they receive
instructions. The victim of the attack can’t provide services
to its legitimate users or customers, so it will suffer financial
loss and doubt caused by their user’s dissatisfaction and loss
of trust.

DDoS attacks are difficult to defend. This is because DDoS
attack traffic is not only attack traffic caused by network
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system vulnerabilities (protocols, physics), but also a large
amount of ‘‘legal’’ traffic that meets system regulations.
Although these ‘‘legal’’ traffic still has characteristics that
prove it to be attack traffic, the system cannot intercept it
using existing methods. Cloud-beased filtering is the most
used DDoS attack mitigation method today. It redirects the
traffic that reaches the protection target to the cloud server,
intercepts the attack traffic by the cloud traffic filtering pro-
gram, and returns the remaining traffic back. This solution
has some drawbacks such as privacy violation and latency. At
the same time, such services will also be the target of DDoS
attacks. Edge computing is a new type of computing model
[3] using arbitrary computing and network resources from the
data source to the computing center to operate on uplink and
downlink data. Compared with cloud computing, it greatly
reduces system latency [4] and protects the privacy of service
objects [5].

There are two most important DDoS response methods,
throttling(e.g. [6]–[8]) and filtering(e.g. [2], [9]). According
to the characteristics of attack packets, filtering method sep-
arates them from normal network traffic and deletes them.
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Throttling method is to restrict the abnormal traffic in the net-
work, or to restrict the access of the network traffic with the
characteristic under the condition of determining the attack
characteristics. The filtering method, which is based classier,
introduces inspection delay. When the traffic is too large,
the delay can be terrible because it is related to the quadratic
of the traffic size. Router Throttling is more focused on secur-
ing servers and services, and the way it handles traffic does
not cause a lot of latency. However, this method will cause
a large amount of attack traffic to flow into the server and
legitimate traffic will be discarded incorrectly, as it intercepts
traffic by probability rather than the traffic characteristics. In
order to take advantage of the two methods, we should use a
classifier to intercept traffic and avoid deploying it on routers
where traffic is concentrated.

The location of the DDoS defense strategy is also impor-
tant. The network can be thought of as a tree with the tar-
get server as the root. The traffic flows from leaf nodes
and is collected at the root node. Usually, we will deploy
the classifier on the server side, or redirect the aggregated
traffic to the cloud server for classification. Because of the
computational overhead associated with deploying a defense
strategy, this is a vulnerability for DDoS attacks that generate
a large amount of traffic [10]. It can lead to degradation
of protected services. Therefore, a way to classify traffic at
distributed points is a good way to mitigate DDoS attacks.
It can classify traffic before it is aggregated by deploying
a classifier upstream, or reduce the amount of downstream
traffic.

What computing resources in the network should we use to
classify traffic? Obviously, it is related to network structure
and real-time traffic. Computing resource allocation is an
important issue for edge computing ( [11], [12]). In order
to reduce duplicate traffic inspections and reduce latency,
we need a good defense resource allocation system that can
dynamically select important locations to deploy classifiers
based on changes in traffic.

In this paper, we model a distributed deployment classifier
as a graph-based combinatorial optimization problem. Cal-
culating the optimal solution using the exhaustive method is
computationally inefficient. The greedy algorithm can get an
acceptable approximate solution, but for real-time systems,
its response time is difficult to meet the real situation. We
propose a classifier deployment method based on reinforce-
ment learning, which uses GCN to learn network structure
information, and selects the optimal modification scheme in
the current situation at each step until all nodes are selected.
To demonstrate the performance of our method, we conduct
extensive simulation experiments. First, by comparing the
greedy method, we prove that we can get a good approxi-
mate solution and significantly reduce the calculation time.
Secondly, by comparing distributed throttling methods, it is
proved that deploying a classifier can obtain better bene-
fits. Finally, we compare with several random distributed
deployment methods to prove our advantage in deployment
strategy.

