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ABSTRACT Sparse arrays reduce the number of active channels that effectively increases the inter-element
spacing. Large inter-element spacing results in grating lobe artifacts degrading the ultrasound image quality
and reducing the contrast-to-noise ratio. A deep learning-based custom algorithm is proposed to estimate
inactive channel data in periodic sparse arrays. The algorithm uses data from multiple active channels
to estimate inactive channels. The estimated inactive channel data effectively reduces the inter-element
spacing for beamforming, thus suppressing the grating lobes. Estimated inactive element channel data was
combined with active element channel data resulting in a pseudo fully sampled array. The channel data was
beamformed using a simple delay-and-sum method and compared with the sparse array and fully sampled
array. The performance of the algorithm was validated using a wire target in a water tank, multi-purpose
tissue-mimicking phantom, and in-vivo carotid data. Grating lobes suppression up to 15.25 dB was observed
with an increase in contrast-to-noise (CNR) for the pseudo fully sampled array. Hypoechoic regions showed
more improvement in CNR than hyperechoic regions. Root-mean-square error for unwrapped phase between
fully sampled array and the pseudo fully sampled array was low, making the estimated data suitable for
Doppler and elastography applications. Speckle pattern was also preserved; thus, the estimated data can
also be used for quantitative ultrasound applications. The algorithm can improve the quality of sparse array
images and has applications in small scale ultrasound devices and 2D arrays.

INDEX TERMS Convolutional neural networks, deep learning, gap-filling, sparse array, ultrasound imaging.

I. INTRODUCTION
The use of sparse array (SA) technique in uniform linear
arrays and two dimensional (2D) matrix probes has been
extensively explored [1], [2]. A fully sampled array (FSA)
allows each element in the transducer to be continuously
driven by using the ultrasound system, which implies that
the number of channels in the ultrasound system and the
number of transducer elements should be the same. However,
a high number of system channels come at an increased
cost and form factor. SA works by driving only a limited
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number of transducer elements, referred to as active ele-
ments, thus reducing the active element count and the active
channel count in an ultrasound imaging system. However,
reducing the number of active elements comes at the cost of
increased inter-element spacing. Inter-element spacing larger
than half of a wavelength (λ/2) introduces grating lobes that
degrades the image quality. Typically, uniform linear arrays
have an inter-element spacing of λ, except phase arrays,
which typically have an inter-element spacing of λ/2. Differ-
ent techniques have been proposed to suppress these grating
lobes artifacts by optimally designing or experimentally find-
ing the minimal-redundancy array. These techniques include
non-uniform weighted periodic sparse array [3], randomized
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active arrays [4], minimally redundant 2D array designs [5],
optimized sparse periodic linear arrays [6], multi-depth radi-
ation optimization using simulated annealing and spiral-array
inspired energy functions [7], optimal 2D non-grid sparse
arrays [8], circular ring arrays for IVUS imaging [9], and
thinning and weighting of large planar arrays by simulated
annealing [10]. However, the above-mentioned methods suf-
fer from low signal-to-noise ratio (SNR).

A technique termed gap-filling (GF) or gap-interpolation
(GI) has been proposed previously [11], which generates the
unknown and unacquired RF-echo data by using estimation
and prediction. In GF, neighboring RF-echo channel data
are used to virtually generate new RF-echo channels data.
The technique is similar to sonogram gap-filling used for
interpolating spectral Doppler signal [12], [13]. By creating
a virtual signal for the inactive elements, the inter-element
spacing can be effectively reduced, resulting in suppression
of grating lobes. Similarly, virtual sub-wavelengths receiv-
ing elements have shown to suppress the grating and side
lobes while retaining the mainlobe signal [14], [15]. How-
ever, simple interpolation techniques, like averaging, bi-cubic
interpolation, and copying the signal, would result in only a
limited reduction of the grating lobes. The limited success of
such techniques can be explained due to the low correlation
between the neighboring channel data lines (pre-beamformed
RF data). A delay of λ/4 between the neighboring channel
lines can result in zero correlation between the two lines.
Thus, interpolation techniques fail as the wave patterns in
both axial and lateral direction needs to be accounted for.

Previous works have shown that low-rank interpolation
problems of the RF data can be solved using a convolutional
neural network (CNN) approach [16], [17]. A CNN approach
is used in this paper to demonstrate that missing channel
data from inactive elements can be estimated, resulting in
decreased inter-element spacing and, thus, suppression of the
grating lobes. Here, a periodic sparse array is considered
in which the even elements are inactive. A new method is
proposed to suppress the grating lobe artifacts while reducing
the active channel count by accounting for the periodicity of
the wave signal in both axial and lateral directions.

