SPECIAL SECTION ON EVOLVING TECHNOLOGIES IN ENERGY STORAGE SYSTEMS

FOR ENERGY SYSTEMS APPLICATIONS

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 4, 2020, accepted April 18, 2020, date of publication April 21, 2020, date of current version May 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989410

Review of Health Prognostics and Condition
Monitoring of Electronic Components

CHERRY BHARGAVA !, PARDEEP KUMAR SHARMA?, MOHAN SENTHILKUMAR 3,
SANJEEVIKUMAR PADMANABAN 4, (Senior Member, IEEE),
VIGNA K. RAMACHANDARAMURTHY “5, (Senior Member, IEEE),

ZBIGNIEW LEONOWICZS, (Senior Member, IEEE),
FREDE BLAABJERG "%, (Fellow, IEEE), AND
MASSIMO MITOLO?, (Fellow, IEEE)

!School of Electrical and Electronics Engineering, Lovely Professional University, Phagwara 144411, India

2School of PS, Lovely Professional University, Phagwara 144411, India

3School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India

“Department of Energy Technology, Aalborg University, 9100 Aalborg, Denmark

SInstitute of Power Engineering, Department of Electrical Power Engineering, College of Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, Kajang

43000, Malaysia

SFaculty of Electrical Engineering, Wroctaw University of Science and Technology, 50-370 Wroctaw, Poland
7School of Integrated Design, Engineering and Automation, Irvine Valley College, Irvine, CA 92618, USA

Corresponding author: Sanjeevikumar Padmanaban (san@et.aau.dk)

ABSTRACT To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis
techniques play an essential role. It is vital to find flaws at an early stage in design, components, material,
or manufacturing during the initial phase. This review paper attempts to summarize past development
and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL)
prediction, and like. The current state of the art in reliability research for electronic components, mainly
includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical
analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies’
vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and
techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and
the central research gap is highlighted.

INDEX TERMS Reliability methods, condition monitoring, faults and failures, prognostics, diagnostics.

I. INTRODUCTION

As the technology is advancing at an exponential rate,
the design of electronic products and systems also trend
towards miniaturization, integration, multi-function, and low
cost. An early-stage failure prediction is vital for the reliable,
successful, and long-lasting operation of electronic compo-
nents and devices [1]. In the era of integration, millions of
components are combined on a small-sized chip; the fail-
ure of one component can initiate the failure of the com-
plete device, which leads to escalating the global problem of
e-waste. The research study suggests that by the end of 2020,
the amount of worldwide e-waste generation is expected to
exceed 50 million tons, including 17.5 million metric tons
of small devices, lamps, and components; 9.1 million metric

The associate editor coordinating the review of this manuscript and

approving it for publication was Ramazan Bayindir

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

tons of big gadgets or devices. The freezing and cooling
equipment contribute 7.6 million metric tons, whereas com-
puters and connected IT components are responsible for
10.5 million metric tons of screens [2]. The various electrical
parameters and environmental factors influence the operat-
ing parameters of electronic components and devices, cause
faults or failures before the prescribed lifetime, as mentioned
in the datasheet. The literature suggests that various factors
affect the performance and life of electronic components,
i.e., temperature, humidity, vibration, dust, stress, etc. Fig. 1.
shows the various influential parameters.

The problem of e-waste is accelerating globally, at the rate
of 4% to 5% annually. Out of waste and discarded material,
numerous electronic components tend reusability.

Failure prediction depicts the time to failure, which helps
the user to estimate the reusable potential of the component.
In such a manner, electronic waste will be reduced, which will
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FIGURE 1. Influential factors for electronic components.

lead to green manufacturing. The various failure prognos-
tics techniques and reviewed their performance indices and
design trade-off. It has been further explored that voting tech-
niques are having a higher rate of parallel hardware redun-
dancy. Although, this technique is feasible to detect hard
failures, while subtle detection degradation in components
behaviour, it faces many difficulties. The innovation-based
detection system can be changed to employ the residuals of
an existing filter for better use and ease.