II. RELATED WORK
A. EDGE COMPUTING AND THROTTLING
There have recently been studies on DDoS mitigation using
edge computing. Reference [13] modified the basic frame-
work of edge computing to mitigate DDoS attacks. Ref-
erence [14] provides effective DDoS prevention solutions
by multi-access edge computing (MAEC). The focus of
these efforts is to improve existing DDoS identification and
response methods and improve their performance. A strategy
to deploy these response methods in place is still missing.

Router Throttling using reinforcement learning is a novel
approach. It deploys Throttlings on routers on various paths
and uses reinforcement learning to learn the optimal throttling
rate to avoid server overload. But it is difficult to use for
high-quality service because it randomly discards parckets
based on probability. It provides us with a useful idea that
we can clean the traffic in a distributed way, so we can deal
with the triffic before it is aggregated.

B. STRATEGY ASSIGNMENT ON GRAPH
The network interdiction problem is well studied [15]. To
interdict an illegal network flow, Guo et al. introduce the
Network Flow Interdiction Game(NFIG) [16] model, a stack-
elberg security game, to allocate a fixed number of security
resources on the network. Then, they study repeated network
interdiction games with no prior knowledge of the adversary
and the environment, which can model many real world
network security domains [17]. Their methods can be used
to intercept smuggling. Unlike guns and drugs, illegal traffic
in virtual networks is harder to detect and there are more ways
to check for interceptions. Therefore, the choice we need to
make is not whether to deploy defense strategy, but what kind
of defense strategy to deploy. And the smuggling problem is
not very sensitive to the defensive strategy calculation time.

Most related is the recent work by Vaněk et al. [18]
since they formulate the problem, how to allocate resource
for malicious packet detection in computer networks, as a
graph-based security game with multiple resources of hetero-
geneous capabilities and propose a mathematical program for
finding optimal solutions. They focus on detecting malicious
activity by checking packets and intercepting them. Unlike
their work, Our goal is to minimize the amount of attack traf-
fic that reaches a protected target, not to prevent some packets
from escaping. Then they treat network latency as a constraint
rather than an optimization goal, but in DDoS attack, it is
also the target of the attacker to degrade the service quality.
As with most DDoS defenses, we focus on the security of
a critical target (server or host) rather than multiple targets
of varying importance. Thus, the methodology proposed in
existing works cannot be directly applied to our setting.

C. COMBINATORIAL OPTIMIZATION ALGORITHMS
OVER GRAPHS
There has been some seminal work on using deep learn-
ing to learn heuristics for combinatorial problems, including

VOLUME 8, 2020 78483



H. Zhang et al.: Method for Deploying DDoS Attack Defense Strategies on Edge Servers Using Reinforcement Learning

FIGURE 1. Schematic diagram of two defense methods. The cloud-based filtering method only redirects traffic
at the user interface, resulting in a large amount of traffic accumulation.

the Traveling Salesman Problem(e.g. [19]–[21]). In [22],
Dai et al. propose a unique combination of reinforcement
learning and graph embedding to address NP-hard combina-
torial optimization problems.

The learned greedy policy behaves like a meta-algorithm
that incrementally constructs a solution, and the action is
determined by the output of a graph embedding network
capturing the current state of the solution. Though our prob-
lems are not the same as TSP (Traveling Salesman Problem),
we can still use their ideas to make our models more robust
and faster to compute.

III. PRELIMINARIES
As shown in Fig.1, cloud-based filtering redirects traffic
from the network to the cloud server, which filters attack
traffic with a preset classification method, and then sends the
remaining user traffic to the protection target. It is currently
the most commonly used DDoS defense service, which has
flaws that can cause privacy leaks and delays like other
cloud applications. To overcome the above problems, we put
classifier in the edge server, routers in the network directly
use the edge server deployed at this point to classify and send
the remaining traffic to the next node. Those routers can be
controlled by the defender or a third-party ISP that provides
services to the defender. Obviously, using cloud services
can be seen as deploying filters at the root node. Users and
attackers are the source of the traffic, and like other works,
it is represented by the average rate of traffic. Traffic follows
the path from the user (attacker) to the target server, and if
they encounter a classifier, they will be inspected. Those that
are determined to be legitimate will pass through the edge
server and send to the next node. They also include traffic
from attackers that are misjudged, and the traffic of legitimate

users may also be intercepted incorrectly, and the inspection
of traffic will cause a certain delay. These will reduce the
quality of the target server service.

