
SPECIAL SECTION ON DATA MINING FOR INTERNET OF THINGS

Received March 18, 2020, accepted April 17, 2020, date of publication April 21, 2020, date of current version May 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989304

WS-LSMR: Malicious WebShell Detection
Algorithm Based on Ensemble Learning
ZHUANG AI 1, NURBOL LUKTARHAN 1, YUXIN ZHAO 2, AND CHAOFEI TANG 2
1College of Information Science and Engineering, Xinjiang University, Urumqi 830046, China
2College of Software, Xinjiang University, Urumqi 830046, China

Corresponding author: Nurbol Luktarhan (nurbol@xju.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61433012, and in part by the
Innovation Environment Construction Special Project of Xinjiang Uygur Autonomous Region under Grant PT1811.

ABSTRACT To solve the problem that the features produced by hidden means, such as code obfuscation
and compression, in encrypted malicious WebShell files are not the same as those produced by non-
encrypted files, a WebShell attack detection algorithm based on ensemble learning is proposed. First, this
algorithm extracted the feature vocabulary of the unigrams and 4-grams based on opcode; subsequently,
the 4-gram feature word weights were obtained according to the calculated Gini coefficient of the unigram
feature words and used to select the features, which will be selected again based on the Gini coefficient
of the 4-gram feature words. Consequently, a feature vocabulary that can detect encrypted and unen-
crypted WebShell files was constructed. Second, in order to improve the adaptability and accuracy of the
detection method, an ensemble detection model called WS-LSMR, consisting of a Logistic Regression,
Support Vector Machine, Multi-layer Perceptron and Random Forest, was constructed. The model uses
a weighted voting method to determine the WebShell classification. This experiment demonstrated that
compared with the traditional single WebShell detection algorithm, the recall rate and accuracy rate
improved to 99.14% and 94.28%, respectively, which proves that this method has better detection perfor-
mance.

INDEX TERMS Ensemble learning, information entropy, WebShell.

I. INTRODUCTION
With the rapid development of communication networks,
Web-based applications have gradually become the main
way for Internet companies to provide services to users.
Meanwhile, the various types of network attacks against Web
applications are also rapidly growing, which greatly threatens
the security of the Internet. The 2018 China Internet network
security report [1] issued by theNational Internet Emergency
Center (CNCERT) shows that in 2018, approximately 16,000
IP addresses at home and abroad implanted backdoors into
approximately 24,000 websites in China. A network back-
door obtains system-level permissions through a WebShell,
which can exist in many kinds of scripting languages. Gener-
ally, the website project root folder further extends the harm
to the local area network and plants Trojans in the network
to spread the virus. The attacker can use the WebShell file
to access data information, such as the server database and

The associate editor coordinating the review of this manuscript and

approving it for publication was Chun-Wei Tsai .

files. For the security of a Web site, it is essential to detect
the WebShell files on a server.

According to the scripting languages, WebShells can be
classified as ASP, PHP and JSP scripting Trojans [2]. Because
of the simple syntax and high development efficiency of the
PHP language, it has become the first choice for developing
all types of portals and Web applications [3]. Therefore, this
paper mainly studies the detection method for PHP Web-
Shells.

WebShells can be classified into three categories based
on their functionality: Full Trojan, Mini Trojan and one-
sentence Trojan. The Full Trojan, which is a general purpose
WebShell, is malicious code with full functionality, which
includes being interface-friendly and can be a file operation,
command execution and graphical interface during database
operations. The Mini Trojan contains only one function. This
WebShell category can provide the file upload function using
malicious database code. The one-sentence Trojan, which is
a short and powerful malicious code that is difficult to detect,
plays a powerful role in continuous intrusions and generally

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 75785

https://orcid.org/0000-0002-2251-5545
https://orcid.org/0000-0002-4043-6920
https://orcid.org/0000-0002-8123-2756
https://orcid.org/0000-0003-4795-5288
https://orcid.org/0000-0003-0128-4052


Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

takes the form of a command execution code, such as an
‘‘eval()’’ function [4]. The features of WebShell scripts are
constantly changing, whichmakes them increasingly difficult
to detect [5]. Among the various issues, the selection of the
optimal feature subset has long been a concern of researchers.

In recent decades, ensemble learning algorithms have been
shown to be able to efficiently solve many problems that can-
not be solved by single machine learning algorithms [6]–[9].
These algorithms can address the problem of too much data
or too little data. If the amount of data is too large, a single
learner generally can only learn a small part [10]. Meanwhile,
if the amount of data is too small, ensemble learning can
sample the data set according to a certain strategy, and it
consequently obtains a variety of different combinations of
data to expand the data sample [11], [12]. Therefore, in the
field of machine learning, researchers pay more attention to
them. At first, the algorithms aimed to improve the accuracy
of automatic decision-making systems, but at present, these
methods can be applied to a variety of machine learning
problems and can generate good results [13], [14]. Ensemble
learning is a machine learning strategy that is independent of
an algorithm. If a single classifier is compared to a decision
maker, then multiple classifiers are equivalent to multiple
decision makers making a decision together. To ensure that
the ensemble classifier achieves a better classification effect
than the single classifier, three principles need to be followed:

(1) Each sub-classifier of the ensemble classifier must use
different classification methods and training methods,

(2) The errors produced by the sub-classifiers in the ensem-
ble classifier must be different, and

(3) The accuracy of the sub-classifiers must be greater than
0.5.

Therefore, malicious WebShell detection based on ensem-
ble learning encounters the following difficulties:

(1) How to select the optimal feature subset of malicious
WebShell scripts,

(2) How to select basic learner in ensemble learning, and
(3) How to calculate the weight parameters of the base

learner in ensemble learning.

II. RELATED WORK
At present, the WebShell detection methods can be roughly
classified as static feature-based detection and dynamic
feature-based detection methods.