The paper introduces a custom CNN algorithm for estimat-
ing the inactive channel data in a periodic sparse array. The
algorithm is trained on data gathered from tissue-mimicking
phantoms. The performance of the algorithm is evaluated by
analyzing the point spread function of a wire target, another
tissue-mimicking phantom, and in-vivo carotid data from two
different users. Quantitative parameters, such as resolution,
contrast-to-noise ratio, speckle quality, and unwrapped phase,
are used to access the quality of reconstruction in comparison
to those of SA and FSA.

II. MATERIALS AND METHODS
A. THEORY
Fig. 1 represents a periodic SA with N total elements com-
promising of N/2 active elements, represented in black,

FIGURE 1. Periodic sparse array with active channels in black and
inactive channels in white. Inactive channel data can be estimated by
using the information from the active channel data. The estimated
channel data is referred to as pseudo channel data.

and N/2 inactive elements, represented in white. The
inter-element spacing is d. The channel data received at jth

channel can be represented as xj(n), where n represents the
nth sample of the data. The inactive channel can be estimated
using a non-linear combination of the active elements which
can be represented as

xj (n) = f (x1 (n) , . . . , xj−1 (n) , xj+1 (n) , . . . , xN−1 (n))

(1)

For a periodic SA, the inter-element spacing becomes 2d,
which is typically greater than λ/2, resulting in the grating
lobes being unavoidable. Estimating the data for the inactive
elements, effectively reduces the inter-element spacing to d,
thus shifting the grating lobes further away from the main
lobe.

B. TRAINING ON SMALL PARTS PHANTOM
Deep learning algorithms require a training dataset to train
the model. To fulfill this requirement, data was gathered
from a tissue-mimicking phantom rather than simulating
ultrasound data as the simulation are computationally inten-
sive. Tissue-mimicking phantoms are constructed such that
they encompass the majority of the sonographic features
observed in in vivo tissue. A tissue-mimicking phantom,
Sono404 small parts phantom (SPP) (Gammex, Middle-
ton, Wisconsin, USA), was used for gathering the training
dataset. The phantom had an attenuation of 0.7dB/cm-MHz.
A programmable ultrasound research system fromVerasonics
(Vantage, Verasonics Inc., Kirkland, Washington, USA) was
used to collect the data. A linear array transducer, L11-4v,
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(Verasonics Inc., Kirkland, Washington, USA) with a center
frequency of 6.25 MHz, pitch of 0.3 mm, and 128 elements
was used. A custom Verasonics script was developed to
save channel data from all 128 elements. Plane-wave imag-
ing, with a pulse duration of 1 cycle and no compounding
(angle 0o), was used to capture the channel data. Kaiser
apodization was used for the transmit waveform, whereas
the received waveform had no apodization. Channel data
collected with all 128 elements in transmit and receive is
referred to as FSA in the manuscript. For sparse array channel
data, 128 elements were used in transmission, and 64 ele-
ments (odd-numbered elements) were used in receiving. The
number of elements used in transmission was kept constant at
128 to maintain the same insonification power for both FSA
and SA. A simple delay-and-sum beamformer with dynamic
aperture control was used to beamform the channel data.
The acquisition depth was kept constant at 63.08 mm. The
transducer was excited at a peak-to-peak excitation value of
100 volts.

FIGURE 2. Convolutional neural network model for estimating inactive
channel data. Training and validation are performed using channel
datasets from phantoms. Testing is done using phantom and in-vivo data.

C. ALGORITHM
1) MODEL
Fig. 2 illustrates the convolutional neural networkmodel used
to predict the channel data. The model consists of an input
layer with a default size of 2048 rows and 64 channels. The
input data provided to the algorithm is the SA channel data,
Is, from 64 channels. An example of a gap-filling block is
shown in Fig. 2, which consists of three different convolu-
tional layers with a kernel size of 3, 5, and 7. The output

of the convolutional layers is concatenated along with the
input to the layer and a non-linear activation function, leaky
rectified linear units is applied, followed by a convolutional
layer with a kernel size of 1. In total, the model includes
16 gap-filling blocks. After the data had passed through the
16 blocks, the convolution layer of kernel size 1 was used to
select the biggest activation and then concatenated with the
original input image. The concatenated images were aligned
alternately to create channel data of size 2048 rows and
128 channels.