This paper is further organized into three sub-sections.
The first section relates to the condition monitoring of the
electronic components that analyze the root cause of faults
and failure. In the subsequent section, the health monitor-
ing of various active and passive electronic components is
discussed. The diagnostics, prognostics, and maintenance of
electronic components are explored in this section. The tech-
niques for estimating the remaining useful lifetime (RUL) are
reviewed in the third section. The experimental, empirical,
and data-driven techniques are explored and discussed in this
section.

Il. CONDITION MONITORING OF

ELECTRONIC COMPONENTS

The electronic components are widely used in almost every
design and manufacturing industry. The failure of electronic
components may lead to a complete breakdown or shutdown
of the system. The various researchers have studied the failure
of various electronic components and their failure detection
techniques. The condition monitoring is a technique that
assesses the health and condition of components or equip-
ment using different diagnosis and prognosis techniques. The
appropriate remedy is suggested based on the outcome of
condition assessment so that any kind of failure or fault can
be prevented. The process of condition monitoring is shown
in Fig. 2.

A. CONDITION MONITORING OF CAPACITORS
Due to low cost and space effectiveness, an electrolytic capac-

itor is extensively used in control applications and power
systems [3]. As per military handbook MILHDBK-217-F,
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electrolytic capacitor is considered as one of the most expen-
sive passive components in control systems and power elec-
tronics [4]-[6]. Fig. 3 shows the fishbone diagram for an
electrolytic capacitor. They discussed the electrolytic capac-
itor as the most critical component, which is majorly respon-
sible for most of the breakdowns, and it can fail even at a tem-
perature of 25°C. But, the internal temperature is considered
as a limiting factor for unexpected derating or destruction of
the electrolytic capacitor. As suggested by Evox Rifa [7] (a) in
the technical note, heat is the most significant factor which
affects the operational life. As heat enhances, the internal
temperature of the electrolytic capacitor tends to increase,
which can cause capacitors to fail. Researchers have reviewed
the failure mechanism of the non-solid category of elec-
trolytic capacitors [3], [6], [8], [9].

The cause and effect diagram for an electrolytic capaci-
tor is depicted as in Fig. 3. As the electrolyte evaporates,
the total volume of electrolytes reduces, which causes the
capacitance to decrease and equivalent series resistance to
increase. ESR has a growing effect on temperature, i.e., as
the ESR increases, the temperature also increases, which
further tends to evaporate the electrolyte, and the process
will go on [10]. So, as the end of life is considered, ESR is
regarded as the most influential factor, as compared to other
factors. An old rule of thumb that the failure of an electrolytic
capacitor depends on the loss of electrolyte [9], [11]. The
failure of the electrolytic capacitor is noticed when its 40% of
the electrolyte lost, which consequently increases the value
of ESR. Whereas Evok Rifa (a) has stated a condition to
detect the life-end of an electrolytic capacitor is, when the
equivalent series resistance has increased by two times its
initial value, then the capacitor is said to be failed [7]. As per
(Parler,b), EIA standard IS-749 has been used by Cornell
Dubilier, which specifies that when ten per cent of electrolytic
capacitors are failed due to parametric failure and ten per cent
are failed due to open or short circuit and when the ESR final
value is 200% of its initial value, that period is considered
as lifetime of electrolytic capacitors [12]. The variation of
temperature and ESR with frequency [13], stated that as the
frequency level reaches too few kHz levels, the equivalent
series resistance becomes the major factor which decides the
capacitance [5]. Considered capacitor as the most critical
component in the electronic industry, which needs special
care and attention to be paid for condition monitoring and
health prognostics, by specifying several examples [14]-[16].
Various methods have monitored the health of the electrolytic
capacitor. Observed the life of electrolytic capacitors by con-
sidering ESR as a critical factor [5], [8], [13]. The real-time
diagnostic method based on the evaluation of electrolyte
evaporation and the value of ESR to estimate the derating
or deterioration status of an electrolytic capacitor. The pre-
dicting method using the least mean square algorithm based
on adaptive filter modeling [17]. The condition monitoring
and failure identification methodology of electrolytic capac-
itors consider ESR as a critical factor. They have proposed
the methods so that the faulty component can be replaced
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FIGURE 2. Condition monitoring process.