We consider the network as a directed tree-like graph G =
(V ,E), with each vertex v ∈ V representing a router where
defense strategies deploy and each edge e ∈ E is the path in
the routing table. r is the root of the graph G, which is the
protection target. We can deploy the classifier on any node in
graphG. As shown in Fig.1, the problemwe are focusing on is
single-target DDoS mitigation. Although the network is very
complex, we can still simplify it into a tree. This is because the
routing table is relatively stable, and traffic to the destination
server can flow in along a fixed path. Since the focus of
our work is on computational resource allocation, we do not
consider classifier performance and only simulate its effects.
We define a classifier as a 3-tuple c = (a, l, d), which denotes
the performance of a defense strategy. The parameter a(l) ∈
[0, 1] represents the proportion of adversary(legal) triffic that
classifier can interdicte.We defineC =< ci > as the set of all
optional classifiers.Ov =< oi > is the set of options on node
v, where oi ∈ {0, 1} and oi = 1 indicates that the i-th classifier
is selected. For node v, the percentage of adversary(legal)
triffic intercepted is av =

∏|Ov|
i=1 (ai)

oi (lv =
∏|Ov|

i=1 (li)
oi ). The

parameter d ∈ [0, 1] denotes the factor of penalty caused
by delay for detecting, and dv =

∏|Ov|
i=1 (di)

oi is the factor on
node v. A defender strategy S =< Ov > is an allocation
of all options in the nodes set V . Obviously, the number of
deployment options available to the defender is |Ov||V |, which
grows exponentially as the number of nodes increases.

All leaf nodes are traffic soures. They are not terminal
equipment, but the boundaries of the systems we defend.
Traffic is the sum of all traffic connected to this leaf node.
Denote L = {v|v ∈ V ,Dv = φ} as the set of all leaf nodes
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andDv as the set of child nodes of the node v. A variable t_ainv
is the attack triffic that flows into the node v, i.e.,

t_ainv =


t, v ∈ L∑
i∈Dv

t_aouti , v /∈ L (1)

where t is the triffic coming from ouside the system, and
t_aouti represents the triffic which flows out from the node
i, i.e. t_aoutv = avt_ainv . t_l

in
v has a similar definition, i.e.,

t_l inv =


t, v ∈ L∑
i∈Dv

t_louti , v /∈ L (2)

The change in traffic reflects the effect of the deployment
strategy. Obviously, the triffic that flows into the protected
targets are t_aoutr and t_loutr .

There are three objectives: cutting attack triffic, reserving
legal triffic as much as possible and reducing inspection
delays. When the triffic that flows into the network is deter-
mined, our target is a function related to the defense strategy.
Let R1(S) denotes whole flows that reach the protection tar-
get, i.e. R1(S) = t_aoutr . Denote R2(S) as triffic that are mis-
takenly interdicted, i.e. R2(S) =

∑
v∈L t_l

in
v − t_l

out
r . For the

node v, its penalty caused by delay for detecting is d iv(t_a
in
v +

t_l inv ), and the whole penalty R3(S) =
∑

v∈V dv(t_a
in
v +t_l

in
v ).

The global goal R is defined as:

R(S) = αR1(S)+ βR2(S)+ γR3(S) (3)

where α, β, and γ are the weights of three goals. Obviously,
the defender want to find a best strategy O to minimize the
global goal R.

IV. SOLUTION APPROACH
In order to get the optimal solution of (3), we need to
search the entire combined space. Because this problem has
exponentially large numbers of combinations, approximation
algorithms are often used to find approximate solutions. The
greedy algorithm is a common method for solving such prob-
lems. We can use it to get an approximate solution and reduce
the calculation time. Starting from an empty set S = φ (None
of the nodes deployed classifiers), we iteratively assign the
best classifer i∗ on the best location v∗, which brings the min-
imal reward R(S∪(v∗, i∗))−R(S), until all nodes are assigned
or all rewards are positive. Although this method can obtain
approximate solutions, it still cannot meet the requirements of
real-time systems. When the number of nodes is very large,
it can be computationally intensive.