2) LOSS FUNCTION
Structural dissimilarity metric was used as the loss function
to be minimized by the algorithm as shown in equation 2

DSSIM (Is, Ir) =
1− (2µIsµIr+c1)(2σIsσIr+c2)

[
(
µ]2Is+µ

2
Ir+c1

)(
σ 2Is+σ

2
Ir+c2

)
2

; (2)

where Is is the reconstructed pseudo-FSA channel data, Ir is
the reference FSA channel data, µ is the mean operator,
σ is the variance operator, c1 = (k1L)2, c2 = (k2L)2, k1 =
0.01, k2 = 0.03 and L = 2#bits per pixel −1. The Structural
dissimilarity metric was based on equally weighted measure-
ments of luminance, contrast, and structure. These metrics
treated the pre-beamformed data as an image and calcu-
lated the amplitude-based information. Phase information
was not taken into account. The algorithm was developed
using Python (version 3.6.1, Python Software Foundation)
and open-source Keras Python library (version 2.2.1) with
TensorFlow ([18] backend (version 1.10.0, Google Inc.,
Mountain View, California). A hyperparameter optimization
was performed on the kernel initializer, the number of filters,
optimizer, and the loss function. The parameters reported in
Table 1 provided the best results.

TABLE 1. Parameters for convolutional neural network algorithm.

3) PROCESSING STEPS
(A) Training: The input data provided to the algorithm is the
SA channel data, Is, from 64 channels. The FSA channel
data, Ir, was also provided to the algorithm as the refer-
ence for training purposes. The training dataset consisted
of 1640 channel data images. (B) Validation: 183 validation
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images were used from the small parts phantom. The algo-
rithm met the stop criterion after 28 epochs with training
and validation DSSIM scores of 0.013 and 0.013, respec-
tively. (C) Testing:Channel data from different phantoms and
in-vivo experiments were used for testing. The performance
of the model was evaluated in quantitative terms in each case,
as described below.

D. POINT SPREAD FUNCTION ANALYSIS
The reduction in the grating lobe can be analyzed by studying
the beam profile of a wire target in a water tank. Raw channel
data was collected from a wire target phantom immersed
in a water tank using the same transducer. The raw chan-
nel data was not used for training and only for testing the
characteristics of the beam profile. Sixteen channel images
were collected. Similar to the previously reported study [19],
the contrast ratio was calculated by equation 3

Contrast = 10log10

∑
x,z/∈R (abs(IQ))

2∑
(abs(IQ))2

; (3)

where x represents the lateral points, z represents the axial
points, R is a circle of diameter 5λ concentric with the wire
target, and IQ is the in-phase/quadrature data.

E. SMALL PARTS PHANTOM (SPP)
An additional dataset of 425 channel data was taken with
the SPP to evaluate the performance of the algorithm. The
channel data was beamformed offline and compared with
SA and FSA. Quantitative metrics were used to compare the
hypoechoic and hyperechoic regions from a sample image.

F. MULTI-PURPOSE PHANTOM (MPP)
The performance of the algorithm was tested using another
tissue-mimicking phantom, multi-purpose multi-tissue ultra-
sound phantom (MPP) model 040GSE (CIRS, Norfolk,
Virginia, USA). The ultrasound transducer was linearly swept
over the transducer with an attenuation of 0.5dB/cm-MHz.
A set of 585 raw channel data images were collected. The
channel data was tested using the proposed algorithm, and
pseudo-FSA channel data was reconstructed. The channel
data was then beamformed offline for comparison with SA
and FSA. Quantitative metrics were used to compare the
hypoechoic and hyperechoic regions from a sample image.

G. IN-VIVO CAROTID DATA
To demonstrate the performance of the algorithm in clinical
applications, in-vivo data was collected from longitudinal
and transverse orientations of the carotid artery from two
different users. Approximately 1000 raw channel data images
were collected for each orientation of each user. The raw
channel data was only used for testing by reconstructing the
pseudo-FSA channel data. The channel data was beamformed
offline and was compared with SA and FSA. Quantitative
metrics were used to compare the carotid region from a
sample image.

