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ABSTRACT Along with the development of Information Technology, Online Social Networks (OSN) are
constantly developing and have become popular media in the world. Besides communication enhancement
benefits, OSN have such limitations on rapid spread of false information as rumors, fake news, and
contradictory news. False information spread is collectively referred to as misinformation which has
significant on social communities. The more sources and topics of misinformation are, the greater the
number of users are affected. Therefore, it is necessary to prevent the spread of misinformation with
multiple topics within a given period of time. In this paper, we propose a Multiple Topics Linear Threshold
model for misinformation diffusion, and define a misinformation blocking problem based on this model
that takes account of multiple topics and budget constraint. The problem is to find a set of nodes that
minimizes the impact of misinformation at an allowed cost when blocking them from the network. We prove
that the problem is NP-hard and the time complexity of the objective function calculation is #P-hard.
We also prove that the objective function is monotone and submodular. We propose an approximation
algorithm with approximation ratio (1− 1/

√
e) based on these attributes. For large networks, we propose an

extended algorithm by using a tree data structure for quickly updating and calculating the objective function.
Experiments conducted on real-world datasets show efficiency and effectiveness of our proposed algorithms
in comparison with other state-of-the-art algorithms.

INDEX TERMS Information diffusion, misinformation blocking, optimization, social networks.

I. INTRODUCTION
Online social networks have become one of the most efficient
communication channels over the last two decades with very
high socio-economic impacts. A great deal of recent research
has focused on tasks of social network analysis including
network modelling, network annotation, community detec-
tion, link prediction, and information diffusion. Modelling
information diffusion is a key social network analysis with
many useful real-world applications. For example, it can
be used for early prediction of important social events, for
improving recommendation performance of products, and for
maximizing advertising effects to users.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sherali Zeadally .

In OSN, information can spread very quickly through net-
work connections. Topics discussed and diffused on OSN can
be everything from political comments, business marketing,
personal concerns, to entertainment gossip. Besides many
positive benefits, OSN can also bring risks to users by spread-
ing fake news and wrong information [1], [2]. Being inter-
ested in mitigating the misinformation risks, in this paper we
study the problem of modelling misinformation diffusion and
propose effective methods to detect misinformation sources
and limit its spread.

There have been previous studies for minimizing the
impacts of misinformation diffusion in OSN [3]–[6]. A com-
monly used method in these studies is to disable users and
connections that are considered to have major roles in spread-
ing misinformation [7]. Finding users and connections to be
disabled is addressed by solving a combination optimization
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problem. Most of these studies, however, consider only a
single source of misinformation belonging to only one topic.
In this paper we consider a more realistic scenario where
multi-topic misinformation can reach and affect users at the
same time. This problem setting poses significant challenges.
First, impacts of multi-topic misinformation are proved het-
erogeneous [8], [9] and outcomes of the model must be
re-defined. Second, when a node can adopt multiple topics,
it is shown that the overall influence function that counts acti-
vated nodes is no longer submodular which is a key property
to devise good approximation of the optimal solution.

We develop a new model of misinformation diffu-
sion blocking with multiple topics and budget constraint.
An important characteristic of the model is that a node in the
network can be activated multiple times by multiple topics.
Defining an objective function which is the influence func-
tion is defined based on this setting and is proved having
monotone and submodular properties. Effective approxima-
tion methods for minimizing misinformation spread are then
proposed from these monotone and submodular properties of
the objective function.

The features and main contributions of this paper are as
follows:
• A Multiple Topics Linear Threshold (MT-LT) model
is developed by extending the Linear Threshold
model [10]. Multi-topic misinformation diffusion is
modelled based on different degrees of influence and
activation thresholds for each topic. Then, a misinforma-
tion blocking problem, also called the Multiple Topics
and Budget Constraint (MMTB) problem, is formulated
by the MT-LT setting.

• We show that the MMTB problem is NP-hard and the
calculation of the objective function is #P-hard. We also
show that the objective function is monotone and
submodular.

• Based on the monotone and submodular properties of
the objective function, we propose efficient and effective
algorithms for solving the MMTB problem. The first
algorithm, called IGA, is an approximation greedy algo-
rithm with approximation ratio (1− 1/

√
e). The second

algorithm, called GEA, is capable of running on large
OSN by using a tree data structure for quickly updating
and calculating the objective function.

Proposed algorithms are tested on real-world datasets
including Gnutella, NetHepP and Epinions. Experimen-
tal results show that our proposed algorithms outperform
other algorithms in terms of both efficiency and scala-
bility. In particular, IGA is more effective in preventing
the spread of misinformation by blocking super-influencing
nodes, and GEA can be applied to medium and large
networks.
Organization: The structure of the paper is organized as

follows. Section I introduces an overview of the proposed
work. Section II presents relatedworks. Section III introduces
the network model and research problem. Section IV presents
our proposed algorithms and section V provides experimental

results on some selected datasets. Section VI concludes the
paper.

