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ABSTRACT In this study, a novel framework is proposed for efficient energy management of residential
buildings to reduce the electricity bill, alleviate peak-to-average ratio (PAR), and acquire the desired trade-off
between the electricity bill and user-discomfort in the smart grid. The proposed framework is an integrated
framework of artificial neural network (ANN) based forecast engine and our proposed day-ahead grey
wolf modified enhanced differential evolution algorithm (DA-GmEDE) based home energy management
controller (HEMC). The forecast engine forecasts price-based demand response (DR) signal and energy
consumption patterns and HEMC schedules smart home appliances under the forecasted pricing signal and
energy consumption pattern for efficient energy management. The proposed DA-GmEDE based strategy is
compared with two benchmark strategies: day-ahead genetic algorithm (DA-GA) based strategy, and day-
ahead game-theory (DA-game-theoretic) based strategy for performance validation. Moreover, extensive
simulations are conducted to test the effectiveness and productiveness of the proposed DA-GmEDE based
strategy for efficient energymanagement. The results and discussion illustrate that the proposedDA-GmEDE
strategy outperforms the benchmark strategies by 33.3% in terms of efficient energy management.

INDEX TERMS Advanced metering infrastructure, artificial neural networks, demand response, energy
management, grey wolf modified enhanced differential evolution algorithm, smart grid.

NOMENCLATURE
SG Smart grid
ANN Artificial neural network
HEMS Home energy management system
MILP Mixed integer linear programming
BBSA Binary backtracking search algorithm
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IGA Internal genetic algorithm
OPSO Outer particle swarm optimization
ILP Integer linear programming
DR Demand response
RTPS Real-time pricing scheme
DSM Demand side management
AMI Advanced metering infrastructure
TLBOA Teaching and learning based optimization

algorithm
SFL Shuffled frog leaping algorithm
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ToUPS Time of use pricing scheme
IBRS Inclined block rate pricing scheme
SSA Salp swarm algorithm
RFA Rainfall algorithm
BPOA BAT pollination optimization algorithm
DRTA Distributed real-time algorithm
DDT Dual decomposition technique
ACLPS Adaptive consumption level pricing

scheme
VPPS Variable peak pricing scheme
DAPS Day-ahead pricing scheme
FPS Flat pricing scheme
SSM Supply side management
RTAs Real-time appliances
MOAs Manually operated appliances
AOAs Automatically operated appliances
SAs Schedulable appliances
IA Interruptible appliances
NIA Non-interruptible appliances
SL Schedulable load
NSL Non-schedulable load
TFA Time flexible appliances
PFA Power flexible appliances
EA Essential appliances
HEMC Home energy management controller
ICT Information and communication

technologies
MINLP Mixed integer non-linear programming
PAR Peak-to-average ratio
GWO Grey wolf optimization
DE Differential evolution algorithm
EDE Enhanced differential evolution algorithm
mEDE Modified enhanced differential evolution

algorithm
HAN Home area network
EM Energy management
W/O Without scheduling
DA-GA Day-ahead genetic agorithm
DA-GmEDE Day-ahead grey wolf modified enhanced

differential evolution algorithm
PSA Power shiftable appliances
TSA Time shiftable appliances
CA Critical appliances
GmEDE Grey wolf modified enhanced differential

evolution algorithm
BFOA Bacteria foraging algorithm
MPSOA Modified particle swarm optimization

algorithm
GA Genetic algorithm
χ t+1i Status in the next timeslot
r ti Number of remaining timeslots
wti Number of waiting timeslots
X ti Appliance ON/OFF indicator
EAi Aggregated energy consumption
CA
i Aggregated cost

κ Scheduling set
F ti Time flexibility
ωti A parameter that varies w.r.t. timeslot
Ê ti Normal energy consumption
1 Small change
ς Countermeasure at both extremes of deviation
dAi Total discomfort for shiftable of appliances

d
AP2
p Discomfort caused to power shiftable

appliances
RPA PAR
γ1, γ2, γ3 Weights for trade-off adjustment
pri Power rating of the appliances
i An appliance
t Timeslot
K Real number garter than 1
ρ
f
t Forecasted pricing signal
vn+1(i) Updated velocity
fit Fitness
H Overall scheduling time horizon
AT1 Time shiftable appliances
AP2 Power shiftable appliances
AC3 Critical appliances
αi Operation starting time
βi Operation end time
E ti Energy consumption
pr min
i Minimum rated power
pr max
i Maximum rated power
Mitr Maximum iteration
R Crossover rate
χ ti Current status of an appliance
T loi Length of operation time

I. INTRODUCTION
The energy demand has dramatically increased with contin-
uous population and economic growth. At the same time,
the pressure on the utility companies and environment has
also increased rapidly. There are two methods available
in practice to cope with this increasing energy demand:
(i) generation side management (GSM), and (ii) demand side
management (DSM). The first approach is related to increas-
ing the capacity of generation units. Whereas, the second
approach involves management of users’ energy consump-
tion either by load management or demand response (DR)
programs. The DR programs are of two types: (i) incentive-
based DR program, and (ii) price-based DR program [1].
The first type uses direct load control in which the utility
company directly controls the load of the consumers on a
short notice when required. The second type uses price-based
DR program [2], where the utility company encourages users
to manage their energy consumption via scheduling by home
energy management controller (HEMC) in response to day-
ahead pricing signal.

84416 VOLUME 8, 2020



G. Hafeez et al.: Innovative Optimization Strategy for Efficient Energy Management With Day-Ahead DR Signal

The focus of this study is on efficient energy management
by scheduling energy consumption of homes using price-
based DR program. With this motivation, the residents can
reduce their electricity bill via scheduling load of their homes
with day-ahead pricing signal. To this end, some analytical
and heuristic schemes are developed for power scheduling of
smart homes. In [3] and [4], authors used mixed integer linear
programming (MILP) to schedule the energy consumption
of their homes under dynamic pricing scheme to minimize
the electricity bill and smoothen the demand curve. However,
these objectives are achieved at the cost of increased system
complexity. The authors used mixed integer non-linear pro-
gramming (MINLP) in [5] and [6] to schedule multi-class
appliances of residential buildings under real-time pricing
scheme (RTPS) to reduce the electricity bill. However, peaks
in demand may emerge during the timeslots where electric-
ity price is low. In [7], [8], and [9], authors used heuristic
algorithms like bacteria foraging algorithm (BFOA), modi-
fied particle swarm optimization algorithm (MPSOA), and
genetic algorithm (GA), respectively, to schedule the residen-
tial load for cost-efficient solutions. However, cost-efficient
solutions are obtained at the expense of consumers’ discom-
fort and increased peak-to-average ratio (PAR). A game theo-
retic home energy management system (HEMS) is proposed
for energy consumption scheduling of residential buildings
under DR pricing schemes to reduce PAR and electricity bill
in [10], [11]. However, these studies do not consider the trade-
offs between the electricity bill and user-discomfort. More-
over, the appliances priority and day-ahead price forecasting
are not considered, which are useful in the efficient energy
management of smart homes.

Hence, this work is focused on developing an innova-
tive optimization strategy for efficient energy management
of residential buildings with day-ahead DR pricing signal
and energy consumption forecasting using artificial neural
network (ANN). The purpose is to reduce electricity bill,
PAR, and acquire minimum acceptable trade-off between
electricity cost and discomfort. The main contributions and
distinguishing features of this paper are as follows:
• A forecast engine based on ANN is coupled with energy
management model to forecast the day-ahead DR pric-
ing signal and energy consumption. The purpose is to
perform efficient energy management via scheduling
energy usage profile of residential buildings under the
forecasted DR pricing signal.