In order to solve these problems, we have designed a
method based onGCN and reinforcement learning, which can
learn the structural information of the graph and solve it in a
similar way to the greedy algorithm.

Our reinforcement learning framework is illustrated
in Fig. 2. The network information is divided into two cat-
egories: network structure and network traffic. The graph
structure information is extracted through the method of

GCN. Then combine them with the traffic information to get
the node vector. The input of the Q-network is the node vector
and the output is Q-value. We select the 2-tuple (v∗, i∗) with
the smallest q-value for deployment. This method can greatly
reduce the computation time.

A. GRAPH EMBEDDING
Since we are optimizing over a tree-like graph G, we expect
that the Q-function should take into account the graph struc-
ture and the current partial solution S. So,

∑
oi∈Ov oi = 1 for

all nodes v ∈ S, and the nodes are connected according to
the graph structure. In this way, when calculating the optimal
classifier in the node v, not only the traffic of the node, but
also the information of other nodes should be considered.
Due to both state and node information are complex, hard to
describe in closed form. We will use a Graph Convolutional
Network(GCN) method to embed the graph G.
An intorduction of the method that is used to embed the

tree-like graph is provided here. This graph embedding net-
work will compute a p-dimensional feature embedding µv
for each node v ∈ V . More specifically, we use a recursive
method to calculate the node representation µv. In each iter-
ation of calculation, the node v receives information from its
children nodes and calculates the latest µv as:

µ(t+1)
v ← F(Ov, {µ(t)

u }u∈Dv;2), (4)

where Dv is the set of children of node v in graph G, and F
is a nonlinear function like a neural network. The initial
embedding µ(0)

v at each node is 0.
Based on the (4), we know that the node embedding update

process is based on the graph topology and the embedding
from the previous round. A node only gets the information
from its children nodes. Obviously, only if there are enough
iterations, the node can get all the structural information of a
subtree which rooted at it.

Now, we discuss the parameterization of (4). We design F
to update a p-dimensional embedding µv as:

µ(t+1)
v ← relu(θ1Ov + θ2

∑
u∈Dv

µ(t)
u ), (5)

where θ1 ∈ Rp×|Ov| and θ2 ∈ Rp×p are the model parameters,
and relu is the rectified linear unit (relu(x) = max(0, x))
applied elementwise to its input. The 0-1 vectorOv represents
the option of the node v.

B. PARAMETERIZING Q-FUNCTION
When the embedding is finished, we will use them to calcu-
late the Q-function. More specifically, we use µv for node v
and the sum of all nodes embedding

∑
v∈V µv represents the

partial solution p(S). In order to calculate theQ-value of each
classifier of each node, we also need the trafiic information.
So, we define the Q-function Q(p(S), v;2) as follows:

Q(p(S), v;2)=θ3[relu([θ4
∑
u∈V

µu, θ5µv], ), t_aoutv , t_loutv ],

(6)
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FIGURE 2. Reinforcement learning framework. Separately extract network structure information and flow information, and use them as
input to the Q-network.

where θ3 ∈ R|Ov|×(2p+2) and θ4, θ5 ∈ Rp×p are the model
parameters. [· , · ] is the concatenation operator. The result of
(6) is the |Ov|-dimensional vector, which is the Q-value of
all the classifiers on node v. It is difficult to train parameters
2 = {θi}

5
i=1 due to the lack of training labels. So, we train

these parameters using reinforcement learning.

C. Q-LEARNING
We show an approach that uses reinforcement learning to
learn the best combination of a network structurewith varying
traffic by learning the greedy algorithms. The Q-function
defined in the previous section is naturally applicable to the
reinforcement learning (RL) formulation [23].