H. QUANTITATIVE METRICS TO EVALUATE PERFORMANCE
Quantitative metrics were defined to compare the results
from SA, FSA, and pseudo-FSA. The contrast-to-noise ratio
(CNR) was calculated using equation 4

CNR = 20log10
|µROI − µbackground |√
σ 2
ROI + σ

2
background

; (4)

where µ is the mean of intensity values, σ is the standard
deviation of the intensity values, and ROI is the region of
interest.

Speckle statistics were calculated as it is an important
parameter representing the intrinsic characteristic of ultra-
sound images. A fully developed speckle pattern follows a
Rayleigh distribution. The Kolmogorov-Smirnov (KS) test
was used to access the speckle quality [20]. If a significance
level of 0.05 was obtained, the speckle pattern was considered
to follow the Rayleigh distribution.

The resolution was also calculated by using full width at
half maximum (FWHM) for both axial and lateral direction.

Unwrapped phase information was calculated by using
equation 5

φ = tan−1
(
Imag (IQ)
Real (IQ)

)
+ 2πk; (5)

where tan−1 is the inverse tangent, IQ is the in-phase quadra-
ture data, and k is an integer. The root-mean-square error
between pseudo-FSA and FSA for unwrapped phase infor-
mation was also calculated.

III. RESULTS
A. POINT SPREAD FUNCTION
The quantitative results for testing with the wire target in a
water tank are shown in Table 2. Fig. 3 shows the channel

TABLE 2. Mean error between Pseudo-FSA and FSA.

VOLUME 8, 2020 76279



V. Kumar et al.: GF Method for Suppressing Grating Lobes

FIGURE 3. Channel data from wire target in water tank using
(a) 64 channel RX sparse array, (b) 128 channel RX fully sampled array,
(c) 64 channel RX pseudo fully sampled array. Data is displayed at a
dynamic range of 60 dB.

FIGURE 4. Beamformed RF data from wire target in water tank using (a)
64 channel RX sparse array, (b) 128 channel RX fully sampled array,
(c) 64 channel RX pseudo fully sampled array. Data is displayed at a
dynamic range of 60 dB.

FIGURE 5. Lateral beam profile for 64 channel RX sparse array,
128 channel RX fully sampled array, and 64 channel RX pseudo fully
sampled array at a depth of (a) 3.6 mm, (b) 10.5 mm, (c) 20 mm.

TABLE 3. Ratio of grating lobe energy to total energy for different receive
configurations in wire target experiment.

data for the SA, FSA and pseudo-FSA. The corresponding
beamformed images are illustrated in Fig. 4 with a dynamic
range of 60 dB. The grating lobes in SA were clearly visible.
The FSA exhibits very small grating lobes. The grating lobes
were reduced in the pseudo-FSA, however not completely
eliminated. Figs. 5(a), 5(b) and 5(c) show the beam profile for
the first, third, and fifth wire target. Table 3 summarizes the

results for the ratio of grating lobe energy to the total energy,
as defined in equation 4. The grating lobe energy was low-
est for FSA, followed by pseudo-FSA and SA. The grating
lobe energy in pseudo-FSA was suppressed by a mean value
of 2.12 dB compared to SA. However, the grating lobe energy
for pseudo-FSA was lower than the FSA. No difference was
observed in axial or lateral resolution. Speckle quality was
not evaluated due to the small size of the target.

FIGURE 6. Channel data from small parts phantom using (a) 64 channel
RX sparse array, (b) 128 channel RX fully sampled array, (c) 64 channel RX
pseudo fully sampled array. Data is displayed at a dynamic range of 60 dB.

FIGURE 7. Beamformed RF data from small parts phantom using
(a) 64 channel RX sparse array, (b) 128 channel RX fully sampled array,
(c) 64 channel RX pseudo fully sampled array. Data is displayed at a
dynamic range of 60 dB.

B. SMALL PARTS PHANTOM
The quantified estimation error results for SPP data using
different metrics are summarized in Table 2. Fig. 7 shows
the beamformed images for the SA, FSA, and pseudo-FSA
displayed with a dynamic range of 60dB. Fig. 6 shows a sam-
ple channel data image for SA, FSA and pseudo-FSA. The
corresponding beamformed data can be observed in Fig. 7.
The sample image contains wire targets that are spread
laterally at the depths of 1 cm and 5 cm, one hyperechoic
region, and one hypoechoic region. Wire targets are also
present at different depths on the left side of the image. In the
case of SA, the grating lobes from wire targets at a depth
of 3 cm completely obfuscate the hypoechoic region. The
pseudo-FSA was able to reconstruct the hypoechoic region,
but some geometrical distortion is observed after reconstruc-
tion. Table 4 summarizes the CNR for the hyperechoic and the
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TABLE 4. Contrast to noise ratio for Hyperechoic and Hypoechoic regions
of small parts phantom.