II. RELATED WORKS
Kempe et al. [10] formulated stochastic discrete optimization
problem under the Independent Cascade Model (IC model),
and Linear Threshold Model (LT model). Kempe’s research
is inspired by Sebastos and Richardson’s research on infor-
mation spreading using data mining techniques [11]. The
problem in [10] is formulated as follows: given a network,
a diffusion model, a set of influence weights for edges, a ran-
dom threshold function, and a budget; selecting nodes so that
the final number of infected nodes is maximized. For the
problem they formulated, Kempe et al. proposed a greedy
algorithm with an approximation guarantee of (1 − 1/e).
Later, many studies on information diffusion andmisinforma-
tion spreading prevention problems on online social networks
have been undertaken [12]–[14]. The authors in [15] studied
the problem of eliminating k-edge sets so that influence of
the S-sourceset is minimal and introduced an algorithm for
approximation (1 − 1/e − ε), wherein e and ε ∈ [0, 1]
to solve the problem. From the epidemiological perspective,
some authors injected immunization vaccines into sets of
vertices to be immune to bad information [4], [5], [16]. The
authors in [17], [18] studied theDAVAprobslem (Data-Aware
Vaccination) with a request to inject the vaccine into the
k-vertices of the user set. In [19], the authors extended the
DAVA problem by adding time to spreading the disease.

On the other hand, many researches followed an
approach of spreading good information to prevent
impact of bad information called information purification
method [3], [20], [21]. The authors in [22] proposed the
MCIC (Multi - Campaign Independent Cascade) information
diffusion model that allows multiple sources of information
to be spread simultaneously on the same network. For the
same purpose, in [23] the authors studied to prevent influence
of misinformation on the linear competition model. In addi-
tion, the authors in [6] studied the TIB (Temporal Influence
Blocking) problem to limit misinformation by time delay.
The authors in [24] studied the new βIT problem with a goal
of selecting the smallest seed set to start spreading good
information to eliminate bad information.

Recently, the author in [25] studied misinformation con-
tainment with multiple cascades. In [26] the authors inves-
tigated rumor blocking within a given community. In [27]
the authors proposed a scalable algorithm which guarantees
approximation ratio of (1 − 1/e − ε) for epidemic blocking
problem by edges and nodes blocking. In [28] the authors
studied influence blocking which considers location of com-
petitors. The authors in [29], [30] proposed a method for
misinformation prevention by eliminating nodes in multi-
ple contexts. Furthermore, several studies have focused on
identifying and detecting misinformation which is an impor-
tant step for issues that prevent misinformation. The authors
in [31], [32] relied on structure and language characteris-
tics to identify false information. Some studies used data
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mining and machine learning methods to detect misinforma-
tion by user behavior analysis such as shares, comments, and
likes [33]–[35].

III. MODEL AND PROBLEM FORMULATION
The IC model and the LT model are two of the most widely
used models in the research of information diffusion problem
on online social networks. In the IC model, an active node u
may attempt to activate a neighboring inactive node v only
once with successful probability p(u, v). IC model can be
seen as a sender-central model. In the LT model, every node
contributes to activation of their neighbors. So, LT model can
be considered as a receiver-central model. With reference to
the problem of preventing spreading misinformation, the LT
model, having more advantages, is more well-suited than
the IC model. The collective contribution of active nodes in
activating their neighbors in the LT model can be seen as
herding effect, which is very close to mechanism of spread-
ing false rumors where the decision is more likely to be
made by mimicking others’ decision. In this section, we for-
mulate a Multiple Topics Linear Threshold (MT-LT) model
by extending the LT model. This MT-LT model considers
multi-topic misinformation diffusion with budget constraint.
Next, we present the traditional LT model. All the symbols
and notations used in the paper are given in Table 1.

TABLE 1. Symbols and notations.

A. INFORMATION DIFFUSION MODEL
1) LINEAR THRESHOLD MODEL
In the LT model, an online social network is represented by
a graph G = (V ,E,w) in which V is a node set, E is a
directed edge set, |V | = n, |E| = m and Nin(v), Nout (v) are
the set of incoming neighbor nodes, outgoing neighbor nodes
of node v, respectively. Each edge (u, v) ∈ E is assigned
with a weight w(u, v) ∈ [0, 1] representing the influence of
node u on node v, if w(u, v) /∈ E then w(u, v) = 0. Weights
are distributed such that the sum of weights of neighboring

nodes to a node v satisfies the following condition:∑
u∈Nin(v) w(u, v) ≤ 1
Suppose that S0 ⊆ V is the set of nodes which spreads

misinformation and it is called the seed set. In LTmodel, each
node may have one of two states: active and inactive.

Each node v ∈ V has an activation threshold γv ∈ [0, 1],
if γv is large, many neighbor nodes are required to activate v,
if γv is small, node v can be easily activated by its neighbors.
In many related works, threshold values are determined ran-
domly over the [0, 1] segment. In practice, threshold values
can be learned via data mining techniques based on user
actions in the past. Thus, threshold values can be viewed as
an input to the model instead of assuming a random threshold
function. Let Dt (G, S) the set of nodes activated by S at time
step t in graphG(V ,E,w). The LT model operates in discrete
time steps as follows:

• At time step t = 0, the set of nodes in the active state is
the source of the original information diffusion S0 (seed
set).