We define the states, actions and rewards in the reinforce-
ment learning framework as follows:

• State: a state S is a set of current options of
all nodes(including not selected). Since our
embeddingµv has already contained the option
information, we can denote the state as a
p-dimensional space,

∑
v∈V µv. We can see

that such representations can be used in differ-
ent tree structures;

• Actions: the action (v, i) is a 2-tuple, where v is
a node of G without a classifier deployed and
i is a classifier. We represent actions as their
corresponding p-dimensional node embedding
µv. Due to the number of classifiers is deter-
mined, the result of Q-function is the set of Q-
value of each classifier;

• Transition: transition is deterministic here. For
a gaven action (v, i), we set the node v to use
the i-th classifier;

• Rewards: our algorithm learns the greedy algo-
rithm, so the reward function r(S, v, i), that the
action (v, i) is taken at state S, is defined the
same way as it, i.e.

r(S, v, i) = R(S ∪ (v, i))− R(S), (7)

and R(φ) = αR1(S);
• Policy: based on Q-function, a deterministic
greedy policyπ ((v, i)|S) := argminv/∈S,i Q(S, v, i)
will be used. Choosing action (v, i) corre-
sponds to adding a node of G to the current
partial solution, and getting a reward r(S, v, i).

We will use an n-step Q-learning method to learn the approx-
imate optimal solution under different triffic.

In order to perform end-to-end learning of the parameters
in Q(S, v, i;2), we use a combination of DQN [24], as illus-
trated in Algorithm 1. To choose a node without a classifier
to perform classifier selection under the current combination
and get a better reward we turn the combinatiorial problem
into an n-step sequence dicision problem. To solve sequential
decision problems we can learn estimates for the optimal
value of each action, defined as the expected sum of future
rewards when taking that action and following the optimal
policy thereafter.

For a given network structure, we use L different inputs
traffic for training. We use episode to represent a complete
sequence of classifier selections from an empty state S to
the terminal state S ′. And a step within an episode is an
action selection process. Each step, DQN updates the func-
tion approximator’s parameters by performing a gradient step
to minimize the squared loss:

(y− Q(S ∪ (v∗, i∗), v∗, i∗;21))2, (8)
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Algorithm 1 Q-Learning for the Greedy Algorithm
Initialize experience replay memory M = φ;
Initialize random parameters 21 and 22 = 21;
Input the network structure G;
time = 0;
for time < K do

Set the triffic in network G;
episode = 0;
for episode < L do

Initialize the state S = φ;
step = 0;
22 = 21;
for step < T do

if random(0, 1) < ε then
(v, i) = argminv/∈S Q(S, v, i;21);

else
random node v /∈ S;
random classifier i;

end
r = R(S ∪ (v, i))− R(S));
S = S ∪ (v, i);
Add tuple (S, (v, i), r, S ∪ (v, i)) to M ;
if t ≥ N then

Sample random batch
(S ′, (v′, i′), r ′, S ′ ∪ (v′, i′)) from M ;
if step == T − 1 then

y = r ′

else
y = r ′ + γ min(v∗,i∗) Q(S ′ ∪
(v′, i′), v∗, i∗;22);

end
Update 21 by SGD over (8);

end
end

end
end
return 21;

where 21 is the parameter of the eval network, and y =
r(S, v, i)+γ min(v,i) Q(S∪ (v, i), v, i;22) for a state S except
the terminal S ′. 22 is the parameter of the target network,
it is updated at the beginning of every episode by the eval
network, i.e. 22 = 21. In order to break the correlation
between learning data, we use experiencereplay to update
the function approximator with a batch of samples from a
detasetM . The MemoryM is populated during previous step.
Instead of performing a gradient step in loss of the current
result, stochastic gradient descent updates are performed on
a random sample of tuples drawn from M .

V. EVALUATION
The purpose of the experiment is to demonstrate that our
method can achieve losses similar to the greedy algorithm
and effectively reduce computation time. We also compared
the throttling method to prove that our method is based on the

throttling method considering multiple losses. When evaluat-
ing the solution quality on an instance of a different number
of nodes, we use the approximation ratio of each method
relative to the benchmark solution. The approximation ratio
of a solution S to a problem instance G is defined as The
definition of an approximation ratio of a problem instance G
in the triffic state T is A(G,T ) = O(G,T )

B(G,T ) , where O(G,T ) is
the objective value and the B(G,T ) is the best solution to the
benchmark method.