FIGURE 8. RF A-line data for 64 channel RX sparse array, 128 channel RX
fully sampled array, and 64 channel RX pseudo fully sampled array
acquired from small parts phantom in (a) hyperechoic region of ROI 1,
(b) hypoechoic region of ROI 2. Unwrapped phase information for
64 channel RX sparse array, 128 channel RX fully sampled array, and
64 channel RX pseudo fully sampled array acquired from small parts
phantom in (c) hyperechoic region of ROI 1 (d) hypoechoic region of
ROI 2.

hypoechoic regions. Pseudo-FSA had higher CNR than SA
for both regions and had higher CNR than FSA for the hyper-
echoic region. The beamformed RF A-line passing through
the center of the hyperechoic region and hypoechoic region
is shown in Fig. 8(a), and 8(b). For the hyperechoic region,
the difference between the SA, FSA, and pseudo-FSA is not
clear. However, for the hypoechoic region, the SA had amuch
higher amplitude, whereas the pseudo-FSA closely follows
the FSA. Fig. 8(c), and 8(d) shows the unwrapped phase
values for the hyperechoic and hypoechoic RF A-line. Phase
information for pseudo-FSA from the hyperechoic region
was precisely reconstructed and matched the FSA. However,
the phase information for pseudo-FSA from the hypoechoic
region had some errors but performed better than SA. The
hyperechoic region has a root-mean-square unwrapped phase
error of 4.54 rad between SA and FSA, and 0.15 rad between
pseudo-FSA and FSA. The hypoechoic region has the root-
mean-square unwrapped phase error of 11.86 rad between SA
and FSA, and 4.71 rad between pseudo-FSA and FSA. The
mask used to calculate CNR and the lines from which the
RF A-line was selected is shown in Fig. 9. Axial and lateral
resolution for SA, FSA, and pseudo-FSA were the same. The
homogenous background region in SPP followed Rayleigh
distribution for FSA and pseudo-FSA but not for SA.
Similarly, for hypoechoic region FSA and pseudo-FSA
followed Rayleigh distribution, whereas SA did not.

FIGURE 9. Mask showing regions for calculating contrast-to-noise ratio
and RF A-line for small parts phantom. The blue circle shows the ROI 1
for hyperechoic region, the green circle shows the ROI 2 for hypoechoic
region. The red area shows the region used as background for noise
calculation. The dashed white line shows the RF A-line associated with
hyperechoic region. The solid white line shows the RF A-line associated
with hypoechoic region.

However, for the hyperechoic region, none of them followed
Rayleigh distribution.

FIGURE 10. Beamformed RF data from multi-purpose phantom using
(a) 64 channel RX sparse array, (b) 128 channel RX fully sampled array,
(c) 64 channel RX pseudo fully sampled array. Data is displayed at a
dynamic range of 60 dB.

C. MULTI-PURPOSE PHANTOM
The quantified estimation error for MPP data using differ-
ent metrics is summarized in Table 2. Fig. 10 shows the
beamformed images for the SA, FSA, and pseudo-FSA dis-
played with a dynamic range of 60dB. The sample image
contains three hyperechoic regions of varying echogenicity
at a depth of 25 mm, two hypoechoic regions on the left
side of the image, wire targets at a depth of 5 mm, and wire
targets at a depth of 36 mm. For SA, grating lobes can be
observed for the wire targets, and the hyperechoic regions
are geometrically distorted. The hypoechoic region was com-
pletely obfuscated by the grating lobes. The pseudo-FSA
was able to suppress the grating lobes associated with the
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TABLE 5. Contrast to noise ratio for Hyperechoic and Hypoechoic regions
of multi-purpose phantom.