• At time step t ≥ 1, all nodes activated by S in time step
t − 1 are still active. A node v currently not activated
by S will become activated if the following condition
satisfies: ∑

u∈Nin(v)∩Dt−1(G,S)

w(u, v) ≥ γv.

• The diffusion process ends when no node is activated in
the next steps.

2) MULTIPLE TOPICS LINEAR THRESHOLD
The LT model considers diffusion of a single topic, or sin-
gle information cascade. Motivated by LT model, a more
realistic scenario is studied in this paper where we assume
that there are multiple existing topics being diffused. Topics
may have different characteristics, such as their content and
impressiveness. When there are multiple topics, we need to
redefine outcomes of the model when two or more topical
information reach one user at the same time. The LT model
can not be applied directly to solve the problem of multi-topic
information diffusion because it is hard to capture complex
correlations between topical cascades.

Earlier researchers have worked on a scenario where there
are more-than-one topics being diffused. When multiple top-
ics exist, the influence maximization problem can be elusive
as even not beingmonotone [25].When a node can adoptmul-
tiple cascades, it is shown that the overall influence function
that counts activated nodes is no longer submodular. In this
paper, we deal with this problem by developing a new model
ofmisinformation diffusion blockingwithmultiple topics and
defining the overall influence function that counts activated
turns instead of activated nodes.

In MT-LT model, a social network is also represented by
a graph G = (V ,E,w) where V is the set of nodes, E is
the set of edges, |V | = n, |E| = m. Nin(v),Nout (v) are the
set of incoming neighbor nodes, outgoing neighbor nodes
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of node v, respectively. Each edge (u, v) ∈ E is assigned a
weight w(u, v) ∈ [0, 1] representing the influence of node u
on node v, if (u, v) /∈ E then w(u, v) = 0. Weights are
distributed such that the sum of the weights of nodes u to
node v satisfies

∑
u∈Nin(v) w(u, v) ≤ 1.

Suppose that there are q misinformation topics such as
Economics, Politics, Sports, and so on, and the set of
misinformation-spreading nodes is S = {S1, S2, . . . , Sq}. Si
contains nodes spreading information of topic i (referred to
as source nodes). We can assume that the social network
administrator knows where the source of misinformation is.
The set of source nodes spreading misinformation on q topics
is S =

⋃q
i=1 Si.

Each node v ∈ V may be activated multiple times by
multiple topics. That means, node v may have multiple sta-
tuses in the set of q + 1 status as follows: Q = {inactive,
active−1, active−2, . . . , active−q}which shows the behavior
and activity of v. If node v is inactive then v is not acti-
vated by any topic; if v is active−i then it has been acti-
vated by topic i. If node v has the status active−1, active−2,
. . . , active−k, 1 ≤ k ≤ q then it has been activated by k
topics.

In practice, the impact weight among nodes depends on
topics. For example, a spreading topic about a plague may
have greater impact than a topic about a sport game to an
user. Therefore, a node v is assigned with a vector of acti-
vation thresholds γv = (γ 1

v , γ
2
v , . . . , γ

q
v ), where γ iv ∈ [0, 1].

γ iv represents the activation threshold of node v on topic i.
Moreover, each node v is also assigned with a vector Pv =
(p1v, p

2
v, . . . , p

q
v), where piv ∈ [0, 1] represents the effect of v

on its neighboring nodes by topic i.
The process of information spread in model MT-LT occurs

in separated time steps t = 1, 2, . . . , d where d ∈ Z .
We consider the same allowed period for each step of infor-
mation spread. It is because all neighbors of a node might not
influence it simultaneously, but within a certain time window.
Let Dt

i (G, S) be the set of nodes activated by Si at time step t
in graph G.
• At time step t = 0, all nodes in Si have the status active−i
• At time step t ≥ 1, all nodes activated by Si in time step
t−1 are still active. A node v currently not activated by Si
will become active−i if the following condition satisfies:∑

u∈Nin(v)∩Dt−1
i (G,S) w(u, v) · p

i
u ≥ γ

i
v .

• The spread process ends when no node is activated in the
next steps.

The LT model is a special case of MA-LT model when
pui = 1, i = 1..q for all u ∈ V . Let Di(G, S) be the
total number of nodes activated by topic i after the spreading
process ends. Di(G, S) is calculated by the summation of
Dt
i (G, S) over all time steps. The total number of activated

turns by all topics after the spreading process ends, denoted
by D(G, S), is given by:

D(G, S) =
q∑
i=1

Di(G, S) (1)

In this setting a node can be activated multiple times by
multiples topics not just once as in previous works. By this
settingwe can prove themonotone and submodular properties
of the overall influence function. These properties are impor-
tant because they can help to devise effective approximation
algorithms.

B. PROBLEM DEFINITION
In this paper, we aim at blocking a set of nodes in the graph
G so that the final number of infected turns is minimized.
This similar optimization objective can be found in other
works [5], [16], [36]. A blocked node cannot be infected by
any other nodes, and it cannot infect any other nodes as well.
To block a node v in a graph, we simply set the weights for
all incoming edges to v and outgoing edges from v to zero.