A. EXPERIMENT SETUP
To simulate a DDoS attack on a single target, we designed a
simulation program to meet the experimental requirements.
It regards the internal processing of the router as a black box,
only paying attention to the traffic size, omitting the specific
details that do not impair the experimental evaluation. Specif-
ically, we see the network as a tree-like graph with each router
as a node. For each node, we only care about the size of
the incoming and outgoing traffic and the properties of the
classifier. This is enough to prove the function of our method.
At the same time, this analog method is scalable, for example,
we can increase the bandwidth of the link to simulate the link
blocking situation.

Our experimental setup is simliar to the one by (Yau). The
bandwidth and traffic rates are measured in Mbit/s. In our
simulation program, leaf nodes generate traffic from exter-
nal systems, and the triffic of other nodes flows from their
children. The triffic which flows from the node is ralated to
incoming traffic and the properties of the classifier. Since we
are concerned with the overall effect, we use average traffic
instead of instantaneous rate. Each leaf node receives traffic
at a constant rate, and the legal and attack traffic rates are
evenly seledced in [0, 30] and [30, 300]. In each episode,
the received traffic is different.

The optional defense strategy for each node is no defense
policy and two different classifiers. We use the three values
of interception rate, false positive rate and delay penalty to
represent the attributes of the classifier. The probability of
two classifiers intercepting attack traffic is 0.95 and 0.9, and
the probability of error interception is 0.12 and 0.1. At the
same time, the penalty factors for delay are 0.001 and 0.0005.
We assign appropriate values for the three parameters α, β, γ .
In our experiments we set α = 0.6, β = 0.3 and γ = 0.1.
This is because we assume that attack traffic reaches the
server as the biggest threat, and secondly we need to reduce
the loss and delay of legitimate user traffic.

B. THROTTLING METHOD
We compare our approach to the throttling method of (Klean-
this Malialis). We use neural networks instead of the tile
coding methods they use. We use neural networks instead
of the tile coding methods, for the representation of the
continuous state space. The input to the neural network
is the flow information 2-tuple (ai, li), where ai(li) is the
attack(legal) traffic which flows into the node i. There are
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FIGURE 3. Taking the greedy algorithm as a benchmark, the approximate ratio of eight methods: (a) OurMethod . (b) Throttling(H).
(c) Throttling(H/2). (d) Root . (e) 1/4 Nodes. (f) Half . (g) 3/4 Nodes. (h) All .

ten actions in the action space: 0.0, 0.1, . . . , 0.9 which cor-
respond to 0%, 10%, . . . , 90% traffic drop probabilites. Due
to the nature of the attack, the state of network has not surely
been affected by the actions taken by the agents at the previ-
ous time step. This is because the attack traffic is controlled
by the attacker in DDoS and the legal traffic depends on the

user’s request or use. So we only consider instant rewards,
which means that Agents only focus on the best response
to the current state, i.e. set the discount factor to 0. In our
setup, the acceptable upper triffic boundary for the protection
target is not considered. We set the loss for each throttling
i: αai + βli.
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TABLE 1. Taking the optimal solution as a benchmark, the approximate
ratio of the greedy algorithm and our algorithm.

We consider two deployment methods.We set the height of
the tree to H . The first method Throttling(H ) is to deploy the
throttle on all leaf nodes. The secondmethod Throttling(H/2)
is to deploy the throttle at nodes whose height is bH2 c and leaf
nodes whose height is smaller than bH2 c.

C. RANDOM DEPLOYMENT
In order to prove that our method can get a good deployment
scheme, we compare ourmethodwith several randomdeploy-
ment schemes. Root , randomly deploy a classifier at the root
node. ALL, randomly select a classifier for deployment at all
nodes. Half , randomly select half of the nodes to deploy the
classifier. 1/4Nodes and 3/4Nodes, randomly select a quarter
node and three quarter nodes to deploy a classifier.