before the actual failure occurs. The methodology to iden-
tify faults and failures is based on Kalman filters, gradients,
and recursive LMS algorithms as well as continuous-time
models so that necessary preventive and maintenance action
can be taken against faulty components [18]. While choosing
the capacitors, the correct rating of temperature, frequency,
and voltage must be selected. For X7R and COG ceramic
capacitors, presented time-based failure models at various
applications [19]. Rashmi et al. use an accelerated life test-
ing method to explore the failure of electrolytic capacitors.
The main concern is to follow the weight of the electrolytic
capacitor. When the capacitor is put under thermal stress,
the heat starts increasing, and electrolyte starts evaporating.
The reduction in weight of the electrolytic capacitor is the
crucial parameter of reduction in the electrolyte, which leads
to failure of the electrolytic capacitor—further, the method
to find critical time using accelerated testing methods. The
period at which ESR has been reduced to 200%, the cor-
responding lifetime is noted for the respective component.
In such a way, it saves the experimental time to estimate the
overall lifetime of the component [20].

B. CONDITION MONITORING OF

OPERATIONAL AMPLIFIER

The effect of pulsed ionizing radiation on an operational
amplifier and complementary BJT [21]. At the intermediate
stages, the failure induced by ionization has been identified.
Around complementary bipolar junction transistors, follower
mode has been constructed and investigated the effect of
emitter photocurrents of both configuration p-np as well as
np-n. It has been found that photocurrents flow in the opposite
direction [21]. In this manner, both facts are conflicting with
each other. In the case of the operational amplifier, the prob-
abilistic safety assessment (PSA) technique is used for eval-
uating the safety of a nuclear power plant. New technology is
proposed, which predicts the failure rate. By considering the
effect of diagnosis function in PLC, the calculated failure rate
is better than the conventional failure rate [22]. The failure
of solder joints is analyzed under the influence of tempera-
ture, vibration, and other stress parameters [23]. Condition
monitoring of solder joints for the reliability of SnAgCu
lead-free products, solder joints are the critical parameter to
be observed. Investigate the influence of simulation method-
ology on the growth of joint cracks of solder parts [24]. They
have used ANSYS 5.6 simulator and crack growth previous
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record to ascertain the correlation between growth and crack
initiation. Life prediction and assessment of lead-free solder
joint have been investigated. To verify the thermal fatigue,
the life of the PBGA assembly, which has to lead to free
solder joints with stress has been placed on the design of
the reliability concept [25]. The review of two different state-
of-art simulation approaches based on degradation [26].

C. CONDITION MONITORING OF

FIELD-EFFECT TRANSISTORS

For MOSFET, a novel SPICE based simulation technique
is proposed, which targets the drawbacks of previous tech-
nologies. Although these two degradation-based techniques
are based on the same physics of failure model, reliability
has been addressed from dissimilar viewpoints [26]. So, both
models are equally valuable for designing and manufacturing
phase as well as for the end-users. Health monitoring of
electronic components is presented using a continuous-time
Markov chain with Cox’s proportional hazard model. The
degradation analysis of power MOSFET is performed using
accelerated life testing, and a model for parameter estima-
tion is proposed [27]. While designing a chip, the designer
uses the degradation-based model to analyze the presence of
design-susceptible components in the chip. All the designers
and users assume that failures are random and ascendable so
that failure rate-based technique can be imposed. The sili-
con carbide power MOSFET is analyzed under short circuit
stress, and its degradation behaviour is explored using trap
analysis [28] It is further understood that design does not
dominate any of the failure modes of the circuit. Otherwise,
the manufacturers and designers need to explore advanced
methods to locate a more critical failure mechanism.