A. DETECTION BASED ON STATIC FEATURES
Static feature detection mainly matches feature values, dan-
gerous function names and other known conditions to find
WebShells. The advantages of this approach are that it is
simple to deploy, has a high rate of finding knownWebShells,
and can be applied using a simple script; meanwhile, the dis-
advantage of this method is that only known WebShells can
be found. Furthermore, manual cooperation is needed to find
and exclude someweak features of the files. Although a small
web site can be quickly located, and files can be excluded

with weak features, using a combination of static features
and manual work, for large web sites, the total amount of
human effort is too large at this time. Therefore, Webshell
detection techniques in web applications [15] proposes a new
method to identify WebShells based on the optimal threshold
of malicious signatures, malicious function samples and the
longest characters at the beginning and end of file labels.
The malicious code in each file of the Web application is
scanned and found, and then a list of suspect files and a
detailed log analysis table for each suspect file are automat-
ically provided by the administrator for further inspection.
In Training a multi-criteria decision system and application
to the detection of PHP WebShells [16], signatures, fuzzy
hashes, whether dangerous processes are invoked, whether
there are obfuscating codes, and entropy are used as features
to detect and classifyWebShells using an algorithm that trains
a multi-criteria decision system. CNN-Webshell: Malicious
Web shell detection with convolutional neural network [17]
proposed a feature extraction method based on ‘‘word2vec’’.
First, the word2vec tool was used to transform each word
of an HTTP request into a vector, and then it converted the
vectors into a fixed sized matrix. Finally, a detection method
based on the CNN model was used for classification.

B. DETECTION BASED ON DYNAMIC FEATURES
Detection based on dynamic features is a method that detects
the features of theWebShell execution process. This approach
is good at detecting the features generated by operations, such
as code annotation and code compression; however, feature
extraction and feature dimensionality reduction still represent
problems. For example, in A Method of Detecting Webshell
Based onMulti-layer Perception [18], the sample source code
is converted into bytecode by compiling tools, and then the
sample bytecode is decomposed into bytecode sequences by
Bi-Gram. Next, the feature matrix of the training set is set
using the word frequency matrix calculated by the TF-IDF.
Finally, a multilayer neural network is used to detect and
classify WebShell files.Webshell detection based on random
forest–gradient boosting decision tree algorithm [19] used
the features of the opcode sequences extracted from PHP
source files, then used the TF-IDF vector and hash vector
for feature selection, and finally used the combination of
the random forest classifier and GBDT classifier for clas-
sification. Detecting webshell based on random forest with
fasttext [20] first used the VLD tool in PHP to obtain the
opcode sequences of PHP files. Then, this method used the
FastText algorithm to train the opcode sequence model and
predict the corresponding feature values and combined the
predicted feature values and static features as the features of
samples. Finally, the random forest was used to realize binary
classification.

C. WebShell ATTACK DETECTION BASED ON ENSEMBLE
LEARNING
The above two detection methods have improved the detec-
tion effect of WebShell to a certain extent, but they still

75786 VOLUME 8, 2020



Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

TABLE 1. Difference between static and dynamic detection of WebShell
attacks.

have shortcomings, which are summarized in the following
Table 1.

To overcome the shortcomings of the above dynamic detec-
tion Methods and expand its advantages, this paper proposes
using the ensemble learning of binary weighted voting to
classify WebShells.

At present, ensemble learning can be roughly classified
into three categories: Bagging, Boosting, and Stacking. Bag-
ging is a method that extracts data from the original data
set and conducts model training and prediction to obtain K
models. Finally, this approach uses thesemodels to predict the
data. K predicted values can be obtained from each sample,
and the final result can be obtained by voting [21]. Because
the weights of the base learners in this algorithm are the same,
the base learner selection in this algorithm will directly affect
the results of the ensemble learning method. Boosting mainly
assembles weak classifiers into a strong classifier. In this
instance, AdaBoost will pay more attention to the mislearned
samples when learning the algorithm, increase their respec-
tive weights, and then superimpose the models generated in
each step to obtain the final model [22], [23]. Xgboost is a lift-
ing tree model that can integrate many tree models together to
form a strong classifier [24], [25]. However, the disadvantage
of this algorithm is that it is easy to overfit due to noise. Stack-
ing first trains the base learner using the initial data set, then
combines the data generated by the base learner into a new
data set, then inputs that new data set into the classification
algorithm, and then finally obtains the final prediction result
[26], [27]. The disadvantage of this algorithm is as follows:
if the training set of the primary learner is directly used to
generate the secondary training set, there is a great risk of
overfitting.

A more important classification method is the weighted
voting method, which combines the above methods to
adaptively allocate weights. Given multiple base classi-
fiers, high weights are assigned to the algorithms with high
accuracy, which can better reflect the roles of excellent
algorithms [28].

According to the above analysis, this paper will apply
the weighted voting algorithm of the binary model to the
detection of WebShell files. Compared with other ordinary
single machine learning algorithms, this algorithm performs
better in terms of its recall rate and accuracy.

D. TYPES OF GRAPHICS
In this paper, the feature vocabulary lists of unigrams and
4-grams are extracted from the sample set according to the
opcode. Then, the 4-gram feature words are calculated based
on the feature weight values calculated by the Gini coeffi-
cients of the unigram feature words, and the selected fea-
tures are selected again according to the Gini coefficients of
the 4-gram feature words. This approach will allow one to
construct a feature vocabulary to detect encrypted and unen-
crypted WebShell files, consequently solving the problem
that it is difficult to detect the script and select the optimal fea-
ture subset. Second, in order to improve the adaptability and
accuracy of the detection method, this paper constructs a dif-
ferentiated ensemble detection model WS-LSMR, which is
composed of a Logistic Regression, Support Vector Machine,
Multi-layer Perceptron and Random Forest. The advantages
and disadvantages of each algorithm are shown in Table 2.
In addition, this model uses the weighted voting method to
determine the classification of WebShells.

The main contributions of this article are the following two
aspects.