FIGURE 11. RF A-line data for 64 channel RX sparse array, 128 channel RX
fully sampled array, and 64 channel RX pseudo fully sampled array
acquired from multi-purpose phantom in (a) hypoechoic region of ROI 1,
(b) hyperechoic region of ROI 3, (c) hypoechoic region of ROI 5.
Unwrapped phase information for 64 channel RX sparse array,
128 channel RX fully sampled array, and 64 channel RX pseudo fully
sampled array acquired from multi-purpose phantom in (d) hypoechoic
region of ROI 1, (e) hyperechoic region of ROI 3, (f) hypoechoic region of
ROI 5.

wire targets. Pseudo-FSA partially reconstructed the hypoe-
choic regions. The geometrical shape of the hyperechoic
region from pseudo-FSA is similar to FSA. Table 5 sum-
marizes the CNR for the 3 hyperechoic and 2 hypoechoic
regions. Pseudo-FSA had higher CNR for the hypoechoic
region compared to SA. Pseudo-FSA showed improvement in
CNR over SA for the hyperechoic regions. The beamformed
RF A-line for the top hypoechoic region, central hypere-
choic region, and the bottom hypoechoic region is shown
in Fig. 11(a), 11(b), and 11(c), respectively. Pseudo-FSA
has better reconstruction for RF A-line of the hyperechoic
region than hypoechoic regions. Fig. 11(d), 11(e), and 11(f)
show the unwrapped phase values for the top hypoechoic
region, central hyperechoic region and bottom hypoechoic
region. The top hypoechoic region has a root-mean-square
unwrapped phase error of 9.99 rad between SA and FSA,
and 13.91 rad between pseudo-FSA and FSA. The middle

FIGURE 12. Mask showing regions for calculating contrast-to-noise ratio
and RF A-line for multi-purpose phantom. The green circles show the
ROI 1 (labelled R1) and ROI 5 (labelled R5) associated with the two
hypoechoic regions. The blue circles show the ROI 2 (labelled R2), ROI 3
(labelled R3), and ROI 4 (labelled R4) for the three hyperechoic regions.
The red area shows the region used as background for noise calculation.
The solid white line (labelled L1) shows the RF A-line associated with
ROI 1 hypoechoic region. The dashed white line (labelled L2) shows the
RF A-line associated with ROI 3 hyperechoic region. The dashed white
line (labelled L3) shows the RF A-line associated with ROI 5 hypoechoic
region.

TABLE 6. Contrast to noise ratio for carotid artery.

hyperechoic region has a root-mean-square unwrapped phase
error of 3.90 rad between SA and FSA, and 3.81 rad between
pseudo-FSA and FSA. The bottom hypoechoic region has
a root-mean-square unwrapped phase error of 13.72 rad
between SA and FSA, and 5.33 rad between pseudo-FSA and
FSA. The mask used to calculate CNR, and the line from
which the RF A-line was selected is shown in Fig. 12. Axial
and lateral resolution for SA, FSA, and pseudo-FSA was
the same. The homogenous background region in MPP fol-
lowed Rayleigh distribution for FSA, pseudo-FSA, and SA.
The top hypoechoic region and mid hyperechoic region fol-
low Rayleigh distribution only for SA. The lower hypoe-
choic region does not follow Rayleigh distribution for any
technique.
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FIGURE 13. Beamformed RF data from the carotid artery of volunteer 1
with the probe in transverse orientation acquired using (a) 64 channel RX
sparse array, (b) 128 channel RX fully sampled array, (c) 64 channel RX
pseudo fully sampled array. Channel data from the carotid artery of
volunteer 2 with the probe in transverse orientation acquired using
(d) 64 channel RX sparse array, (e) 128 channel RX fully sampled array,
(f) 64 channel RX pseudo fully sampled array. Data is displayed at a
dynamic range of 40 dB.

D. IN-VIVO CAROTID
The quantified estimation error for in vivo carotid data
from two volunteers using different metrics is summarized
in Table 2. Fig. 13 shows the beamformed images for the
SA, FSA, and pseudo-FSA displayed with a dynamic range
of 40dB. The carotid artery was observed between depths
of 10 mm and 20 mm. For SA, the hypoechoic region inside
the carotid artery is affected by the grating lobe artifact. The
pseudo-FSA is able to partially reconstruct the carotid artery.
The CNR values for the transverse orientation of the carotid
artery are summarized in Table 6, and the mask used to calcu-
late CNR is displayed in Fig. 14. Axial and lateral resolution
for SA, FSA, and pseudo-FSA was the same. Speckle pattern
was not accessed for in-vivo data as fully developed speckle
pattern was hard to observe close to the carotid artery. The
root-mean-square unwrapped phase error for transverse ori-
entation of volunteer 1 between SA and FSA was 12.86 rad,
and between pseudo-FSA and FSA was 10.60 rad. The root-
mean-square unwrapped phase error for transverse orienta-
tion of volunteer 2 between SA and FSA was 3.08 rad, and
between pseudo-FSA and FSA was 4.76 rad.