Given a graph G, we denote by G � A the graph after
blocking a set of nodes A. The number of all activated turns
by all topics after blocking the set of nodes A is given by
D(G � A, S) =

∑q
i=1Di(G� A, S). The objective here is

to minimize D(G � A, S). This is equivalent to maximizing
the following quantity:

σ (G, S,A) = D(G, S)−D(G� A, S) (2)

Suppose that blocking a node v costs c(u) and the total of
costs cannot exceed the budget limit B. The MMTB problem
can now be formulated as follows.
Definition 1: (MMTB). Given a social network repre-

sented by a weighted graph G(V ,E,w), a source of misin-
formation with q topics given by S = {S1, S2, . . . , Sq} where
Si contains source nodes of topic i. The task is to find a set of
nodes A to block so that the quantity σ (G, S,A) is maximized
under the budget limit B, c(A) =

∑
u∈A c(u) ≤ B.

We prove that the MMTB is NP-hard under the MT-LT
setting.
Theorem 1: The MMTB is an NP-hard problem.
Proof: To prove MMTB as an NP-hard problem,

we construct a derivative problem from the well-known
Knapsack problem which is also NP-complete.
Knapsack problem: Given a set Q of n items, each item i

has a weight wi and a value ci (ci and wi are integers) and
two positive integers: W ,C . The problem is to find a vector
x = (x1, x2, . . . , xn) so that value(Q) =

∑n
i=1 xici ≥ C and∑n

i=1 xiwi ≤ W are satisfied.
Let I1 = (Q,W ) be an instance of the Knapsack problem,

and I2 = (G, S,B) be an instance of the MMTB problem
where S is the set of misinformation source nodes, B is the
budget limit, we construct an reduction from I1 to I2 as shown
in Fig. 1.
Reduction: To construct the reduction, we construct a

graph G(V ,E,w) satisfying the MT-LT model as follows.
Given the set S with a single node S = {s}. For each ci
(the value of the i-th item) we create a path of ci + 1 nodes:
s → ui,1 → ui,2 . . . → ui,ci with the weight of each
edge of the path is 1. The cost of nodes is set as follow:
c(ui,1) = wi = 1, c(ui,j>1) = B + 1. The number of topics
is q = 1 and the budget is B = W . Set B = W and K = C .
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FIGURE 1. Building a reduction from Knapsack to MMTB.

We prove that I1 has the solution x = (x1, x2, . . . , xn) if and
only if I2 has the corresponding solution A = {ui,1|xi=1} such
that σ (G, S,A) ≥ K and vice versa.
(→)Assume that x = {x1, x2, . . . , xn} is the solution of I1,

on I2 we select A = {ui,1|xi = 1}. We have c(A) =∑
i|xi=1 xiwi =

∑n
i=1 wi ≤ W = B. According to the MT-LT

model, when blocking the node ui,1 all sub-sequence nodes
on the path ui,2 . . . ui,ci are affected. Thus, σ (G, S,A) =∑

i|xi=1 xici =
∑n

i=1 ci ≥ C = K , then A is the answer of I2.
(←) By contrast, if A is a solution of I2 then A cannot

contain the node ui,j≥2, because the cost of blocking the nodes
will exceed B. On I1 we select a vector x = {x1, x2, . . . , xn}
on a condition that: xi = 1 if ui,1 ∈ A or xi = 0, if ui,1 /∈
A. We have c(A) =

∑
i|ui,1∈A wi =

∑n
i=1 xiwi ≤ B and

σ (G, S,A) =
∑

i|ui,1∈A ci =
∑n

i=1 xici ≥ K = C , that
means x is an answer of I1. In other words, if we can find
the optimal solution of the MMTB problem, we can find the
optimal solution of Knapsack problem. ThusMMTBproblem
is NP-hard.

We now prove that the problem of calculating the objective
function in formula 2 is #P-hard.
Theorem 2: The problem of calculating function σ (·) is

#P-hard in MT-LT even if the set of A has only one
node.

Proof: We prove that the calculation of the objective
function is #P-hard even for the case the set S has only
one node. Let P(G, s) be the set of all simple paths of G
starting from s (simple paths are paths that visit each node
just one time), P(G� A, s) be the set of all simple paths of G
starting from swhen A is blocked. We have that σ (G, S,A) =
D(G, S) − D(G � A, S) is exactly the number of nodes in
P(G, s) minus the number of nodes in P(G� A, s). If we can
calculate the number of nodes in P(G, s) then we can also
count the number of simple paths in P(G, s). Counting all
such simple paths is exactly the s-t paths problem which is
proved #P-hard by Valiant [37]. Therefore, our problem is
also #P-hard.

IV. PROPOSED ALGORITHMS
In this section we propose two algorithms to solve theMMTB
problem. Both algorithms are based on greedy algorithm
approach. The first algorithm called Improved Greedy Algo-
rithm (IGA) is based on the ratio between the increase degree

of target function and the cost of blocking the node ensuring
approximation ratio (1−1/

√
e). The second algorithm called

Greedy Extension Algorithm (GEA) is based on the idea
of quickly updating the target function and the approximate
average denominator calculating method.