• We propose grey wolf modified enhanced differential
evolution (GmEDE) algorithm, which is a hybrid of
grey wolf and modified version of enhanced differential
evolution algorithm. The proposed optimization algo-
rithm takes into account constraints, occupant energy
consumption pattern, and DR pricing signal to perform
efficient energy management.

• In addition to electricity cost and PAR objectives,
which are handled in [7]–[9], we formulate and inves-
tigate consumers’ comfort and discomfort while solving
the energy management problem with day-ahead (DA)

forecasted DR pricing signal and energy consumption
using ANN based forecaster.

• The proposed DA-GmEDE based strategy is com-
pared with two benchmark strategies: day-ahead
genetic algorithm (DA-GA) based strategy and day-
ahead game-theory (DA-game-theoretic) based strategy,
in terms of performance parameters like electricity cost,
PAR, and the trade-off between electricity bill and
user-discomfort.

The remainder of the paper is organized as follows:
The related work is discussed in Section II. The proposed
framework and its mathematical modeling is demonstrated
in Section III. Problem formulation and proposed strat-
egy are discussed in Section IV and Section V, respec-
tively. In Section VI, simulation results and discussion are
presented. Finally, the paper is concluded in Section VII
along with a discussion on possible future directions. The
acronyms and notations used in this paper are defined in
NOMENCLATURE.

II. RELATED WORK
With the emergence of information and communication tech-
nologies (ICTs) and advanced metering infrastructure (AMI),
residents can take part in DSM either by price-based DR
programs or by incentive-basedDR programs to copewith the
effects of increasing energy demand.With this incentive, sev-
eral schemes for energy management by way of scheduling
energy consumption of residential buildings have been pro-
posed. In [12], authors schedule household appliances using
binary backtracking search algorithm (BBSA) to reduce
energy consumption and electricity cost. However, peaks in
demand may emerge when most appliances are shifted to
low price hours. In [13], authors schedule the power usage
pattern of residential buildings without affecting the opera-
tion of non-shiftable appliances. The purpose is to reduce the
electricity cost. However, cost reduction is not possible with-
out introducing delay to home appliances. Authors proposed
an energy management model for monitoring both intrusive
and non-intrusive load in [14] to reduce electricity cost and
greenhouse gas emissions. However, the electricity expenses
are reduced at the cost of user-comfort. An optimization
model is proposed for household load scheduling under com-
bined real-time pricing scheme (RTPS) and inclined block
rate scheme (IBRS) to reduce the electricity cost [15]. In [16],
a HEMS for optimal scheduling of controllable appliances
under distributed generation integrated with energy storage
system is proposed. However, demand is fully satisfied by
providing continuous supply at the expense of high capital
cost. The electricity bill and peaks in demand are reduced
simultaneously by scheduling household load in [17].
However, the assumptions made in the strategy seem imprac-
tical. Various schemes for power usage pattern scheduling
via home area network (HAN) are proposed in [19]–[22].
In [23], authors schedule the power consumption of homes
under price-based DR program using teaching-learning based
optimization algorithm (TLBOA) and shuffle frog leaf
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algorithm (SFLA), in order to reduce total bill for the
consumed energy. However, the user-comfort and PAR are
ignored, which are directly linked with total electricity bill.
Authors in [24]–[31] proposed heuristic algorithms based
optimization models for household load scheduling to reduce
overall electricity bill and PAR. However, these objectives are
obtained at the expense of consumers’ frustration.

In [32] and [33], authors performed energy consumption
scheduling using DR program to match the ever increasing
demand with available power supply. The objectives are to
maximize social welfare and reduce energy bills by effec-
tively managing the demand with power supply. The price-
based DR programs include critical peak pricing scheme
(CPPS), time of use pricing scheme (ToUPS), RTPS, and day-
ahead pricing scheme (DAPS). The electricity cost is usually
determined by using ToUPS, DAPS, and CPPS. However,
CPPS adds peak price to ToUPS and there is a chance of
peak emergence in low price hours, which can overload the
power systems [34]. In contrast, DAPS has more flexibility
and changes as often as hourly, which better reflects the
varying energy consumption of residential buildings. Thus,
several models have proposed to solve energy management
problem of residential buildings using MILP based mod-
els [35], fuzzy logic based models [36], and game-theory
based models [37]. A household energy consumption model
for day-ahead planning of residential microgrid is developed
in [38]. The homes are equipped with electric vehicles (EVs),
photovoltaic systems, and energy storage systems (ESSs)
to participate in DR programs. The residential microgrid is
grid-connected microgrid and participates in Bi-directional
power flow and communications. However, the objectives are
achieved at the cost of increased complexity and computation
overhead.

A mechanism for power scheduling of domestic load in a
home area network is proposed in [35]. The purpose of this
study is to create balanced load schedule basedMILP in order
to reduce energy cost and power peaks. However, the peaks in
demand may emerge in high-price hours, which is a threat to
the utility grid station. In [39], authors developed an efficient
energy management framework with day-ahead energy fore-
casting in smart microgrids. Efficient energy management
is conducted by scheduling household load, and charging/
discharging of EVs by mixed integer linear programming
(MILP). The aim is to lessen the bill, user-discomfort, and
PAR. However, the objectives are obtained at the expense
of increased execution cost. A stochastic model is pro-
posed to perform energy management of a home having load,
photovoltaic array, plug-in electric vehicle (PEV), and heat
pump [40]. First, photovoltaic array, PEV, and heat pump
energy profile are forecasted based on stochastic methods.
Then, the forecasted results are utilized for efficient energy
management of a smart home. The model efficacy is tested by
comparing it with benchmark models. However, the schemes
for efficient energy management are not mentioned. Authors
in [41] proposed an integrated framework of machine learn-
ing, optimization, and DR program for efficient energy

management of smart homes. The purpose is to investigate the
performance of learning-based energymanagement system in
the DR framework. However, the machine learning models
are not utilized to forecast the energy consumption pattern.

In [42], a robust ensemble learning-based framework is
developed to forecast household power usage profile for
energy management. The proposed model has improved per-
formance as compared to the existing models in terms of
accuracy. However, only forecasting is performed through
ensemble model and energy management aspects are not
considered. An energy management system with day-ahead
solar irradiation forecasting using ANNs is proposed in [43].
The aim is to accurately forecast global solar irradiance
using meteorological data with the help of ANNs. However,
the energy management aspects are ignored.

The recent and relevant literature available on the above
theme is summarized in Table 1. Although, all the schemes
discussed above are efficient in energy management by
scheduling household appliances, however, because of the
non-linear behavior of both consumers and pricing signals,
these schemes fail to handle the energy consumption pattern
scheduling of residential buildings in real-time. Moreover,
there is no universal model/strategy to perform optimal
energy management via power usage scheduling residential
buildings in real-time; some models are better for some spe-
cific objectives and conditions. In this regard, an innovative
optimization framework composed of ANN based forecaster
and GmEDE algorithm based HEMC is proposed in this
research for efficient energy management of the residential
buildings.