Fig. 15 shows the beamformed images for the SA, FSA,
and pseudo-FSA displayed with a dynamic range of 40dB.
The carotid artery was observed between depths of 10 mm
and 20 mm. For SA, the hypoechoic region inside the carotid
artery had some artifacts. The pseudo-FSAwas able to reduce
these artifacts. Furthermore, the anatomical structures are
well defined in pseudo-FSA compared to SA. The CNR
values for the longitudinal orientation of the carotid artery are
summarized in Table 6, and the mask used to calculate CNR
is displayed in Fig. 16. The axial and lateral resolutions for
the SA, FSA, and pseudo-FSA are similar. Speckle pattern
was not accessed for in-vivo data as fully developed speckle
pattern was hard to observe close to the carotid artery. The
root-mean-square unwrapped phase error for longitudinal

FIGURE 14. Mask showing regions for calculating contrast-to-noise ratio
from the carotid artery in the transverse orientation of (a) volunteer 1,
(b) volunteer 2. The green circle shows the carotid artery, and the circle
shows the region used for background noise.

FIGURE 15. Beamformed RF data from carotid artery of volunteer 1 with
probe in longitudinal orientation acquired using (a) 64 channel RX sparse
array, (b) 128 channel RX fully sampled array, (c) 64 channel RX pseudo
fully sampled array. Channel data from carotid artery of volunteer 2 with
probe in longitudinal orientation acquired using (d) 64 channel RX sparse
array, (e) 128 channel RX fully sampled array, (f) 64 channel RX pseudo
fully sampled array. Data is displayed at a dynamic range of 40 dB.

orientation of volunteer 1 between SA and FSA was 3.60 rad,
and between pseudo-FSA and FSA was 3.32 rad. The root-
mean-square unwrapped phase error for longitudinal orienta-
tion of volunteer 2 between SA and FSA was 13.32 rad, and
between pseudo-FSA and FSA was 14.51 rad.

IV. DISCUSSION
ACNN algorithmwas proposed to estimate the inactive chan-
nel data in periodic sparse arrays from neighboring active
channels. The proposed algorithm was trained on an SPP
and was validated using wire target data, MPP, and in-vivo
carotid data. The best performance of the algorithm was
observed when the phantom used for training, SPP, was also
used for testing. The high prediction errors observed for the
in-vivo data are due to the sonographic features associated
with in-vivo data, which are not emulated in tissue-mimicking
phantoms, e.g., varying attenuation, heterogeneity of the
tissue, varying speed of sound, and phase aberration. The
performance of the algorithm can be improved for in-vivo
data by training it on in-vivo data from multiple volunteers.
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FIGURE 16. Mask showing regions for calculating contrast-to-noise ratio
from the carotid artery in the transverse orientation of (a) volunteer 1,
(b) volunteer 2. The green region shows the carotid artery, and the red
area shows the region used for background noise.

Although the quantitative performance of in-vivo data is
lower compared to that of the tissue-mimicking phantom,
the pseudo-FSA performed better than SA in both qualitative
and quantitative terms. No change was observed in the lateral
resolution as the main lobe widths for the SA, FSA, and
pseudo-FSA were the same. The main lobe width has no
dependence on inter-element spacing and only depends on the
F-number as shown in equation 6

Rlat = nF#λ; (6)

where n is a constant dependent on the measurement tech-
nique, F# is the F-number, and λ is the wavelength. The
axial resolution depends only on the center frequency of
the transmitted signal, and thus, no change was observed
in the axial resolution as the center frequency for the three
techniques was the same.

The uniform linear array used in this study had inter-
element spacing, d, of 0.3 mm, whereas the wavelength used
for acquiring the data was 0.25mm, thus rendering the grating
lobes unavoidable even in FSA. The inter-element spacing
for the SA was doubled, bringing the grating lobes even
closer to the main lobe. The increased inter-element spacing
resulted in the degradation of the CNR for SA. To recover
the CNR, grating lobes had to be moved away from the
main lobe. By estimating the inactive channel data using the
proposed method, the inter-element spacing for beamforming
was reduced; thus, the grating lobes were moved further
away from the main lobe to improve the CNR. The proposed
method could be used to further reduce the inter-element
spacing by predicting the sub-wavelength virtual channel,
which could further suppress the grating lobes and improve
the CNR [14], [15].