D. PERFORMANCE COMPARISION
First, we need to compare the optimization results. All com-
putations are performed on a 64-bit PC with 8.0 GB RAM
and a 3.20 GHz CPU. Table 1 shows the approximate ratio
of the two methods using the optimal solution obtained by
the exhaustive method as the benchmark when 5-15 nodes
are used. Both methods can get an acceptable approximate
solution, and our method is very close to, or even better
than, the greedy method. Due to the computational complex-
ity of the exhaustive method, in the following experiments,
we use the solution of the greedy method as a benchmark to
compare the results of various methods.

We use box plots to represent the approximation of the
three methods to greedy algorithms. Fig. 3(a) shows that our
method approximate ratio can be close to 1, even better than
our benchmark. This proves that the structural information
has an impact on the way the classifier is deployed. At the
same time, we see that our results are relatively stable and
less prone to large losses. As the number of nodes increases
and the structure information becomes more complex, our
method can still maintain a good approximate ratio. This
shows its advantages. Fig. 3 (b) and (c) are approximate
ratios of the throttling method and the greedy method as
benchmarks. Although they can effectively reduce the load
on the server and cause less latency, it may discard large
amounts of legitimate traffic. At the same time, the effect of

FIGURE 4. Average approximation ratio of the three methods.

FIGURE 5. Average approximation ratio of the six methods.

the throttling method is not stable enough, and bad solutions
will cause huge losses. Fig. 4 shows that our method has
significant advantages. The average approximation ratio of
our method is much lower than the two throttling methods.
Although it is important to ensure the normal operation of
the server, most services today need to guarantee the quality
of service. We need to better distinguish attack traffic from
legitimate traffic for interception.

To prove the superiority of our deployment method,
we compared several random deployment methods.
Fig. 3 (d)-(h) are boxplots with the greedy solution as a
benchmark. Compared to these deployment methods, our
method has significant advantages. This is because it can find
the most suitable nodes based on traffic changes. As shown
in Fig. 5, the number of nodes increases, the traffic in the
system increases, and the effect of several random deploy-
ment methods other than Root deteriorates significantly. This
indicates that the loss is related to real-time traffic. Even
though the Root method still maintains excellent results, our
method is still better than it.

Fig. 6 shows that as the number of nodes increases, the
calculation time of the exhaustive method increases signifi-
cantly. Although it can obtain the optimal solution, it obvi-
ously cannot meet the real-time performance of the system.
The calculation time of our method is extremely competi-
tive. This is because the number of times that R is calcu-
lated by the greedy algorithm is related to the square of the
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FIGURE 6. Comparison of three methods in running time.

FIGURE 7. The ratio of attack traffic to the server by the two methods.

FIGURE 8. The ratio of user traffic to the server by two methods.

number of nodes |V |. Our method can still make decisions
in seconds when the node is increased to 200. This facili-
tates the real-time response to the attacker’s dynamic traffic
adjustment.

E. SIMULATION
We used a simulation experiment on the network simulator
OMNeT ++ to compare the distributed method with the
root node filtering method. Our traffic data is KDD19, and
the classifier is a neural network. The number of nodes in
the network is 5, 10, 15, 20, 30, 50, 100, 150 and 200,
respectively. Since the verification time is greater than the

FIGURE 9. The cumulative delay time of the two methods.

delay time in the simulation, a verification delay will occur
when the flow is too large. Fig. 7 and Fig. 8 show that the two
methods have little difference in attack traffic interception
and protection of user traffic. Fig. 9 The biggest advantage
of our method is that it greatly reduces the inspection delay.
Fig. 9 reflects its significant advantage.

VI. CONCLUSION
We are the first to propose a defense strategy of dynamic
deployment of classifiers in network topology to minimize
the impact of DDoS attacks on protected targets. It uses graph
embedding and reinforcement learning to solve combinatorial
problems. The simulation results show that our method can
not only ensure that the results are close to the approximate
solution, but also greatly reduce the computation time. Com-
pared with throttling method, deploying classifier also has
great advantages. It can also solve other flow problems based
on diagrams (trees). As future work, more traffic-relatedwork
can be done in a similar way.
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