III. PROPOSED FRAMEWORK FOR EFFICIENT ENERGY
MANAGEMENT OF RESIDENTIAL BUILDINGS
The objective of the proposed framework is to minimize
the electricity bill, reduce PAR, and acquire the desired
trade-off between the electricity cost and user-discomfort by
scheduling the electricity consumption of residential build-
ings with day-ahead price forecast using ANN, subject to
power system stability. The proposed framework comprises
utility companies, ANN based forecasters, and residential
buildings embedded with GmEDE based HEMC. The focus
of this work is on efficient energy management of the resi-
dential buildings. A home in residential buildings is mainly
comprised of HEMC, AMI, home appliances, in-home dis-
play (IHD), and smart meters. The entire framework for effi-
cient energy management of residential buildings is depicted
in Figure 1. First, ANN-based forecaster is implemented that
receives historical price-based DR and energy consumption
data for the utility company and forecasts day-ahead pricing
signal and energy consumption pattern. Then, HEMC (see
Section IV) based on DA-GmEDE strategy (see Section V)
is implemented, which receives day-ahead pricing signal and
energy consumption pattern to perform efficient energy man-
agement. The detailed description is as follows:

The ANN-based forecaster in our work is chosen due to
its potential for handling non-linear relationships between the
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TABLE 1. A brief review of relevant literature interms of techniques, DR programs, Appliances category, objectives, and limitations.

input and the output. The proposed forecaster is data driven,
i.e., it is trained and enabled via learning to forecast day-
ahead DR pricing signal and energy consumption pattern.

The dataset used for network training is obtained from the
report of midwest independent system operator (MISO) taken
from federal energy regulatory commission (FERC) [44].
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FIGURE 1. Schematic diagram and main procedure of the proposed framework for efficient energy management of
residential buildings with day-ahead ANN based forecast engine. Single arrowhead denotes one-way flow and double
arrowhead denotes two-way flow.

The dataset consists of hourly electricity price data and load
data during the period of one year from September 2006 to
September 2007. The employed data is divided into three
sets: training set (9 months), testing set (1 month), and vali-
dation set (2 months). The ANN based forecaster has three
layers: input layer, hidden layer, and output layer. These
layers have a number of artificial neurons. The ANN is fully
connected feed-forward network where neurons of each layer
are connected to the neurons of succeeding layer via synaptic
weights, as depicted in Figure 2.

The inputs are selected from the available historical dataset
where ANN maps the input vector Z (t) to the output vec-
tor F(t). The output of the ANN is given as:

F =
n∑
i=1

Wif (yi)+
m∑
j=1

βjzj, (1)

where

f (yi) =
1

1+ exp(−yi)

F(t) is the output vector, which represents the day-ahead
forecasted results, Wi is the weight factor between input and
output nodes, βj is the linear weight between input and output
nodes, zj represents input elements, and yi is the input to the
hidden nodes. The Levenberg–Marquardt optimization algo-
rithm and sigmoidal transfer function are used for training of
the ANN. The yi is computed as follows:

yi =
3∑
j=1

wijzj + bi, (2)

where wij is the weight between the neurons of input layer
and hidden layer, and bi is the bias added at the hidden layer.
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FIGURE 2. A day-ahead feed-forward ANN-based forecast engine with single input layer, two hidden layers, and
an output layer forecasting DR signal and energy consumption pattern for efficient energy management.

The learning process will be stopped when the maximum
number of epochs are reached or error function is minimized
to the predefined tolerance. The error function is defined as
follows:

E =
1
N

N∑
k=1

(Ak − Fk)2, (3)

where Ak and Fk are the actual and forecasted outputs of the
network at kth pattern, respectively, and N is the number of
training samples employed. The AMI is the central nervous
system and a key element of the proposed framework, which
establishes advanced communication infrastructure between
the utility company and smart meter. Moreover, the AMI
plays a vital role in collecting and transmitting energy con-
sumption data to the utility company, and the electricity
price charged against the consumed energy back to the con-
sumers via smart meter [45]. The smart meter is a vital
equipment for residential load scheduling and is installed
outside of the homes between HEMC and AMI. Moreover,
the smart meter is responsible for reading the energy con-
sumption of residential buildings to be transferred to the
utility company and simultaneously transferring forecasted
pricing signal to HEMC in order to take part in energy man-
agement by responding to the pricing signal. In this paper,
it is assumed that each home in residential buildings has
three kinds of appliances: time shiftable appliances, power
shiftable appliances, and critical appliances. Time shiftable
appliances refer to the appliances whose operation time is
schedulable, such as washing machines, cloth dryers, and
water pumps. In contrast, power shiftable appliances refer
to the appliances, whose power rating is flexible, such as
refrigerators, air conditioners, and water dispensers. Critical
appliances refer to the appliances, which are critical in nature,
such as micro-waves, electric irons, and electric kettles. Both
time and power shiftable appliances cause user-discomfort,
while critical appliances do not cause this problem. In addi-
tion, the appliances of each home in residential buildings
are assumed to be smart appliances. Each appliance has

FIGURE 3. The optimal power schedule can be transmitted to each kind
of appliance by HEMC via wireless network like Z-Wave, Wi-Fi, and
ZigBee. The double arrow head represents bi-directional flow.

a wireless transceiver and data processor to receive and
analyze the appropriate time interval. The HEMC installed
in a home of residential buildings is assumed as a home
gateway, which receives the forecasted DR pricing signal and
energy consumption via smart meter. The communication
link between HEMC, smart meter, and various appliances
can be established through ICTs, such as Wi-Fi, Z-Wave,
and ZegBee [19], [21], as shown in Figure 3. The appli-
ances within the home do not interact with each other; they
only interact with HEMC, as illustrated in Figures 1 and 3.
The HEMC schedules the operation of all three kinds of
appliances under forecasted DR pricing signal and energy
consumption pattern, power availability from the utility, and
consumer’s priority subjected to constraints. The HEMC
sends an optimal power schedule to each appliance, which
is received and processed by the wireless transceiver mod-
ule and data processor of appliances in order to ensure
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the operation according to the optimal schedule. Moreover,
the HEMC specifies the starting time, power level, and type
of appliance in order to control overall energy management
process. The scheduling process can be either remotely mon-
itored using mobile, tablet, or laptop or by IHD installed
inside the home. Our proposed framework is mathematically
modeled in the succeeding sub-section.

A. MATHEMATICAL MODEL OF THE
PROPOSED FRAMEWORK
In this section, the mathematical model of the proposed
framework is discussed. The utility company provides input
data to ANN based forecaster, and the forecaster returns
forecasted pricing signal ρft for a specific time horizon H =
{1, 2, 3, . . . .,T }. The overall horizon is of 24 hours; each
number in the horizon represents one hour, and T = 24 repre-
sents end hour of the horizon. A home in residential buildings
has three kinds of appliances A =

{
AT1 ∪ A

P
2 ∪ A

C
3

}
: time

shiftable appliances AT1 , power shiftable appliances AP2 , and
critical appliances AC3 ; for an appliance i, αi is the operation
starting time and βi is the operation end time. Moreover, X ti
is the ON or OFF status indicator, r ti represents the number
of remaining timeslots, and wti represents the number of
waiting timeslots. We assume energy consumption E ti = 0
for t < αi and for t > βi because outside the scheduling time
horizon [αi, βi], the energy is not consumed. Next, each kind
of appliance can be mathematically modeled as follows:

1) TIME SHIFTABLE APPLIANCES
Time shiftable appliances have shiftable starting time and tol-
erate delay. These appliances can be delayed or advanced to
any timeslot during scheduling time horizon. These types of
appliances operate with a fixed rated power pri for a specified
length of operation time T loi . The operation of such appliances
can be delayed, shifted, and shut down, if required. The status
of time shiftable appliances is mathematically modeled as
follows:

χ ti =
(
T loi , αi − βi − T

lo
i + 1

)
, (4)

χ t+1i =

{(
r ti ,w

t
i − 1

)
if X ti = 0, wti > 1(

r ti − 1,wti
)

if X ti = 1, r ti > 1,
(5)

where Equation 4 shows the current status of time shiftable
appliances and Equation 5 represents the status of time
shiftable appliances in the next timeslot, respectively.