A. IMPROVED GREEDY ALGORITHM-IGA
First, we show that the target function σ (G, S,A) is monotone
and submodular. Based on these features, and by adopting
the greedy strategy proposed in [19] we are able to obtain an
algorithmwith approximation ratio (1−1/

√
e). The proposed

algorithm is called IGA (Improved Greedy algorithm).
From each original graph G = (V ,E,w) under MT-LT

model, we construct q graphs: G1,G2, . . . ,Gq, Gi =
(Vi,Ei,wi), with wi(u, v) = w(u, v).piu. We show that the
total number of activated turns on graph G on the MT-LT
model with source S is equal to the number of nodes activated
on graph Gi on the LT model with source Si, for any i =
1, 2, . . . , q. This result is proved in the following lemma:
Lemma 1: Denoted DLT (Gi, Si) as the set of nodes acti-

vated by source Si on graph Gi with model LT, we have
Di(G, S) = DLT (Gi, Si). Then the number of turns activated
by all topics D(G, S) can be calculated as follows:

D(G, S) =
q∑
i=1

Di(G, S) =
q∑
i=1

DLT (Gi, Si) (3)

Proof: Because piu ≤ 1, for each node u ∈ Gi we have:∑
u∈Nin(v) wi(u, v) · p

i
u ≤

∑
u∈Nin(v) wi(u, v) ≤ 1

This condition satisfies the LT model. Let DLT (Gi, Si) be
the influence function for the source set Si in graph Gi under
LT model, we obtain Di(G, S) = DLT (Gi, Si).
Lemma 2: For graphGi, functionDLT (Gi�A, Si) is mono-

tone and supermodular.

DLT (Gi � (A ∪ {v}), Si)−DLT (Gi � A, Si)

≤ DLT (Gi � (T ∪ {v}), Si)−DLT (Gi � T , Si)

∀A ⊆ T ⊂ V , v ∈ T \ A.

Proof: Let E(A) be the set of edges which have at lest a
node in node set A. We have: DLT (Gi � A, Si) = DLT (Gi �
E(A), Si).
It is obvious that D(G� E(A), S) − D(G� E(T ), S) ≥ 0

for A ⊆ T . Therefore DLT (Gi � A, Si) is a monotonically
increasing function.

Denote ET ,v = E(T ∪{v})\E(T ), EA,v = E(A∪{v})\E(A).
ET ,v is the set of edges connecting to v but not to any node in
the set T , EA,v is the set of edges connecting to v but not to any
node in the set A. We have ET ,v ⊆ EA,v for A ⊆ T . We easily
see that E(A)∪ET ,v ⊆ E(A+{v}). Given two set of edges X ,
Y , X ⊆ Y ⊂ E , an edge e ∈ Y \ X . By Theorem 6 in [16],
we have:

DLT (Gi � E(X ∪ {e}), Si)−DLT (Gi � E(X ), Si)

≤ DLT (Gi � E(T ∪ {e}), Si)−DLT (Gi � E(T ), Si)
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Applying the above inequality we have:

DLT (Gi � A, Si)−DLT (Gi � (A ∪ {v}), Si)

= DLT (Gi � E(A), Si)−DLT (Gi � E(A ∪ {v}), Si)

≥ DLT (Gi � E(A), Si)−DLT (Gi � (E(A) ∪ ET ,v), Si)

≥ DLT (Gi � E(T ), Si)−DLT (Gi � (E(T ) ∪ ET ,v), Si)

= DLT (Gi � T , Si)−DLT (Gi � (T ∪ {v}), Si)

This complete the proof.
Theorem 3: The function σ (·) is submodular and mono-

tone on the MT-LT model.
Proof: From the definition of σ (G, S,A) in Eq. (2),

we have:

σ (G, S,A) = D(G, S)−D(G� A, S)

=

q∑
i=1

Di(Gi, Si)−
q∑
i=1

Di(Gi � A, Si)

=

q∑
i=1

(
Di(G, Si)−Di(Gi � A, Si)

)
=

q∑
i=1

σi(Gi, Si,A)

in which σi(G, Si,A) = Di(G, Si)−Di(G�A, Si). Accord-
ing to Lemma 2,Di(G�A, Si) is supermodular, andDi(G, Si)
is monotone and submodular. Therefore, σi(G, Si,A) is
monotone and submodular function. σ (G, S,A) is a collec-
tion of monotone and submodular functions, so it is also a
monotone and submodular function.

Algorithm 1 Improved Greedy Algorithm (IGA)
Input: G = (V ,E,w), source set S, budget B > 0
Output: set of nodes A

1. A1← ∅; U ← V ;
2. vmax = argmaxv∈V , c(v)≤B σ (G, S, v);
3. repeat
4. u← argmaxv∈V\A δ(v);
5. if c(A1)+ c(u) ≤ B then
6. A← A1 ∪ {u};
7. end
8. until U = ∅;
9. If σ (G, S,A1) ≥ σ (G, S, vmax) then A← A1 else
A← vmax ;

10. return A.