The lateral beam profile for wire target in the water tank,
Fig 5, demonstrates that the main lobe width does not change
while the grating lobes are suppressed. No change in the axial
beam profile was observed.

Suppression of the grating lobes in the hypoechoic region
of SPP demonstrates the capability of the proposed algorithm.

The presence of hyperechoic wire targets at a depth of 10 mm
creates high-intensity grating lobes, which move away from
the main lobe with increasing depth, obfuscates the hypoe-
choic region. Hyperechoic regions are common in soft tissue,
for example, in connective tissue, calcifications, tendons,
nerves, and parenchymal tissues. The grating lobes from the
hyperechoic regions can potentially obfuscate hypoechoic or
anechoic regions present in the nearby tissues. An improve-
ment of 15.25 dB was observed in the hypoechoic region of
SPP. The CNR for the pseudo-FSA in the hyperechoic region
is higher than FSA, for both SPP andMPP. This phenomenon
is not due to the improvement in contrast but due to the
reduction in noise variance, which stems from the inability
of the proposed algorithm to predict low amplitude signals.
Transverse in-vivo data shows improvement in CNR up to
14.69 dB for the hypoechoic carotid artery. However, it barely
shows any improvement in the longitudinal orientation due to
the absence of hyperechoic objects.

The speckle pattern is commonly used to estimate quan-
titative ultrasound parameters [21]–[24]. It is essential that
the pseudo-FSA follows the same speckle pattern trend as the
FSA so that the data generated by pseudo-FSA could be used
for quantitative analysis. In all cases, the pseudo-FSA had
the same speckle pattern as the FSA. However, the SA did
not follow the same trend, thus rendering pseudo-FSA better
suited for quantitative analysis than SA.

Phase information is another important parameter that is
used in Doppler imaging [25] and shear wave elastography
applications [26]–[28]. Predicting phase data can be challeng-
ing, as seen in Fig. 8(c), 8(d) and Fig. 13(d), 13(e), 13(f).
The phase information changes rapidly over samples and is
very specific to the local region through which the signal
travels. The DSSIM loss function only considers amplitude
information. In the case of a high amplitude signal, the algo-
rithmwas able to reconstruct the phase information; however,
the algorithm struggled in the hypoechoic regions. Phase
information prediction can be improved by modifying the
loss function to consider both amplitude and phase-related
information.

This study, in its current form, has some limitations in esti-
mating the missing channel data, which could be addressed in
future works. The scope of this paper was limited to introduc-
ing the algorithm, showcasing its ability to predict the channel
data and suppressing the grating lobes. Only zero angle plane
wave imaging was used to simplify the problem. However,
in the future, different angles can be trained separately, and
there is no limitation on using spatially compounded images.
Here, a periodic sparse array was used to demonstrate the
ability of the algorithm. However, in the future, the algorithm
can be extended to non-periodic sparse arrays.

Another limitation that was observed from beamformedRF
A-line data was that the algorithm performed poorly when
the amplitude of the signal was low. The limitation can also
be observed in Figs. 7, 9, 11, and 12 in which the recon-
struction of the hypoechoic region is poor. The estimation
error for the hyperechoic region was low compared to the
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hypoechoic region. The error associated with a high ampli-
tude signal is large; thus, all filters are optimized to reduce
errors in large-amplitude signals. This results in poor predic-
tion for low amplitude signal regions.

A high quantitative error was observed for the in-vivo
data. However, qualitatively the difference between FSA and
pseudo-FSA for the longitudinal images was barely observ-
able. The error could be further reduced in the future by
training the algorithm using in-vivo datasets.
Here, only the Kaiser apodization was considered in trans-

mit, and no apodization was considered on the receive. Future
studies can explore the best apodization window in both
transmit and the receive side.

V. CONCLUSION
An algorithm is proposed, which can estimate the inactive
element channel data in periodic sparse arrays to reduce
the inter-element spacing for beamforming, thus suppress-
ing the grating lobes. Suppression of the grating lobe was
demonstrated in both tissue-mimicking phantoms and in-vivo
conditions. Considerable CNR improvement, up to 15.25 dB,
was observed in the hypoechoic region while maintaining the
physical attributes of the ultrasound signal. The algorithm can
be used to reduce the number of active elements in arrays.
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