The energy consumed by the time shiftable appliances and
the bill charged by the utility company against the energy
consumption are formulated as follows:

EAi =
∑
i∈AT1

T∑
t=1

(
pri × X

t
i
)
, (6)

CA
i =

∑
i∈AT1

T∑
t=1

(
pri × X

t
i × ρ

f
t

)
, (7)

where EAi in Equation 6 and CA
i in Equation 7 represent

aggregated energy consumption and aggregated electricity
bill, respectively.

2) POWER SHIFTABLE APPLIANCES
The power shiftable appliances operate with flexible power
within the scheduling time horizon and do not work outside
the scheduling time horizon. The appliances operate between
the minimum pr min

i and pr max
i maximum rated power dur-

ing the scheduling time horizon. For example, air condi-
tioners and refrigerators regulate their power between min-
imum pr min

i and pr max
i maximum rated power. The status of

power shiftable appliances can bemathematically modeled as
follows:

χ ti =
(
T loi , αi − βi − T

lo
i + 1

)
, (8)

χ t+1i =

{(
r ti − 1, 0

)
if X ti = 1, r ti > 1

pr min
i 6 pri 6 pr max

i if X ti = 1, r ti > 1,
(9)

where Equation 8 represents the current status of power
shiftable appliances and Equation 9 denotes the status of
power shiftable appliances in the next timeslots.

The aggregated energy consumption of power shiftable
appliances and electricity bill charged by the utility company
against the energy consumption can be modeled as follows:

EAi =
∑
i∈AP2

T∑
t=1

(
pri × X

t
i
)
, (10)

CA
i =

∑
i∈AP2

T∑
t=1

(
pri × X

t
i × ρ

f
t

)
, (11)

where EAi represents the aggregated energy consumption of
power shiftable appliances and CA

i indicates the electricity
bill charged by the utility company.

3) CRITICAL APPLIANCES
Critical appliances operate at fixed power ratings and can-
not be interrupted and shutdown during operation until task
completion. Critical appliances can be shifted and delayed
before the start operation. These appliances operate during
the pre-defined scheduling time horizon to decrease the user-
discomfort and improve the comfort level of the residents.
Mathematical modeling for the status of the critical appli-
ances is as follows:

χ ti =
(
T loi , αi − βi − T

lo
i + 1

)
, (12)

χ t+1i =

{(
r ti ,w

t
i − 1

)
if X ti = 0, wti > 1(

r ti − 1, 0
)

if X ti = 1, r ti > 1,
(13)

where Equation 12 indicates current status of the critical
appliances and Equation 13 represents the next status of the
critical appliances. The aggregated energy consumption of
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critical appliances and the electricity bill charged by the util-
ity company for consumed energy is determined as follows:

EAi =
∑
i∈AC3

T∑
t=1

(
pri × X

t
i
)
, (14)

CA
i =

∑
i∈AC3

T∑
t=1

(
pri × X

t
i × ρ

f
t

)
, (15)

where EAi represents the net energy consumed by critical
appliances and CA

i in Equation 15 denotes net electricity
bill charged by the utility company for using electricity. The
optimal energy consumption scheduling set κ for all kinds of
residential home appliances are defined as follows:

κ = {E/E ti = pri , ∀ t ∈
{
F ti , . . . .,F

t
i + T

lo
i − 1

}
⊂ [αi, βi], ∀i ∈ AT1 ,

E ti = 0, ∀t ∈ H\
{
F ti , . . . .,F

t
i + T

lo
i − 1

}
,∀i ∈ AT1 ,

pr min
i 6 E ti 6 pr max

i , ∀t ∈ [αi, βi], ∀i ∈ AP2 ,

E ti = 0, ∀t ∈ H\[αi, βi], ∀i ∈ AP2 ,

E/E ti = pri , ∀ t ∈ T
lo
i ⊂ [αi, βi], ∀i ∈ AC3 ,

E ti = 0, ∀t ∈ T loi \[αi, βi], ∀i ∈ A
C
3 }. (16)

The optimal scheduling set κ depends on the price forecasted
by ANN and the control parameters of the appliances such as
αi, βi, T loi , pri , p

r max
i , and pr min

i .

IV. PROBLEM FORMULATION
The HEMC based on DA-GmEDE receives the forecasted
pricing signal and publishes this pricing signal to the con-
sumers ahead of time. The consumers send their power usage
pattern to the HEMC based on DA-GmEDE strategy. The
HEMC tries to manage the consumers’ power usage in such
a manner that their electricity bill is minimized, PAR is
reduced, and the desired trade-off between electricity bill and
discomfort is achieved. However, it is difficult to achieve
all these objectives at the same time because these are con-
flicting parameters and trade-offs exist in their nature. For
example, in case of time shiftable appliances, if the con-
sumers select αi = 10am and βi = 1pm for a washing
machine to finish washing before afternoon, the HEMCbased
on DA-GmEDE strategy postpones their operation to αi =
5pm and βi = 9pm to reduce their electricity bill; how-
ever, the consumers will face discomfort due to postponed
operation of the washing machine. For shiftable appliances,
the HEMC based on DA-GmEDE strategy regulates the oper-
ation between the pr min

i and pr max
i in order to reduce the

electricity bill. This reduced electricity bill also results in
user-discomfort. The HEMC based on DA-GmEDE strategy
tries to acquire the desired tradeoff between the electricity bill
and user-discomfort. Thus, the proposed objective function is
modeled as a minimization function for the purpose of min-
imizing the electricity expense, PAR, and user-discomfort.
First, each objective function, i.e., electricity bill, PAR, and

user-discomfort are formulated individually. Then, the overall
residential load scheduling problem is formulated.

Since the forecasted pricing signal is known ahead of time
to the consumers, therefore, the overall electricity bill of all
appliances within a home during the scheduling time horizon
can be determined as follows:

CA
i =

∑
i∈A

T∑
t=1

(
pri × X

t
i × ρ

f
t

)
. (17)

The user-discomfort caused by delaying or advancing the
operation of time shiftable appliances can be modeled as
follows:

d
AT1
t (F ti ) = λi

(
F ti − αi

)n
, (18)

where 0 < λi < 1 and n > 1 represents operation characteris-
tics of time shiftable appliances. The user-discomfort caused
by power shiftable appliances is due to the power deviation
from the rated power, which can be modeled as follows:

d
AP2
p (E ti ) = ω

t
i

(
E ti − Ê

t
i

)2
, (19)

where ωti varies parameter with respect to timeslots t and

Ê ti is the normal power consumption. Moreover, d
AP2
p = 0

at E ti = Ê ti for t ∈ H \[αi, βi]. This quadratic func-
tion is minimum at E ti = Ê ti and increases as the devia-
tion of E ti increases from Ê ti . The functional failure of the
appliance can occur at two extremes of deviation Ê ti ± 1.
Thus, some counter measure must be taken to overcome these
failures. The counter measure at extreme Ê ti +1 or extreme
Ê ti −1 is ς .
The critical appliances do not cause any user-discomfort

because neither power nor time can be changed or delayed
during the operation until the task completion. Thus, critical
appliances contribute to improve the comfort level of the
consumers. The net user-discomfort caused by both time
shiftable appliances and power shiftable appliances in a home
can be modeled as follows:

dAi =
∑
i∈AT1

λi
(
F ti − αi

)n
+

∑
t

∑
i∈AP2

d
AP2
p (E ti ). (20)