(1) Based on the original TF-IDF feature vectorization, the
4-gram feature words are weighted according to the
feature weights calculated using the unigram feature
words via the random forest, which will select features
for the first time; and then the 4-gram feature words can
be selected for the second time via the random forest.
This algorithm can select the optimal feature subset that
reduces the dimension and improves the efficiency of
the algorithm.

(2) Based on the accuracy of the model training, the voting
weights of each algorithm in the ensemble detection
model are set to improve the detection effect.

III. MALICIOUS WebShell DETECTION ALGORITHM
BASED ON ENSEMBLE LEARNING
A. SYSTEM ARCHITECTURE
This article uses an ensemble learning algorithm, which is
called the WS-LSMR, and its structure is illustrated in Fig. 1
and Table 3. This research can be divided into three modules:
preprocessing, feature selection, and model building and pre-
diction.

Preprocessing: First, all files contained in the data set
should be de-duplicated to prevent interference in the detec-
tion results. Opcode is used to preprocess the features that are
obtained by splitting or encrypting dangerous functions. Sec-
ond, the samples were divided into training samples and test
samples at a ratio of 4:1. Finally, the training set is vectorized
according to the unigrams and 4-grams, respectively, and the
test set is vectorized according to the 4-grams.

Feature selection: First, the 4-gram feature word weights
are obtained according to the calculated Gini coefficients of
the unigram feature words to select the features. The random
forest algorithm is applied to the training samples to select the
important features. The training set is sampled using SMOTE

VOLUME 8, 2020 75787



Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

TABLE 2. Advantages and disadvantages of single classification algorithm.

TABLE 3. Experimental structure.

to prevent the prediction result from being one-sided because
of the large positive and negative sample gap.

Model building and prediction: Four base classifiers
(Logistic Regression, Support Vector Machine, Multi-layer
Perception, and Random Forest) are used to train and verify
the training samples, whichwill determine the accuracy of the
corresponding base classifier and the prediction probability
of each test sample based on the classifier. Then, the accuracy
rate of the set is verified and used to obtain the weight value of
the base classifier, and finally it and the prediction probability
are used to obtain the final classification probability of the
test set.

Suppose data= (Xi,Yi)Ni=1is a WebShell dataset, where
N is the number of the samples and each training sample
Xi has a corresponding target value Yi. Base_classifier=
[L1,L2,L3,L4] is used to represent the base classifier, λ =
{λ1, λ2, λ3, λ4} represents the weight value of the base classi-
fier and test_prob= {probi1, probi2, probi3, probi4}Ni=1 rep-
resents the prediction probabilities of the ith sample for the
four base classifiers.

Algorithm 1 File Processing
Input: sample data set : dataSet .
Output: opcode compiled file : data_process.
1: The dataSet uses the MD5 function to de-duplicate the

file and gets the intermediate result dataProcess.
2: dataProcess is compiled using the Zend engine to get the

opcode compiler result data_process.
3: return data_process.

Algorithm 2 Feature Selection
Input: feature selection algorithm : algorithm, unigrams

Feature : one_gram_feature, 4-grams feature :
four_grams_feature, unigrams threshold selection
parameter: num1, 4-grams threshold selection parameter
: num2.

Output: feature lists : feature_lists.
1: By feature selection algorithm ‘‘algorithm’’ and

one_grams_feature, calculates the importance score of
the unigram feature vocabulary: one_feature_score.

2: one_feature_score and four_grams_feature were used to
calculate the total score value of each 4-gram Feature:
four_score.

3: Obtaining four_score, the retained feature sequence, by
implementing the first dimension reduction of the feature
according to num1 and four_score.

4: By feature selection algorithm and four_score, calculates
the importance score of the 4 - grams feature vocabulary:
four_feature_score.

5: The second dimension reduction of the feature is imple-
mented with num2 and four_feature_score to obtain the
remaining feature sequence: feature_list.

6: Sample on feature_list dataset with SMOTE method to
get the dataset that has been feature processed.

7: return feature_list .

B. OPCODE
Opcode is an intermediate code in the PHP language for
the Zend [29] engine to execute, and it is similar to the
bytecode file in Java or pycodeobject in Python. The result-
ing Opcode bytecode file can be directly executed; there-
fore, the split dangerous functions or encrypted functions

75788 VOLUME 8, 2020



Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

FIGURE 1. Flow chart of ensemble learning algorithm.

in the PHP file will also be reflected in the Opcode,
and they will still appear the same Opcode statement
code as the compilation result of the normal file when
compiled.

At present, there are two kinds of malicious WebShells:
encrypted files and non-encrypted files. The features that are

directly extracted from the two types of files are different,
but the features of the two PHP files after opcode encoding
are completely consistent. Therefore, the first step for the
data sample is to code the malicious files using opcode to
obtain the feature set that can detect malicious WebShell
files. In addition, you can identify WebShells using code

VOLUME 8, 2020 75789



Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

Algorithm 3 Calculation of Weight Value
Input: training set feature : x_train_data, training set target

value : y_train_data, test set sample : x_test, base clas-
sifier list : Base_classifier, cross validation parameter :
kfold_num, Sample m% from the training set : m.

Output: the accuracy of each base classifier : L_score, the
predicted probability value of each test sample in the
base_classifier : test_prob.

1: for i→ lenth(Base_classifier) do
2: Random sampling of m% of data from X_train_data

and y_ train_data yields : X_trains_list, y_trains_list.
3: Cross verify X _train_list and y_train_list with kfold

_ num fold to obtain the average score L_score [i] of
Base_classifier[i].

4: All samples X_test of the test set get the predicted
probability value test_prob[i] on the Base_classifier[i].

5: end for
6: return L_score, test_prob.

Algorithm 4 Prediction Probability
Input: Base classifier weights : λ, The predicted probability

value of each sample in the test set on the base classi-
fier:test_prob.

Output: The final prediction probability value for each sam-
ple:probably.

1: Each sample calculates the final prediction probability
value ‘‘probably’’ by the weight value ‘‘λ’’ of the base
classifier and the corresponding prediction probability
value ‘‘test_prob’’.