Based on the results of Theorem 3 and using the greedy
strategy proposed in [38], we propose an innovative greedy
algorithm called IGA that has approximation ratio (1−1/

√
e)

(Algorithm 1). The algorithm consists of 2 phases. The first
phase uses greedy strategy to find the set of nodes to block A.
In each step, we choose a node v with δ(v) is the largest.
δ(v) is calculated as follows:

δ(v) =
(σ (G, S,A ∪ {v})− σ (G, S,A)

c(v)
(4)

The process ends when the cost for blocking nodes exceeds
the allowed budget B. In the second phase, a node vmax with
the largest σ (G, S, vmax) and the cost for blocking vmax which
less than B are considered. Then the final outcome of A is
compared to vmax to obtain the best answer.

It is easy to see that in the worst case, algorithm IGA can
take up to k2 loop to re-calculate σ (G, S,A), where k is the
number of activated turns on q topics. However, calculating
the exact number of activated turns is #P-hard. To solve
this problem, we use Monte Carlo (MC) simulation method
to estimate target function (Algorithm 2). With each set Si,
i = 1, 2, . . . , q, we use MC simulation T times to simulate
the process of random information spreading. Each time,
the number of activated turns by topic i is calculated, then the
average number per T simulation times is calculated. Finally,
we get the average number of activated turns on q topics.
The larger the number of simulations T is, the higher the
estimation accurate is.

Algorithm 2 Algorithm to Estimate the Value of the
Function Di(Gi, Si)
Input: Gi(Vi,Ei,wi), source set S
Output: Di(Gi, Si)

1. count ← 0;
2. for i = 1 to T do
3. Simulating the misinformation propagation process

from the source Si on graph Gi;
4. Ni← the number of nodes activated after the

propagation has finished;
5. count ← count + Ni;
6. end
7. return count/T .

However, because calculating σ (G, S,A) is #P-hard, it is
difficult to determine the number of simulations. In this case
we perform T times of MC simulation, the time complexity
of IGA is O(TRn2) where R is the time complexity of a MC
simulation. It means that IGA cannot run on networks with
even small size. For this reason, in the following subsection,
we develop a more practical algorithm called GEA that can
work on large networks.

B. GREEDY EXTENSION ALGORITHM-GEA
In this subsection we propose an expanded version of
the greedy algorithm IGA, called Greedy Extension Algo-
rithm (GEA). The algorithm GEA is based on the idea of
calculating average value of denominator and fast updating
the target function σ (·). To do so, a tree structure is used
to estimate and update σ (.) in each loop of the algorithm.
We construct q graphs Gi, i = 1, 2, . . . , q, according to
MT-LT model and the result of lemma 1. Because the source
set Si could have more than one node, neighboring nodes of
Si could be infected by nodes of the same topic. In order to
update target function conveniently and ensure the spreading
properties of the model LT, we merge source nodes Si on
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Algorithm 3 Algorithm of Merging Vertices
Merge(Gi, Si)
Input: Gi = (Vi,Ei,wi), source set Si
Output: G′i,Hi

1. G′i← Gi
2. Add node Hi to G′i;
3. for x ∈ Si do
4. if there exits edge (x, v) then
5. if Hi ∈ G′i then
6. Add edge (Hi, v) to G′i;

w′i(Hi, v) = w′i(x, v).p
i
x ;

7. else
8. w′i(Hi, v) = w′i(Hi, v)+ w

′
i(x, v).p

i
x

9. end
10. ; Blocking (x, v) from S ′i ;
11. end
12. end
13. Blocking all node Si from G′i;
14. Return G′i,Hi.

graph Gi into a node Hi and obtain graph G′i (Algorithm 3).
Lemma 3 shows that two expressions before and after con-
verting are equivalent.
Lemma 3: Algorithm 3 shows that any expression

(Gi, Si,wi) is equivalent to the expression (G′i,Hi,w
′
i), where

Hi is the unified source node of the nodes in Si.
Proof: To prove this lemma, we prove that the func-

tion σ (G, S,A) on the two expressions is the same. Assume
that v is a node adjacent to the set S. When S has a sin-
gle node u, it is obvious that the influence from S to v
is w(u, v).pui = w(Hi, v). When the set S has k source
nodes u1, u2, . . . , uk , the effect of k nodes on node v is:∑k

i=1 w(ui, v).p
ui
i = w(Hi, v), this satisfies the spreading

property on the LT model. When S has k + 1 source nodes,
w(Hi, v) is the effect after mixing k nodes. Mixing more
k + 1 source node, total effect w(Hi, v) = w(Hi, v) +
w(uk+1, v), which is the effect fromHi to v according to Algo-
rithm 3. According to the inductive proposition, we have the
proof.