The overall PAR for all appliances within a home during
the scheduling time horizon can be modeled as follows:

RPA =
max(E ti )

1
T

T∑
t=1

A∑
i=

(E ti )

, (21)

where RPA represents the PAR, which is one of our objectives.
Now, the overall residential load scheduling is formulated

as a minimization problem as:

min
(
γ1CA

i + γ2RPA + γ3dAi
)

E/E ti = pri , ∀ t ∈
{
F ti , . . . .,F

t
i + T

lo
i − 1

}
⊂ [αi, βi], ∀i ∈ AT1 ,
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E ti = 0, ∀t ∈ H\
{
F ti , . . . .,F

t
i + T

lo
i − 1

}
,∀i ∈ AT1 ,

pr min
i 6 E ti 6 pr max

i , ∀t ∈ [αi, βi], ∀i ∈ AP2 ,

E ti = 0, ∀t ∈ H\[αi, βi], ∀i ∈ AP2 ,

E/E ti = pri , ∀ t ∈ T
lo
i ⊂ [αi, βi], ∀i ∈ AC3 ,

E ti = 0, ∀t ∈ T loi \[αi, βi], ∀i ∈ A
C
3 },

variables F ti (i ∈ A
T
1 , t ∈ H ),

E ti (i ∈ A
P
2 , t ∈ H ),

pri (i ∈ A
C
3 ), (22)

where CA
i is modeled in Equation 17, RPA is modeled in

Equation 21, and dAi is modeled in Equation 20, respectively.
Parameters γ1, γ2, and γ3 are weights used to obtain desired
trade-off between conflicting parameters of the objective
function.

Now, the consumers operation modes based on their prior-
ity, preferences, and with respect to the objective function are
defined andmodeled in the succeeding subsections. There are
four types of operation modes of consumers, each of which
is defined and modeled as follows:

4) CONSUMERS MODE I
In this mode of operation, the focus of consumers is on
reducing their electricity bill even if it results in high user-
discomfort. Thus, HEMC will adjust weights of the objective
function such as (γ1 = 1, γ2 = 0, γ3 = 0) to achieve
consumers’ priority and preference. For consumers mode 1,
the optimization problem can be modified as follows:

min
∑
i∈A

T∑
t=1

(
pri × X

t
i × ρ

f
t

)
sub. to: E/E ti = pri , ∀ t ∈

{
F ti , . . . .,F

t
i + T

lo
i − 1

}
⊂ [αi, βi], ∀i ∈ AT1 ,

E ti =0, ∀t ∈H\
{
F ti , . . . .,F

t
i +T

lo
i − 1

}
,∀i∈AT1,

pr min
i 6 E ti 6 pr max

i , ∀t ∈ [αi, βi], ∀i ∈ AP2 ,

E ti = 0, ∀t ∈ H\[αi, βi], ∀i ∈ AP2 ,

E/E ti = pri , ∀ t ∈ T
lo
i ⊂ [αi, βi], ∀i ∈ AC3 ,

E ti = 0, ∀t ∈ T loi \[αi, βi], ∀i ∈ A
C
3 },

variables F ti (i ∈ A
T
1 , t ∈ H ),

E ti (i ∈ A
P
2 , t ∈ H ),

pri (i ∈ A
C
3 ). (23)

5) CONSUMERS MODE II
In this mode of operation, consumers prefer comfort even at
the cost of higher electricity bills. The HEMC adjusts weights
(γ1 = 0, γ2 = 0, γ3 = 1) of the optimization problem
such that the priority of mode II consumers is imposed.

The optimization problem is modified and can be modeled
as follows:

min
∑
i∈AT1

λi
(
F ti − αi

)n
+

∑
t

∑
i∈AP2

d
AP2
p (E ti )

sub. to: E/E ti = pri , ∀ t ∈
{
F ti , . . . .,F

t
i + T

lo
i − 1

}
⊂ [αi, βi], ∀i ∈ AT1 ,

E ti =0, ∀t ∈H\
{
F ti , . . . .,F

t
i +T

lo
i −1

}
,∀i∈AT1 ,

pr min
i 6 E ti 6 pr max

i , ∀t ∈ [αi, βi], ∀i ∈ AP2 ,

E ti = 0, ∀t ∈ H\[αi, βi], ∀i ∈ AP2 ,

E/E ti = pri , ∀ t ∈ T
lo
i ⊂ [αi, βi], ∀i ∈ AC3 ,

E ti = 0, ∀t ∈ T loi \[αi, βi], ∀i ∈ A
C
3 },

variables F ti (i ∈ A
T
1 , t ∈ H ),

E ti (i ∈ A
P
2 , t ∈ H ),

pri (i ∈ A
C
3 ). (24)

6) CONSUMERS MODE III
In mode III, the focus of consumers is on reducing PAR,
which is favorable for both consumers and the utility com-
pany. The reduced PAR smoothens out the demand curve,
which eases the burden on the utility company by turning off
peak power plants thereby decreasing burden on consumers
via reduced price per unit of the energy consumption. The
HEMC adjusts weights (γ1 = 0, γ2 = 1, γ3 = 0) so as to
obtain the reduced PAR. The modified optimization problem
for mode III can be modeled as follows:

pri (i ∈ A
C
3 )

min
max(E ti )

1
T

T∑
t=1

A∑
i=

(E ti )

sub. to: E/E ti = pri , ∀ t ∈
{
F ti , . . . .,F

t
i + T

lo
i − 1

}
⊂ [αi, βi], ∀i ∈ AT1 ,

E ti =0, ∀t ∈H\
{
F ti , . . . .,F

t
i +T

lo
i −1

}
,∀i∈AT1 ,

pr min
i 6 E ti 6 pr max

i , ∀t ∈ [αi, βi], ∀i ∈ AP2 ,

E ti = 0, ∀t ∈ H\[αi, βi], ∀i ∈ AP2 ,

E/E ti = pri , ∀ t ∈ T
lo
i ⊂ [αi, βi], ∀i ∈ AC3 ,

E ti = 0, ∀t ∈ T loi \[αi, βi], ∀i ∈ A
C
3 },

variables F ti (i ∈ A
T
1 , t ∈ H ),

E ti (i ∈ A
P
2 , t ∈ H ),

pri (i ∈ A
C
3 ). (25)

7) CONSUMERS MODE IV
In mode IV, the consumers care about all the three objec-
tives: reduced electricity bill, alleviated PAR, and achiev-
ing the desired trade-off between the electricity bill and
user-discomfort. The HEMC will assign equal weights to
(γ1 = 1/3, γ2 = 1/3, γ3 = 1/3) for the purpose of achieving
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all the objectives. The optimization problem for mode IV can
be written as follows:

min
(
1
3
CA
i +

1
3
RPA +

1
3
dAi

)
sub. to: E/E ti = pri , ∀ t ∈

{
F ti , . . . .,F

t
i + T

lo
i −1

}
⊂ [αi, βi], ∀i ∈ AT1 ,

E ti =0, ∀t ∈H\
{
F ti , . . . .,F

t
i +T

lo
i −1

}
,∀i ∈ AT1 ,

pr min
i 6 E ti 6 pr max

i , ∀t ∈ [αi, βi], ∀i ∈ AP2 ,

E ti = 0, ∀t ∈ H\[αi, βi], ∀i ∈ AP2 ,

E/E ti = pri , ∀ t ∈ T
lo
i ⊂ [αi, βi], ∀i ∈ AC3 ,

E ti = 0, ∀t ∈ T loi \[αi, βi], ∀i ∈ A
C
3 },

variables F ti (i ∈ A
T
1 , t ∈ H ),

E ti (i ∈ A
P
2 , t ∈ H ),

pri (i ∈ A
C
3 ). (26)