2: return probably

compression, code splitting, and code comments based on
this feature.

VLD(Vulcan Logic Dumper) is an extension tool imple-
mented as a hook in the Zend engine for outputting inter-
mediate code (execution units) generated by PHP scripts, so
this paper uses the VLD extension to analyse the following
malicious PHP file

<? PHP call_user_func (create_function (null, ’assert
($_POST[C]);’));? >

and the annotated malicious PHP file

<? PHP call_user_func (create_function (null,
’assert/* annotation */ ($_POST[C]);’));? >

The resulting intermediate opcode is given in Table 4.

C. FEATURE VECTORIZATION
The TF-IDF (term frequency-inverse document frequency) is
a weighting technique that automatically extracts text key-
words [30] and is widely used in text classification for feature

TABLE 4. Opcode compiled files.

vectorization [31]. The TF-IDF uses the IDF (inverse docu-
ment frequency) to determine the word frequency. By calcu-
lating the frequencies of words and the inverse document, the
algorithm can effectively identify those invalid words with
high word frequency but no actual meaning. Therefore, this
algorithm also improves the simple word frequency statistics
method [32].

This paper uses the TF-IDF to carry out the feature vector-
ization of the PHP file, and the basic process is as follows.
PHP files are called a sample after being encoded using
opcode, and each sample is a segment after being split by the
n-grams word bag. TF is the number of times that segment X
appears in a given sample. The IDF reflects the frequency of
this segment in all samples, and its calculation formula is as
follows:

IDF(x) = log
N
N (x)

(2)

N is the total number of texts in the corpus, and N(X) is
the number of texts containing the corpus segment X. The
TF_IDF (X), which measures the importance of the corpus
segment X, can be obtained using the TF (word frequency)
and IDF (reverse file frequency) according to formula 3.

TF_IDF(x) = TF(x) ∗ IDF(x) (3)

D. FEATURE SELECTION
Because most of the opcode features can only use a small
part of the words in the vocabulary, this property will lead to
the sparseness of the word vector. Therefore, it is necessary
to eliminate the unimportant features to prevent the compu-
tational efficiency from decreasing due to feature explosion.
At present, the main algorithm that can be selected for calcu-
lating the importance of features is the decision tree model.
In it, each feature calculates the incremental value of the Gini
coefficient according to formula 4, and it finally selects the
important features based on the incremental value order.

The Gini coefficient is a measure of the impurity of data:

GINI (D) = 1− (
m∑
i=1

(pi)2) (4)

M represents the number of type C entries in dataset D, and pi
represents the probability that any sample in D belongs to Ci.

75790 VOLUME 8, 2020



Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

FIGURE 2. Feature selection execution flow.

The Gini coefficient after splitting by attribute a is calcu-
lated as follows:

Ginia =
D1

D
Gini(D1)+

D2

D
Gini(D2) (5)

where D1 is a non-void proper subset of D; D2 is a comple-
ment of D1 in D, that is, D1 + D2 = D; and the minimum
value is selected as the Gini coefficient of feature a.

The feature can be indicatedmuchmore important when its
increment of the feature is larger and the ability to distinguish
black and white lists is more stronger.

GINI (a) = GINI (D)− Ginia(D) (6)

The specific steps of feature selection are as follows:
(1) Calculate the importance score for the unigram feature

words using the random forest;
(2) The 4-gram feature words are selected for the first time

according to the score values;
(3) The feature importance score of the 4-grams is calcu-

lated using the features selected at the first time to carry
out the second selection of the features; and

(4) Finally, select the important features that meet certain
important conditions.

The features obtained above are the optimal feature subset,
which improve the algorithmic efficiency while ensuring the
accuracy and recall rate. The feature selection execution pro-
cess is shown in Fig. 2, and Table 5 shows the top 10 most
important features.

E. TRANSFORMATION OF THE WEIGHTS OF UNIGRAM
AND 4-GRAMS FEATURE WORDS
In the process of TF-IDF vectorization, 4-grams features are
combined based on unigram features such that each 4-grams
feature can be linked to a corresponding single unigram

TABLE 5. Ensemble algorithm for selecting important features.

FIGURE 3. 4-grams calculation method.

feature. In Fig. 3, for the 4-grams feature ‘‘ABCD’’, the
weight value of this feature word is the simple addition of
the unigram weight values of feature A, feature B, feature C,
and feature D.

IV. EXPERIMENT
A. EXPERIMENTAL CONDITIONS
This experiment is based on Python version 3.5.4, the exper-
imental environment uses the win10 64-bit operating system,
the processor is an Intel (R) Core (TM) i3-7130U CPU @
2.70 GHz, and there is 8G of memory.

B. EXPERIMENTAL DATA
The malicious WebShell samples are mainly downloaded
from GitHub public projects. Since this study only performs
offensive detection for PHP files, the total number of mali-
cious samples is 566. The normal PHP samples mainly come
from common PHP frameworks, including PHPCMS, Word-
Press, Fenxiangyo, oa and yii2. There are a total of 5,379
samples. The data sources are shown in Table 6.

C. EVALUATION CRITERIA
This paper evaluates the WebShell detection method based
on ensemble learning using the recall rate, accuracy rate and
specificity. The model evaluation confusion matrix is shown
in Table 7.

A true positive is an outcome where the model correctly
predicts the positive class (True Positive = TP).
A false negative is an outcome where the model incorrectly

predicts the negative class (False Negative = FN).

VOLUME 8, 2020 75791



Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

TABLE 6. Sample distribution.

TABLE 7. Confusion matrix.

TABLE 8. Recall rate, accuracy and specificity comparison of the different
n-grams.

A false positive is an outcome where the model incorrectly
predicts the positive class (False Positive = FP).
A true negative is an outcome where the model correctly

predicts the negative class (True Negative = TN).
The Recall= TP/ (TP+ FN), which represents the propor-

tion of correct predictions and measures the recognition abil-
ity of a classifier for positive cases (WebShell) with respect
to all the positive results.