For each graphGi after source nodes being merged, we use
Monte Carlo simulation to create ni sample graphs g from
Gi using the online edge model [10]. Because we can access
nodes from trees with roots Hi, we only retain trees that can
access to other nodes from the root node for the sample graph.
This reduces a significant number of pointless sample graphs,
helping to update values to get closer approximations. From
ni samples, we set Ti(i = 1..q) containing the root of ni trees.
For each tree Ti ∈ Ti, f (Ti,Ai) is the value of σ (Gi, Si,Ai) on
tree Ti. We observe that f (Ti, u) = |{v|v ∈ subtree(u)}| and
we can compute f (Ti, u) for all nodes u ∈ Ti using the deep
first search in algorithm 4. Since the limited budget B is used
and a node may be present on many different trees, we apply
sample average approximation to calculate σ (G, S,A) on q

Algorithm 4 Calculate f (Ti, u)
Input: A tree Ti root at Hi and node u ∈ V
Output: f (Ti, u)

1 if u is not a leaf then
2 r ← 1;
3 for v is a child of u do
4 r ← r + f (Ti, v);
5 end
6 else
7 r ← 1
8 end
9 return r .

topics as follows:

σ (G, S,A) ≈ σ̂ (G, S,A) =
1
q

q∑
i=1

 1
ni

∑
Ti∈Li

f (Ti,Ai)

 (5)

In Algorithm 5, for the first selection, we select set A1 in
the loop (from line 9 to line 22) by gradually adding node u
into the set A1 in a greedy manner, such that δ(u) reaches the
maximum value (line 12). For the second selection, we select
node umax so that c(umax) ≤ B and the sample average
approximation σ (umax) is maximized (line 23). Let A1 be
the current solution in the loop t , we estimate the objective
function which will increase gradually by blocking node v
according to the following equation:

δ(A1, v) = σ (G, S, (A1 ∪ {v}))− σ (G, S,A1)

≈
1
q

q∑
i=1

∑
THi∈Li

(f (Ti,Hi)− f (Ti � {v},Hi) (6)

After selecting u intoHi, we conduct a calculations of all trees
Ti ∈ Ti on all topics to block node u from trees Ti and update
f (Ti, u) on Ti ∈ Ti, (lines 17-19) as follows:
1) if v is a descendant of u, we can block them because it

is not reachable from Hi ∈ Ti
2) if v is a ancestor of u, f (THi�{u}, v) = f (Ti, v)−f (Ti, u)

FIGURE 2. Estimating and update f (Ti � {u}, Hi ) by using rooted trees.

The updating process is illustrated in the Fig. 2. We can
calculate f (Ti,Hi) = 10, f (Ti, v3) = 6, after blocking v3,
and update f (Ti � {u},Hi) = 10− 6 = 4.
Finally, the algorithm returns a better solution in two candi-
date solutions umax and A1 by comparing σ̂ (umax) and σ̂ (A1).
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Algorithm 5 Greedy Extension Algorithm (GEA)
Input: Graph G = (V ,E,w), source S, budget B > 0
Output: The set of nodes A

1. U ← V ;
2. Build Gi = (Vi,Ei,wi), i = 1..q from G = (V ,E,w) by

MT-LT model;
3. (G′i,Hi)← Merge(Gi, Si) for i = 1 . . . q according to

Algorithm 3;
4. foreach G′i do
5. Generate ni sample graphs by live-edge model [10]

and create a set Ti contains ni trees;
6. For each Ti ∈ Ti, calculate σ (Ti, u) for all u ∈ THi by

Algorithm 4;
7. end
8. umax ← argmaxv∈V , c(v)≤B σ̂ (v);
9. repeat
10. cmin← argminv∈V c(v);
11. If cmin + c(A1) > B then break;
12. u← argmaxv∈V δ(A1, v) (Eq. 6);
13. U ← U \ {u};
14. if c(A1)+ c(u) ≤ B then
15. A1← A1 ∪ {u};
16. for i = 1 to q do
17. foreach Ti ∈ Ti do
18. If u ∈ Ti then block node u and update

f (Ti, v), ∀v ∈ Ti;
19. end
20. end
21. end
22. until U = ∅;
23. A← argmaxumax ,A1{σ̂ (umax)), σ̂ (A1)};
24. return A.

Next, the time complexity of GEA is given. The time
complexity of creating a set of Ti is (ni(n+m)). The time com-
plexity of calculating f (Ti, u) is the same as Algorithm 4, that
is O(n). Each step of selecting node u with maximum value
δ(A, u) needs O(nin). Consequently, the time complexity of
the algorithm GEA is O((

∑q
i=1 ni)(m + kn)) where q is the

number of topics, n,m are the number of nodes, the number
of edges of the graph G(V ,E,w) respectively, and ni is the
number of trees created in the MC simulation with the topic i.

V. EXPERIMENTS RESULTS
In this section, we conduct experiments to show the efficiency
of the proposed algorithms IGA and GEA. The proposed
algorithms are compared with Degree and Random algo-
rithms on the same setting of the MT-LT model.

A. EXPERIMENT SETTINGS
Datasets and parameter settings: The experiments are per-
formed on 03 datasets, Grutela [39], Epinions [40] and
NetHepPh [41], of the actual networks with size of up to tens
of thousands of nodes and hundreds of thousands of edges,

TABLE 2. Datasets.

collected from the source [http://snap.stanford.edu/data/].
Some statistics of the datasets are provided in Table 2.