V. PROPOSED AND ADOPTED STRATEGIES
Traditional strategies such as analytical model based strate-
gies, heuristic algorithms based strategies, and game theory
based strategies are capable of performing energy manage-
ment by scheduling residential loads. However, these strate-
gies are not able to handle a large number of residential
home appliances and are not efficient for performing real-
time optimization due to their deterministic nature and inher-
ent limitations. Therefore, a strategy based on DA-GmEDE
algorithm is developed for efficient energy management of
residential buildings. The proposed algorithm is a hybrid
of grey wolf optimization (GWO) algorithm and modified
enhanced differential evolution (mEDE) algorithm, named
GmEDE algorithm. The proposed algorithm takes the best
features of both the algorithms. The detailed description is
as follows:

A. GREY WOLF OPTIMIZATION ALGORITHM
GWO is a heuristic algorithm inspired by hunting and hier-
archical leadership nature of wolves. The wolves have three
leadership levels: alpha α, beta β, and delta δ. The α is
assumed as the best leader of the group, which is responsible
for the guidance of other wolves. The γ is the weakest mem-
ber of the group. The β and δ come after α in the hierarchical
order. The γ will not be considered for the leadership of
wolves. In our scenario, α is considered as the best/fittest
member to acquire one of our objectives, i.e., electricity bill
minimization. Initially, the population is generated randomly
by Equation 27 as follows:

Z (a, b) = rand(popl,A), (27)

where popl is the grey wolves population and A is the set
of appliances in a home of residential buildings. The GWO
has three main phases: (i) encircling prey, (ii) hunting, and
(iii) grey wolves position update. The step-by-step procedure
of GWO algorithm is depicted in Algorithm 1.

Algorithm 1 Pseudo Code of the GreyWolf Optimization
Algorithm

Parameters initializationMitr, popl,A, α, β, δ;
Randomly population generation of grey wolves
Za(a = 1, 2, 3, . . . , n);
Z (a, b) = rand(popl,A);
while itr < Mitr do

for a = 1:popl do
Determine the fitness as objective function using
Equation (Fit = pri × X

t
i );

if fit < αscre then
αscre = fit;
αpos = Z (a, :);

end
if fit > αscre and fit< βscre then

βscre = fitness;
βpos = Z (a, :);

end
if fit > αscre and fit> βscre and fit< δscre then

δscre = fit;
δpos = Z (a, :);

end
end
for a = 1:popl do

for b = 1:A do
Create r1 and r2 using rand command;
Determine both D and B fitness coefficients
using Equations (

→

D = 2 Ea × r1 − Ea) and
(EB = 2 × Er2);
Update α, β, andδ by
Equations (EAα = EB1 × Exα − Ex),
(EAβ = EB2 × Exβ − Ex), and
(EAδ = EB3 × Exδ − Ex);

end
end

end

B. MODIFIED ENHANCED DIFFERENTIAL
EVOLUTION ALGORITHM
The modified enhanced differential evolution (mEDE) is
an updated and modified version of DE and EDE. It is a
population based algorithm developed by Storn and Price
in 1995 [47]. The mEDE has three main steps: mutation,
crossover, and selection. First, the population is randomly
generated by Equation 28 as follows:

Z (a, b) = lb + (rand × (Ub − lb)). (28)

Then the mutation is performed on the population, which is
randomly generated in the former step. Three random vectors
are chosen during the mutation process for each target vector.
To form a mutant vector, the difference of two vectors is
added into the third vector. The mutant vector is generated
using Equation 29 as follows:

Va,G+1 = xr1,G + F(xr2,G − xr3,G), (29)
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where xr1, xr2, xr3 and F represent the three random vectors
and scaling factor, respectively. Target vector is the first
vector among the selected vectors. After the mutant vector
generation phase, the crossover phase starts, where the trial
vector is generated by combining the target and mutant vector
elements on the basis of crossover rate, which decides how
many elements are taken from target and mutant vectors.
After the trial vector is created, the trial and target vectors are
compared in order to select the best vector with better fitness
for the purpose of updating the generation. The mEDE has
easy implementation as compared to DE because the DE has
three control parameters (population size, scaling factor, and
crossover rate) whereas mEDE has only two (population size
and scaling factor). In mEDE, all the initial phases are the
same as DE; the difference is only in the crossover rate, and
five trial vectors are generated instead of one. The five trial
vectors are generated using Equations 30-34:

Ub,a,G+1 =

{
Vb,a,G+1 if rand(b) ≤ 0.30
xb,a,G+1 Otherwise

(30)

Ub,a,G+1 =

{
Vb,a,G+1 if rand(b) ≤ 0.60
xb,a,G+1 Otherwise

(31)

Ub,a,G+1 =

{
Vb,a,G+1 if rand(b) ≤ 0.90
xb,a,G+1 Otherwise

(32)

Ub,a,G+1 = randb(j) · xb,a,G+1 (33)

Ub,a,G+1 = rand(b) · vb,a,G + (1− randb(b)) · xb,a,G (34)

The step-by-step procedure of mEDE algorithm is depicted
in Algorithm 2.

C. PROPOSED GREY WOLF MODIFIED ENHANCED
DIFFERENTIAL EVOLUTION ALGORITHM
The grey wolf modified enhanced differential evolution
(GmEDE) algorithm is our proposed algorithm, which is a
hybrid of GWO and mEDE algorithm. The proposed algo-
rithm takes the best features of both GWO and mEDE
algorithms to optimally schedule the load of residential build-
ings. In mEDE, the population is created in four phases:
initialization of parameters, mutation, crossover, and best
trial vector selection. Randomly generated population is then
updated with the fittest trial vector, which is created by com-
paring with the target vector. Adopted selection procedure is
better because a trial vector with best fitness is considered
for the selection process. The GWO has three main phases:
(i) encircling prey, (ii) hunting, and (iii) position update of
wolves. The agents update positions w.r.t. the leader (α)
within the pack. There is no mechanism for comparison
among α, β, and δ in GWO to search the best agent selection.
There is a possibility that α and δ may be close enough to the
prey as compared to α. Thus, the crossover phase of mEDE is
performed for clear comparison among the search agents of
GWO. After the best agent selection, the position is updated
in GWO. The crossover operation on α, β, and δ is performed

Algorithm 2 Pseudo Code of Modified Enhanced Differ-
ential Evolution Algorithm

Parameters initializationMitr,R, popl, t;
Population generation using
Equation (Z (a, b) = lb + (rand × (Ub − lb))) ;
for t = 1:T do

Determine the mutant vector using
Equation (Va,G+1 = xr1,G + F(xr2,G − xr3,G));
for itr = 1:Mitr do