The accuracy rate is calculated as (ACC) = (TP + TN)/
(TP + FN + FP + TN), which represents the proportion of
samples that are correctly classified by the model’s predic-
tion.

The specificity = TN/ (TN + FP), which represents the
proportion of negative samples that are correctly predicted by
model and measures the recognition ability of the classifier
for negative cases (normal PHP files) with respect to all
negative results.

D. FEATURE SELECTION
An opcode sequence is more representative than a single
opcode. It is necessary to find the best performance for the
range from unigrams to 6-grams and, finally, use the feature
vector to conduct filtering to reduce the feature dimension.

Fig. 4 and Table 8 show that during the transition from
unigrams to 4-grams, the recall rate increases as the grams

FIGURE 4. Recall rate, accuracy and specificity comparison of different
n-grams.

FIGURE 5. Comparison of different feature selection algorithms.

increase, and the model is better able to distinguish between
black and white list samples. The recall rate decreases when
n_grams > 4 because of fewer occurrences in the Web-
Shell file, thereby creating an invalid presentation vector, and
the recall rate reaches its maximum at 4-grams. Therefore,
4-grams are optimal for the final training and testing.

The experimental comparison of different feature selection
algorithms is shown in Fig. 5. Random forests are more
suitable for training and testing samples than other algorithms
in terms of the recall and accuracy. In Fig. 5, ‘‘1’’ represents
the ‘‘RandomForestClassifier’’ algorithm, ‘‘2’’ represents the
‘‘AdaBoostClassifier’’ algorithm, ‘‘3’’ represents the ‘‘Gra-
dientBoostingClassifier’’ algorithm, and ‘‘4’’ represents the
‘‘XGBClassifier’’ algorithm.

The experimental data of the thresholds selected for the
first time are shown in Fig. 6 and Table 9. In Table 9, ‘‘len’’
represents the number of remaining features selected accord-
ing to the threshold from the original 15,000 features. Figure
6 shows that when the threshold value is between 0.01 and
0.03, the three evaluation indexes linearly increase, which
increase as the number 4-gram features increases. The three
evaluation indexes were in a state of decline between 0.03
and 0.07. At this time, the value decreased as the number of
4-gram features increased. The main reason was that some

75792 VOLUME 8, 2020



Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

TABLE 9. Threshold selection in the first dimension reduction of features.

FIGURE 6. Threshold selection in the first dimension reduction of
features.

impure features were added to the feature set, which affected
the final detection effect. The recall rate, accuracy rate and
specificity reach their respective peaks between 0.08 and
0.09. At this time, the increase of the number of features will
increase the detection index in a single direction, while the
overall detection indexwill decrease. Therefore, the threshold
of the dimension reduction selection of the first feature is
0.03, which is the best detection standard.

E. BINARY WEIGHTED VOTING MODEL
Binary weighted voting is a more effective way to deal with
classification problems, and it is a highly direct method,
primarily because an algorithm with good classification per-
formance receives a high weight. In addition, the voting
results can often use the complementary between single clas-
sification models to reduce the error of a single classifier
and improve the prediction performance and classification
accuracy.

In this paper, to make the difference of single classifier
more obvious, each classifier randomly extracts part of the
data from the training set. Table 10 and Fig. 7 show that after
the percentage of extracted training data reaches 80%, the
recall rate and accuracy rate reach their peaks. This finding
indicates that the data are saturated at this time. If the input of
the training set continues to increase, the difference between
the base classifiers will worsen, and the accuracy rate and
recall rate will both be reduced. Therefore, the extraction of
80% of the training data is optimal for the final training effect.

FIGURE 7. Effects of extracting m% data from the training set on recall
rate, accuracy rate and specificity.

In the algorithm’s weighted voting process, suppose the
ensemble learning contains T learners {h1, h2, . . . , hi, .., hT },
where the output of hi on example x is hi(x). The
learner hi will predict a tag from the class tag set
{c1, c2, c3, c4, . . . , cN },where the predicted output of hi
on sample x is expressed as an n-dimensional vector
(h1i (x), h

2
i (x), h

3
i (x), . . . , h

j
i(x),. . . , h

N
i (x)), where h

j
i(x) rep-

resents the output of the classifier hi on the category marker
cj.

Plurality voting

H (x) = cargjmax

(
T∑
i=1

hji(x)

)
(7)

In other words, the mark with the most votes is the pre-
dicted one, and if multiple marks receive the most votes at
the same time, one of them is randomly selected.

Weighted voting (WV)
If each classifier also has a weight value wi,

H (x) = cargjmax

(
T∑
i=1

wih
j
i(x)

)
(8)

The specific steps of ensemble binary weighted voting are as
follows.
(1) Calculate the average accuracy P_avg_i of each clas-

sifier using 5-fold cross-validation and use this model
to predict the prediction probability of the test set
P_test_i, where i represents the classifier.

(2) Calculate the weight value of each classifier. The for-
mula is as follows:

λi =
Pavgi∑4
i=1 Pavgi

+ (Pavgi −

∑4
i=1 Pavgi
T

) ∗ n (9)

where i represents the number of classifiers, T repre-
sents the number of classifiers, and n represents the
gap between the good and bad algorithms for detecting
WebShells.

(3) Calculate the probability of each sample in the test set.

p_test =
T∑
i=1

λi ∗ p_test_i (10)

VOLUME 8, 2020 75793



Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

TABLE 10. Effects of extracting m% data from the training set on recall
rate, accuracy rate and specificity.

FIGURE 8. The influence of different values of n on the evaluation
indexes.

TABLE 11. The influence of different values of n on the evaluation
indexes.

(4) The final classification result is obtained by comparing
the probability p_test with the threshold value 0.5.

In step 2, the range of n that increases the difference
between base classifiers is generally not large. If the range
is too large, the prediction probability of the final sample
is likely to be greater than 1. Therefore, this experiment is
conducted where n ranges from 10-1000. The experiment is
divided into three steps to select the most appropriate n that
increases the difference between the base classifiers.
(1) Different values of n are tested separately. In the first

step of the experiment, n ranges from 0 to 1000. The
specific values are 10, 100, 200, 300, 400, 500, 600,
700, 800, 900 and 1000. The experimental results are
shown in Table 11 and Fig. 8.