All the algorithms are programmed in Python language.
All the experiments are conducted on a computer with CPU
Intel Core i7 - 8550U 1.8Ghz, RAM 8GB DDR4 2400MHz,
running on Linux operating system.

Because it is hard to determine the exact impact weight of
node u to v, according to previous researches [5], [16], [36],
we set the weight of each edge (u, v) as w(u, v) = 1/|Nin(v)|.
It means that each edge has the same contribution in the
activation of a node v, that is

∑
u∈Nin(v)) w(u, v) = 1. On the

MT-LT model, for each topic, the effect value piv of node v to
neighbor nodes and the threshold activation γ iv of v according
to topic i, i = 1..q are randomly initialized within the
range [0, 1]. The cost of blocking node c(v), v ∈ V is
randomly initialized within the range [1.0, 3.0]. In case costs
are identical, we set c(v) = 1. The MC simulation method
in algorithms is performed to approximately calculate the
outcome. The source of misinformation spread S consists
of 03 topics (q = 3), initially, each topic is randomly contains
100 nodes |S1| = 100, |S2| = 100, |S3| = 100.
The proposed algorithms IGA and GEA are compared

with Degree and Random algorithms. For algorithm IGA,
10,000 MC simulations are performed to estimate the
outcome of target function σ (·). The algorithm GEA
(Algorithm 5) is quickly updated with target function value
based on depth traversal using tree structure and approximate
average denominator on all trees Ti. The algorithm Degree
selects all nodes with the highest ranks and adds them to the
set of blocked nodes until the total cost for selecting nodes
is greater than B, and the algorithm Random selects random
nodes within the limited budget B.

B. RESULT
1) EVALUATING ALGORITHMS’ EFFICIENCY
IN UNIT-COST SETTING
To learn the efficiency of the proposed algorithms, we first
conduct some experiments under unit-cost setting. That is,
all costs for blocking a node c(u) are 1 for all datasets. The
efficiency is measured based on the average outcomes of the
diffusion function σ (G, S,A) of the formula 4. Fig. 3a, 3b, 3c
show the results of all algorithms.When the budget increases,
the number of average activated turns increases as well. Aswe
can see, under unit-cost setting, GEA has the best efficiency,
followed by IGA and both algorithms outperform Random
and Degree with a large margin. In Fig. 3c, we must stop IGA
early at budget larger than 40 because this algorithm takes a
lot of time.
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FIGURE 3. (a, b, c) Comparison algorithms in unit-cost version;
(d, e, f) Comparison algorithms in general-cost version.

2) EVALUATING ALGORITHMS’ EFFICIENCY IN
GENERAL-COST SETTING
In this experiment, we compare the algorithms with budget B
changing from 0 to 100 and cost of nodes c(u) is evenly dis-
tributed within the range [1.0, 3.0]. As can be seen in Fig. 3d,
3e, 3f, both algorithms GEA and IGA outperform Random
and Degree algorithms. Algorithm GEA is 1.1 to 2.24 times
more efficient than algorithm IGA and up to 121 times more
efficient than algorithmDegree in term of the average number
of activated turns. The reason is that Degree only uses social
network topology attributes but cannot consider the impact
process of the source nodes. We stop IGA early at budget
larger than 40 on the Epinions network dataset because this
algorithm takes a lot of time (longer than 72 hours).

3) COMPARING RUNNING TIME
Finally, we compare the algorithms in running time. Fig. 4a,
4e, 4f and Fig. 4d, 4e, 4f show running time of algorithms on
3 datasets. The running time increases as the budget increases.
Random algorithm and Heuristic algorithms are very fast
thanks to their simple calculation. Greedy and Random algo-
rithms can run very fast even on big networks. However, GEA
algorithm also achieves very competitive running time. The
reason is the efficient grouping technique and tree calcula-
tion. In all settings, GEA runs faster than IGA up to 196 times.
IGA is the slowest algorithm because of the time-consuming
in MC simulations.

FIGURE 4. (a, b, c) Running time of algorithms in unit-cost version;
(d, e, f) Running time of algorithms in general-cost version.

VI. CONCLUSION
In this paper, we introduce the problem of misinformation
blocking with multiple topics spreading on social networks
with limited budget. We model the problem as a combination
optimization problem based on the LT model with additional
requirements of multi-topic and fixed budget for node selec-
tion. We propose the MT-LT model to describe the process
of multi-topic information spreading by extending the LT
model. In this model, information spread is modelled based
on different degrees of influence and activation thresholds
for each topic. The MMTB problem is formulated by the
MT-LT setting.We show that theMMTB problem is NP-hard,
the calculation of the objective function is #P-hard and the
objective function is monotone and submodular. Based on
the monotone and submodular properties of the objective
function, we propose an improved greedy algorithm called
IGA with approximation ratio (1− 1/

√
e). Next, we propose

an extended algorithm called GEA based on the MT-LT set-
ting by applying a top aggregation method, calculating the
sample average and quickly updating the objective function
to speed up the algorithm. For those reasons, the proposed
algorithm GEA can be applied to medium and large online
social networks.
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