Determine the 1st trial vector with R 0.30;
if rand ≤ 0.30 then

µb = υb
else
µb = xb

end
Determine the 2nd trial vector with R 0.60;
if rand ≤ 0.60 then

µb = υb
else
µb = xb

end
Determine the 3rd trial vector with R 0.90;
if rand ≤ 0.90 then

µb = υb
else
µb = xb

end
Determine the 4th and 5th trial vectors by
Equations (33) and (34), respectively;
Determine the best fittest trial vector ;
Znew← µb best;
Compare trial vector with target vector to
generate best vector;
if f (Znew) < f (Zb) then

Zb = Znew
end

end
end

using the following Equations:

αnew =

{
vb if fitness of vb 6 α

α Otherwise
(35)

βnew =

{
vb if fitness of vb 6 β

β Otherwise
(36)

δnew =

{
vb if fitness of vb 6 δ

δ Otherwise
(37)

The steps of the proposed GmEDE algorithm are the fol-
lowing: (i) initialization of parameters, (ii) encircling prey,
(iii) best search agent selection, and (iv) position update. The
step-by-step procedure of the proposed GmEDE is presented
in Algorithm 3

84426 VOLUME 8, 2020



G. Hafeez et al.: Innovative Optimization Strategy for Efficient Energy Management With Day-Ahead DR Signal

Algorithm 3 Pseudo Code of Our Proposed Grey Wolf Modified Enhanced Differential Evolution algorithm

Parameters initializationMitr, popl,A, α, β, δ;
Initially randomly generate grey wolves population Za(a = 1, 2, 3, . . . , n);
Z (a, b) = rand(popl,A);
while itr < Mitr do

for a = 1:popl do
Determine a mutant vector using Equation (Va,G+1 = xr1,G + F(xr2,G − xr3,G)) from mEDE;
Determine the fitness of mutant vector as cost × υb;
Generate randomly α, β, δ;
Determine the fitness of α, β, andδ as the objective function using Equation (Fitness = pri × X

t
i );

if fit of υ(b) < αscre then
αpos = υb;

end
if fitυb > αscre and υb < βscre then

βpos = υ(b);
end
if fit xb > αscre and fit xb > βscre and fit xb < δscre then

δpos = υb);
end

end
for a = 1:popl do

for b = 1:A do
Randomly create r1 and r2 having values 0<r<1;

Determine the fitness of both D and B coefficients by Equations (
→

D = 2 Ea × r1 − Ea) and (EB = 2 × Er2);
Update α, β, δ using Equations (EAα = EB1 × Exα − Ex), EAβ = EB2 × Exβ − Ex, and EAδ = EB3 × Exδ − Ex);

end
end

end

VI. SIMULATION RESULTS AND DISCUSSION
In this section, the simulation results and discussion are
presented to validate the performance of the proposed
energy management strategy with day-ahead DR price sig-
nal and energy consumption forecast using ANN. In this
paper, residential buildings having three kinds of appliances:
time shiftable appliances, power shiftable appliances, and
critical appliances. The parameters of the algorithms used
in the simulation and description of all the appliances in
residential buildings are listed in Table 2 and Table 3, respec-
tively. The parameters (power rating, operation timeslots,
actual energy consumption, etc.) of the home appliances are
adopted from reference [48]. The scheduling time horizon is
of twenty-four hours, starting from 01:00am to 00:59am. The
day-ahead DR pricing signal is obtained from the report of
MISO, which is taken from the FERC [44]. The ANN is
enabled by learning to forecast the day-ahead prices for
HEMC to optimally schedule the home appliances within
the scheduling time horizon subjected to power system sta-
bility, reliability, and security. The forecasted day-ahead
DR pricing signal and energy consumption patterns are
depicted in Figures 4 and 5, respectively. The HEMC is
based on our proposed DA-GmEDE and existing (DA-GA,
DA-game-theoretic) strategies. Our proposed DA-GmEDE
based scheduling strategy is compared with W/O (without)

TABLE 2. Parameters used in simulation for the proposed and existing
energy management strategies.

scheduling and scheduling based on existing strategies:
DA-GA [18], [19] and DA-game-theoretic [37] to validate
the superiority of the proposed strategy. For fair comparison,
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TABLE 3. Parameters of residential home appliances used in simulations.

FIGURE 4. Forecasted day-ahead DR pricing signal using ANN.

we have used day-ahead forecasted DR pricing signal and
energy consumption pattern, and the same set of appliances
as listed in Table 3 for our proposed DA-GmEDE strategy and
existing strategies (DA-GA, and DA-game theoretic). The
proposed DA-GmEDE based strategy and existing strategies
(DA-GA, DA-game-theoretic) are tested via performance
metrics like electricity cost, PAR, and trade-off between elec-
tricity bill and user-discomfort. The detailed description is as
follows:

A. ENERGY CONSUMPTION AND ELECTRICITY BILL
UNDER FOUR MODES OF OPERATION
The energy consumption and electricity cost for four oper-
ation modes are illustrated in Figures 6 and 7, respectively.
It is depicted in Figure 6 that energy consumption of resi-
dential buildings within the scheduling time horizon under
the operation mode IV is higher than that of modes I and III,
and lower than that of operation mode II. The peak energy

FIGURE 5. Forecasted day-ahead home energy consumption pattern
using ANN.

consumption of operation mode I, mode III, and mode IV is
much lower than that of operation mode II. This behavior is
due to the fact that users under operation mode II care more
about their comfort even at high energy consumption. The
energy consumption of consumers under operation mode III
is higher than that of operation mode I, and lower than that
of operation mode II and mode IV because the user under
operation mode III only cares about PAR. The energy con-
sumption of users under operation mode I is lower than that
of all modes II, III, and IV because users under operation
mode I want to reduce electricity bill even at the cost of
high user-discomfort. Figure 7 illustrates that electricity bill
per hour within the scheduling time horizon under operation
modes I, III, and IV is lower than that under operationmode II
because the appliances under operation modes I, III, and IV
postpone their operation either in terms of time or power.
Thus, the HEMC based on DA-GmEDE achieves the desired
trade-off between the electricity bill payment and discomfort.
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FIGURE 6. Evaluation of energy consumption under four modes
operation with forecasted day-ahead pricing signal.

FIGURE 7. Evaluation of electricity bill payment under four modes of
operation with forecasted day-ahead pricing signal.

Furthermore, the HEMC reduced both electricity bill
and PAR.

B. ENERGY CONSUMPTION OF A HOME IN RESIDENTIAL
BUILDINGS WITHIN THE SCHEDULING TIME HORIZON
The energy consumption pattern of a home before schedul-
ing and after scheduling with DA-GA, DA-game-theoretic,
and our proposed DA-GmEDE strategies are illustrated
in Figure 8. The energy consumption of a home before
scheduling is high during 6 to 9 and 13 to 17 hours, which
are the peak demand hours leading to high electricity bill
and PAR. The energy consumption of a home after schedul-
ing with DA-GA, DA-game-theoretic, and our proposed
DA-GmEDE strategies are limited to 7 kWh, 8.24 kWh,
and 8.14 kWh, respectively. The DA-GA and DA-game-
theory based strategies schedule energy consumption during
7 to 10 hours is 9 kWh, which is very high because

FIGURE 8. Comparison of energy consumption per hour without load
scheduling and with load scheduling based on DA-GmEDE, DA-GA, and
DA-game-theoretic using forecasted day-ahead pricing signal.

critical appliances are scheduled in these timeslots. The
DA-GA and DA-game-theory based strategies have moderate
energy consumption in the remaining timeslots. The proposed
DA-GmEDE based strategy for residential buildings has the
energy consumption of 7 kWh during 7 to 10 hours, which is
the peak energy consumption, and is less as compared to peak
energy consumption of both DA-GA and DA-game-theory
based strategies. The proposed DA-GmEDE based strategy
has moderate energy consumption in the remaining timeslots.
Thus, it is concluded that our proposed strategy is 36.4%
better than W/O scheduling case, and 33.3% better than
both DA-GA and DA-game-theory based scheduling. Thus,
our proposed DA-GmEDE strategy outperforms the existing
strategies because the DA-GmEDE has the most suitable and
optimal load profile as compared to other strategies.