(2) It is found that the best range for the value of n in
Figure 8 is between 0-200. In the second step of the
experiment, n ranges from 0 to 200. The specific values
are 10, 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200.

TABLE 12. The influence of different values of n on the evaluation
indexes.

TABLE 13. The influence of different values of n on the evaluation
indexes.

FIGURE 9. The influence of different values of n on the evaluation
indexes.

The experimental results are shown in Table 12 and
Fig. 9.

(3) It is found that the best range of n in Figure 9 is 10-90,
and the third step is carried out using a range from
10-90. The specific values of n are 10, 20, 30, 40, 50,
60, 70, 80 and 90. The experimental results are shown
in Table 13 and Fig. 10.

After testing the values of n that increase the difference
between base classifiers, it is finally determined that n = 30
is the most appropriate. As shown in Fig. 11, when the value
of n that increases the difference between base classifiers is
between 0 and 30, the three evaluation indexes of the recall
rate, accuracy rate and specificity increase. The main reason
is that the difference between base classifiers increases as
the value of n increases. When the value of n that increases
the difference between base classifiers is greater than 30, the
accuracy tends to decline at this time. The main reason is that

75794 VOLUME 8, 2020



Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

TABLE 14. Effect comparison with testing tools.

FIGURE 10. The influence of different values of n on the evaluation
indexes.

FIGURE 11. The influence of different values of n on the evaluation
indexes.

the weight n between them is too large, making the difference
between base classifiers weak.

After this weighting, the superiority of the best algorithm
for the data can be better reflected. The higher the accuracy
of the algorithm is, the greater the weight value will be, and
the final prediction effect will be higher than the correctness
of any algorithm.

F. COMPARISON OF THE WL-LSMR ALGORITHM AND
OTHER CLASSIFICATION ALGORITHMS
The ensemble algorithm uses four base classifiers (logistic
regression (LR), support vector machine (SVC), multilayer
perceptron (MLP), and random forest (RF)). The algorithm
adopts the 5-fold cross validation method to select the fol-
lowing parameters. The reciprocal of the logistic regression’s
regularization coefficient λ is the reciprocal of 100, and
the penalty is the ‘‘L2’’ penalty term. The support vector

TABLE 15. Effect comparison with single machine learning algorithm.

machine’s regularization coefficient λ is the reciprocal of
100, and the kernel is a linear kernel function. The activation
function of the multilayer perceptron is ‘‘tanh’’, the learning
rate is 0.001, and solver is the stochastic gradient descent.
The Gini coefficient is used to assess the random forest, 300
decision trees are used, and the minimum sample size is 20.

To verify the performance of the ensemble learning algo-
rithm, We downloaded several popular superior WebShell
detectors from the Internet, which are respectively D Shield,
WEBDIR + and SHELLPUB. Using the same test set as the
WS-LSMR model for scanning detection.It is true that some
of the detectors showed good performance on the scanning
accuracy, such like D Shield. The experimental results are
shown in Table 14. This paper compares it with other classical
classifiers: the k-nearest neighbours (denoted as KNN), the
multi-layer Perception (denoted as MLP), the Decision Tree
and the Random Forest. The experimental comparison of
all these classifiers for PCA dimension reduction is shown
in Table 15. This paper compares it with several popular
ensemble algorithms, RandomForest, Adaboost, andXgboost
use the default parameters provided in scikit-learn. Stacking
uses the parameters of logistic regression, support vector
machine, multilayer perceptron, and random forest to keep
the same parameters as the four algorithm parameters in this
article, and Meta-Learner is set to logistic regression. The
experimental results are shown in Table 16 on the basis that
the feature processing method is consistent with that in this
paper. Compared with other methods, although the detection
time of WS-LSMR is longer than other methods, the method
in this paper obtained a good feature subset by optimizing and
selecting features, and weighted optimization was performed
based on each base classifier to achieve the best performance.
our model can greatly improve the recall rate while ensuring
the accuracy.

G. EXPERIMENTAL EXPANSION
The feature selection, model training and prediction meth-
ods proposed in this paper can also achieve good results
in scripting languages JSP and ASP. The data of JSP and
ASP come from the open source project downloaded from

VOLUME 8, 2020 75795



Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

TABLE 16. Effect comparison of different ensemble learning algorithms.

TABLE 17. Detection of other script languages by the algorithm in this
paper.

TABLE 18. Sample distribution of other scripting languages.

the following website, and the blacklist is still downloaded
using the blacklist website of this paper. The experimental
results are shown in the Table 17. The data set is shown in the
Table 18.

V. CONCLUSION
This paper proposes a feature selection algorithm based on
GINI coefficient and a weighted voting method based on
WS-LSMR. The experimental results show that this method
can handle unbalanced WebShell data, and has a very high
recall rate while ensuring the accuracy. The experimental
procedures of feature selection, model training and prediction
proposed in this paper are also applicable to the detection of
other scripting languages, and can achieve better detection
results, experiment shows that the proposed methodology can
be extended to the detection of other scripting languages.
Although the detection time of WS-LSMR is longer than
other methods, the accuracy and the recall of the method pro-
posed in this paper performs much better than other methods.
In order to further ensure the security of the website, in the
future, we will continue to classify and detect different types
of offensive files in terms of time performance, so as to further
improve the adaptability of the detection algorithm.

REFERENCES
[1] (2018). National Internet Emergency Response Center: Overview of

China’s Internet Network Security Situation in 2018. [Online]. Available:
http://www.cac.gov.cn/2019-04/17/c_1124379080.htm

[2] X. Sun, X. Lu, and H. Dai, ‘‘A matrix decomposition based Webshell
detectionmethod,’’ inProc. Int. Conf. Cryptogr., Secur. Privacy, NewYork,
NY, USA, 2017, pp. 66–70.

[3] Y. Wei, J. Q. Huang, and X. Zhou, ‘‘PHP technology and its application,’’
Comput. Mod., vol. 5, pp. 86–89, May 2000.

[4] H. Zhang, H. Guan, H. Yan,W. Li, Y. Yu, H. Zhou, and X. Zeng, ‘‘Webshell
traffic detection with character-level features based on deep learning,’’
IEEE Access, vol. 6, pp. 75268–75277, 2018.

[5] X. Mingkun, C. Xi, and H. Yan, ‘‘Design of software to search
ASP Web shell,’’ Procedia Eng., vol. 29, pp. 123–127, 2012, doi:
10.1016/j.proeng.2011.12.680.

[6] R. Li, L. Zhou, S. Zhang, H. Liu, X. Huang, and Z. Sun, ‘‘Software defect
prediction based on ensemble learning,’’ in Proc. 2nd Int. Conf. Data
Sci. Inf. Technol. (DSIT), New York, NY, USA, Jul. 2019, pp. 1–6, doi:
10.1145/3352411.3352412.

[7] J. M. Reddy and C. Hota, ‘‘P2P traffic classification using ensemble
learning,’’ in Proc. 5th IBM Collaborative Academia Res. Exchange
Workshop (I-CARE), New York, NY, USA, 2013, pp. 1–4, doi:
10.1145/2528228.2528243.

[8] J. Vanerio and P. Casas, ‘‘Ensemble-learning approaches for network
security and anomaly detection,’’ in Proc. Workshop Big Data Analytics
Mach. Learn. Data Commun. Netw. (Big-DAMA), New York, NY, USA,
2017, pp. 1–6, doi: 10.1145/3098593.3098594.

[9] H. M. Gomes, J. P. Barddal, F. Enembreck, and A. Bifet, ‘‘A survey on
ensemble learning for data stream classification,’’ ACM Comput. Surv.,
vol. 50, no. 2, Jun. 2017, Art. no. 23, doi: 10.1145/3054925.

[10] C. Y. Wang, L. L. Hu, M. Z. Guo, X. Y. Liu, and Q. Zou,
‘‘ImDC: An ensemble learning method for imbalanced classification
with miRNA data,’’ Genet. Mol. Res., vol. 14, no. 1, pp. 123–133,
2015.

[11] D. Zhang, J. Ma, J. Yi, X. Niu, and X. Xu, ‘‘An ensemble method for
unbalanced sentiment classification,’’ in Proc. 11th Int. Conf. Natural
Comput. (ICNC), Zhangjiajie, China, Aug. 2015, pp. 440–445.

[12] Y. Liu, ‘‘Balancing ensemble learning through error Shif,’’ in Proc. 4th Int.
Workshop Adv. Comput. Intell., Wuhan, China, 2011, pp. 349–356.

[13] J. Duan, K. Ma, and R. Sun, ‘‘Unbalanced data sentiment classifica-
tion method based on ensemble learning,’’ in Proc. 2nd Int. Conf. Big
Data Technol. (ICBDT), New York, NY, USA, 2019, pp. 34–38, doi:
10.1145/3358528.3358597.

[14] N. V. Chawla and J. Sylvester, ‘‘Exploiting diversity in ensembles:
Improving the performance on unbalanced datasets,’’ in Proc. Int.
Workshop Multiple Classifier Syst. Berlin, Germany: Springer, 2007,
pp. 397–406.

[15] T. Dinh Tu, C. Guang, G. Xiaojun, and P. Wubin, ‘‘Webshell detection
techniques in Web applications,’’ in Proc. 5th Int. Conf. Comput., Com-
mun. Netw. Technol. (ICCCNT), Hefei, China, Jul. 2014, pp. 1–7, doi:
10.1109/ICCCNT.2014.6963152.

[16] A. Croix, T. Debatty, and W. Mees, ‘‘Training a multi-criteria decision
system and application to the detection of PHP webshells,’’ in Proc. Int.
Conf. Mil. Commun. Inf. Syst. (ICMCIS), Budva, Montenegro, May 2019,
pp. 1–8, doi: 10.1109/ICMCIS.2019.8842705.

[17] Y. Tian, J. Wang, Z. Zhou, and S. Zhou, ‘‘CNN-webshell: Malicious
Web shell detection with convolutional neural network,’’ in Proc. 6th Int.
Conf. Netw., Commun. Comput. (ICNCC), New York, NY, USA, 2017,
pp. 75–79.

[18] Z. Wang, J. Yang, M. Dai, R. Xu, and X. Liang, ‘‘A method of detecting
Webshell based on multi-layer perception,’’ Acad. J. Comput. Inf. Sci.,
vol. 2, no. 1, pp. 81–91, 2019, doi: 10.25236/AJCIS.010021.

[19] H. Cui, D. Huang, Y. Fang, L. Liu, and C. Huang, ‘‘Webshell detection
based on random forest–gradient boosting decision tree algorithm,’’ in
Proc. IEEE 3rd Int. Conf. Data Sci. Cyberspace (DSC), Piscataway, PA,
USA, Jun. 2018, pp. 153–160.

[20] Y. Fang, Y. Qiu, L. Liu, and C. Huang, ‘‘Detecting Webshell based on
random forest with FastText,’’ in Proc. Int. Conf. Comput. Artif. Intell.
(ICCAI), New York, NY, USA, 2018, pp. 52–56.

[21] A. Tartar and A. Akan, ‘‘Malignant-benign classification of pul-
monary nodules by bagging-decision trees,’’ in Proc. Med. Technol.
Nat. Conf. (TIPTEKNO), Oct. 2015, pp. 1–4, doi: 10.1109/TIPTE-
KNO.2015.7374622.

[22] Y. Zhang and P. He, ‘‘A revised AdaBoost algorithm: FM-AdaBoost,’’ in
Proc. Int. Conf. Comput. Appl. Syst. Model. (ICCASM), Taiyuan, China,
Oct. 2010, pp. V11-277–V11-281, doi: 10.1109/ICCASM.2010.5623209.