C. ELECTRICITY BILL PER HOUR OF A HOME
IN RESIDENTIAL BUILDINGS WITHIN
SCHEDULING TIME HORIZON
The daily electricity bill of home appliances with scheduling
based on our proposed DA-GmEDE, DA-GA, DA-game-
theoretic, and W/O scheduling is illustrated in Figure 9.
Before scheduling, the electricity bill is high during 6 to 9 and
13 to 17 hours because consumers usemore appliances during
these peak hours, which leads to higher electricity bill of
$5.5. After scheduling the residential home appliances with
DA-GmEDE, DA-GA, and DA-game-theory based strate-
gies, a reduction is achieved in electricity bill per timeslot up
to $0.7, $1.2, and $0.9, respectively. Themaximum electricity
bill is $5.5 per timeslot, which is reduced to: $0.7 with our
proposed DA-GmEDE, $1.2 with DA-GA, and $0.9 with
DA-game-theoretic. It is obvious that each strategy has the
capability to schedule the residential load, which leads to
reduced electricity bill as compared to W/O scheduling
case. Our proposed DA-GmEDE based strategy outperforms
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FIGURE 9. Comparison of electricity bill payment per hour without load
scheduling and with load scheduling based on DA-GmEDE, DA-GA, and
DA-Game-theory under forecasted day-ahead pricing signal.

DA-GA based strategy by 41.6% and DA-game-theoretic
strategy by 22.2% in terms of electricity bill reduction.
Thus, extensive simulation results depict that our proposed
DA-GmEDE based strategy achieves significant reduction in
electricity bill compared to other existing strategies.

D. EVALUATION OF PAR BEFORE AND AFTER LOAD
SCHEDULING OF A HOME
The evaluation of PAR W/O scheduling and with schedul-
ing based on DA-GA, DA-game-theoretic, and our proposed
DA-GmEDE based strategies are illustrated in Figure 10. The
emphasis of PAR is tomaintain balanced energy consumption
during the scheduling time horizon, which is favorable for
both the utility company and the end users in terms of power
system stability and cost reduction, respectively. The HEMC
based on DA-GA, DA-game-theoretic, and our proposed
DA-GmEDE based strategies shift the load from high price
hours to low price hours under day-ahead pricing signal,
which leads to reduction in PAR. The load scheduled based on
DA-GA, DA-game-theoretic, and DA-GmEDE based strate-
gies reduce the PAR as compared to W/O scheduling case by
17.64%, 25.49%, 47.05%, respectively. The percent reduc-
tion of the proposed DA-GmEDE based strategy is more
compared to the other strategies, as illustrated in Figure 10.
Hence, it is concluded that our proposed DA-GmEDE based
strategy outperforms other strategies in terms of PAR.

E. TOTAL ELECTRICITY BILL OF A HOME BEFORE
AND AFTER SCHEDULING
The evaluation of total electricity bill payment W/O schedul-
ing and with scheduling based on DA-GA, DA-game-
theoretic, and our proposed DA-GmEDE based strategies
is illustrated in Figure 11. The overall electricity bill
reduction of DA-GA, DA-game-theoretic, and our proposed
DA-GmEDE based strategy is 15.2%, 8.7%, and 23.9%,

FIGURE 10. Comparison of PAR without load scheduling and with load
scheduling based on DA-GA, DA-Game-theory, and DA-GmEDE,
respectively, under forecasted day-ahead pricing signal.

FIGURE 11. Total electricity bill payment without load scheduling and
with load scheduling based on DA-GA, DA-Game-theory, and DA-GmEDE,
respectively, under forecasted day-ahead pricing signal.

respectively, compared to the unscheduled case. The net bill
reduction of the proposed DA-GmEDE is high compared to
the other strategies. Hence, our proposed strategy outper-
forms the existing strategies in terms of both electricity bill
payment and PAR.

F. ANALYSIS OF PERFORMANCE TRADE-OFF
The performance trade-off between our proposed
DA-GmEDE strategy and existing (DA-GA, and DA-game-
theoretic) strategies in terms of electricity bill and waiting
time is illustrated in Figure 12. In energy management,
the trade-off exists between electricity cost and discomfort.
The users whose focus is on electricity bill minimization will
have to wait for low price hours to operate an appliance.
Thus, there is an inverse relationship between the electric-
ity bill and user-discomfort. In W/O scheduling scenario,
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FIGURE 12. Evaluation of performance trade-off between electricity bill
and waiting time of the proposed DA-GmEDE strategy and existing DA-GA
and DA-Game-theoretic strategies.

the waiting time is zero because users operate appliances
according to their choice and demand. However, for the
scheduled energy consumption pattern based on our proposed
DA-GmEDE strategy and existing DA-GA, and DA-game-
theory based strategies, it must compromise on their com-
fort. Users face increased discomfort when the difference
between users’ preferred time and scheduled time is high.
The performance trade-off between the electricity bill and
waiting time is high for DA-GA and DA-game-theory based
strategies. On the other hand, for our proposed DA-GmEDE
strategy, the performance trade-off between the electricity bill
and user-discomfort is comparatively minimum. Thus, our
proposed GmEDE based strategy achieves the desired trade-
off between the electricity bill and user-discomfort.

VII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS
In this paper, a framework based on HEMC is proposed
and then a strategy based on DA-GmEDE is presented for
HEMC to perform efficient energy management of residen-
tial buildings under the forecasted day-ahead DR pricing
signal and consumer preferences. Furthermore, the energy
management problem is formulated as an optimization prob-
lem using four modes of operation to achieve the optimal
energy consumption schedule and to achieve the desired
trade-off between electricity bill and user-discomfort. The
proposed framework is favorable for both consumers and
power companies. For consumers, the proposed DA-GmEDE
based strategy schedules the home appliances to maximize
the benefit in terms of reduced electricity bill. On the other
hand, the benefit achieved for the utility companies is the
reduction of PAR, which increases the stability of the power
system by smoothing the demand curve. For performance
validation, simulations were carried out and results of the
proposed framework based on DA-GmEDE were compared
with DA-GA based strategy, DA-game-theory based strategy,

and W/O scheduling in terms of electricity bill and PAR
reduction. The proposed DA-GmEDE based strategy reduced
electricity bill and PAR by 23.90% and 47.05%, as compared
to W/O scheduling, respectively.

This work can be extended into various directions in future,
which are described as follows:
• A system with Internet of things (IoT) can be used for
energy management of the residential buildings.

• Fog and cloud concept can be used for optimal power
scheduling of residential buildings instead of using a
HEMC.

• An intelligent framework can be developed for resi-
dential buildings’ energy optimization under renewable
energy sources, electric vehicle, and utility company.

• The same framework can be extended for scalable mod-
els under advanced heuristic algorithms, analytical mod-
els, and stochastic methods.

• An innovative model can be developed for the joint con-
sideration of residential HEMS, and real-time control
of energy storage system and photovoltaic inverters to
make the algorithm resilient against inaccurate predic-
tion for both power generation and consumption.
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