[23] T.-K. An and M.-H. Kim, ‘‘A new diverse AdaBoost classifier,’’ in
Proc. Int. Conf. Artif. Intell. Comput. Intell., Sanya, China, Oct. 2010,
pp. 359–363, doi: 10.1109/AICI.2010.82.

[24] M. Gumus and M. S. Kiran, ‘‘Crude oil price forecasting using XGBoost,’’
in Proc. Int. Conf. Comput. Sci. Eng. (UBMK), Antalya, Turkey, Oct. 2017,
pp. 1100–1103, doi: 10.1109/UBMK.2017.8093500.

75796 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.proeng.2011.12.680
http://dx.doi.org/10.1145/3352411.3352412
http://dx.doi.org/10.1145/2528228.2528243
http://dx.doi.org/10.1145/3098593.3098594
http://dx.doi.org/10.1145/3054925
http://dx.doi.org/10.1145/3358528.3358597
http://dx.doi.org/10.1109/ICCCNT.2014.6963152
http://dx.doi.org/10.1109/ICMCIS.2019.8842705
http://dx.doi.org/10.25236/AJCIS.010021
http://dx.doi.org/10.1109/TIPTEKNO.2015.7374622
http://dx.doi.org/10.1109/TIPTEKNO.2015.7374622
http://dx.doi.org/10.1109/ICCASM.2010.5623209
http://dx.doi.org/10.1109/AICI.2010.82
http://dx.doi.org/10.1109/UBMK.2017.8093500


Z. Ai et al.: WS-LSMR: Malicious WebShell Detection Algorithm Based on Ensemble Learning

[25] Z. Chen, F. Jiang, Y. Cheng, X. Gu, W. Liu, and J. Peng, ‘‘XGBoost
classifier for DDoS attack detection and analysis in SDN-based cloud,’’
in Proc. IEEE Int. Conf. Big Data Smart Comput. (BigComp), Shanghai,
China, Jan. 2018, pp. 251–256, doi: 10.1109/BigComp.2018.00044.

[26] B. Pavlyshenko, ‘‘Using stacking approaches for machine learning mod-
els,’’ in Proc. IEEE 2nd Int. Conf. Data Stream Mining Process. (DSMP),
Aug. 2018, pp. 255–258, doi: 10.1109/DSMP.2018.8478522.

[27] Y. Chen andM. L.Wong, ‘‘Optimizing stacking ensemble by an ant colony
optimization approach,’’ in Proc. 13th Annu. Conf. Companion Genetic
Evol. Comput. (GECCO), 2011, pp. 7–8.

[28] R. Li and X.Wang, ‘‘Self-adaptive weighted majority vote algorithm based
on entropy,’’ in Proc. 2nd Asia–Pacific Conf. Intell. Robot Syst. (ACIRS),
Wuhan, China, Jun. 2017, pp. 73–77, doi: 10.1109/ACIRS.2017.7986068.

[29] GONNSAI.PHP Kennel Exploration: Opcode in PHP.
Accessed: Apr. 2011. [Online]. Available: http://www.nowamagic.net/
librarys/veda/detail/1325

[30] K. Shen, L. Ke, J. Ma, K. Zhang, Y. Lu, and X. Chen, ‘‘A blended feature
selection method in text classification,’’ in Proc. Int. Conf. Cyberspace
Technol. (CCT), 2013, pp. 573–576.

[31] Z. Zhai, H. Xu, B. Kang, and P. Jia, ‘‘Exploiting effective features for
Chinese sentiment classification,’’ Expert Syst. Appl., vol. 38, no. 8,
pp. 9139–9146, Aug. 2011.

[32] Y. Yang, ‘‘Research and realization of Internet public opinion analysis
based on improved TF–IDF algorithm,’’ in Proc. 16th Int. Symp. Distrib.
Comput. Appl. Bus., Eng. Sci. (DCABES), Anyang, China, Oct. 2017,
pp. 80–83, doi: 10.1109/DCABES.2017.24.

ZHUANG AI was born in Hanchuan, Hubei,
China, in 1996. He received the B.S. degree in
computer science and technology from the College
of Engineering and Technology, Hubei University
of Technology, Hubei, China, in 2018. He is cur-
rently pursuing the master’s degree with Xinjiang
University.

He is a student member of the China Computer
Federation. His research interests include machine
learning, artificial intelligence, and network
security.

NURBOL LUKTARHAN was born in Xinjiang,
China, in 1981. He received the B.S., M.S., and
Ph.D. degrees in computer science from Jilin Uni-
versity, Changchun, China, in 2005, 2008, and
2010, respectively.

From May 2015 to July 2016, he was a Visiting
Scholar with Tsinghua University. He is currently
an Associate Professor with Xinjiang University
and the Deputy Director of the Network and Infor-
mation Technology Center, Xinjiang University.

His research interests include network security and data mining.

YUXIN ZHAO was born in Linyi, Shandong,
China, in 1993. He received the B.S. degree in
computer science and technology from the College
of Information Science and Technology, Linyi
University, Shandong, in 2017. He is currently pur-
suing theM.Eng. degree with Xinjiang University.

He is a student member of the China Computer
Federation. His research interests include machine
learning, artificial intelligence, and network
security.

CHAOFEI TANG was born in Xuzhou, Jiangsu,
China, in 1993. He received the B.S. degree
in civil engineering from the Pujiang College,
Nanjing University of Technology, China, in 2017.
He is currently pursuing the master’s degree with
Xinjiang University.

He is a student member of the China Com-
puter Federation. His research interests include
machine learning, artificial intelligence, and net-
work security.

VOLUME 8, 2020 75797

http://dx.doi.org/10.1109/BigComp.2018.00044
http://dx.doi.org/10.1109/DSMP.2018.8478522
http://dx.doi.org/10.1109/ACIRS.2017.7986068
http://dx.doi.org/10.1109/DCABES.2017.24