D. CONDITION MONITORING OF DIODES

The reliability of photonic devices continues to be a chal-
lenging issue. For early reliability predictions, a sublinear
model based on experimental data for 500-1000-his pro-
posed. The accuracy of early model predictions is assured by
minimizing measurement errors [29]. The failure analysis of
Schottky diodes is studied using derating rules. Experimental
validation is proposed for the reversed polarized Schottky
diodes; results are compared with derating rules published by
the European Space Agency [30]. A comprehensive review
of Light Emitting Diode (LED) failure modes and mecha-
nisms is presented. The mechanical stability of an LED is
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FIGURE 3. Fishbone diagram of electrolytic capacitor.
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explored by a solder heat resistance test as well as temperature
cycle tests [31]. The military handbook empirical method and
Markov reliability models are employed for reliability analy-
sis of diodes and concluded that diodes are more sensitive to
temperature cycling [32].

E. CONDITION MONITORING OF INSULATED GATE
BIPOLAR TRANSISTOR (IGBT)

In an inverter, incorrect wiring or mounting of an IGBT
could cause module destruction. Based on the wire bond
and solder joint, a reliability prediction model is proposed
to compute the system reliability of the electronic power
model. It is further explored that during power cycling, tem-
perature amplitude, and inhomogeneous component struc-
ture, degradation of IGBT accelerates [33]. Under extreme
operating conditions, a systematic methodology is developed
for Trench Insulated Gate Bipolar Transistor (T-IGBT) failure
mechanisms and identifies the cause of failure [34]. The reli-
ability assessment of IGBT is presented through a case study
of IGBT based power inverter module, and the degradation
behaviour of IGBT is analyzed through a machine learning
approach. The failure of IGBT is explored at accelerated
environmental parameters and mechanical stress [35]. A fail-
ure model for IGBT based photovoltaic (PV) systems based
on the ageing effect is discussed. It is also concluded that
bond wire fatigue is the critical parameter, which leads to
shortening the remaining useful lifetime of IGBT [36]. The
residual lifetime of insulated gate bipolar transistors (IGBT)
is explored using mathematical indices, and its performance
is analyzed at various critical parameters [37].

F. CONDITION MONITORING OF THYRISTOR

The thyristors are having a wide range of applications, from
dimmer to high voltage power transmission. The failure
mechanism of silicon carbide super-gate turn-off thyris-
tors(GTO) is analyzed, during extremely high current den-
sity pulsed operation, using the experimental approach and
computer-aided simulation [38]. For accessing the reliabil-
ity and temperature life model of thyristors, in the HVDC
converter system, HALT testing at extreme stress levels is
conducted, and feasibility is studied [39]. Accelerated life
testing based experimental approach is used for analyzing
failure in thyristor. An intelligent system is designed for
the reliability model of the thyristor. Artificial intelligence
techniques, i.e., artificial neural networks, fuzzy logic, and
adaptive neuro-fuzzy inference system, are explored, and a
graphical user design interface is framed for users. Accuracy
of all the techniques is accessed and compared [40].

G. CONDITION MONITORING OF SENSORS

Highly reliable assured sensors need in-depth knowledge of
its failure modes and analysis. Reference [41] used neural
network-based analysis for fault diagnosis and identification
of sensors. Reference [42] used principal component-based
fault detection for sensors. They proposed a fault diagnosis
scheme based on squared interval form of residual vectors,
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and the proposed system was validated using Monte-Carlo
simulation. The reliability of ceramic sensors was assessed
by [43]. A test protocol was established by [44] to evaluate
the reliability of commercially available hydrogen sensors.
Reference [45] estimated real-time identification of sensor
failure. Life analysis of the temperature sensor was done
by [46]. They further explored the free replacement warranty
policy for temperature sensors.

H. CONDITION MONITORING OF NANO-ELECTRONICS
Nanoelectronics has emerged as a revolutionary change in
the electronics industry, but its reliability assessment has
become a challenging issue. Reference [47] explored the
product quality of nanoelectronics components using a sys-
tem dynamics approach. Reliability of nano and micro filled
conductive adhesives were assessed by [48] by IR reflow,
thermal cycling, and pressure cooker test. Very less research
has been conducted in Nanoelectronics and associated parts.
The various failure modes of electronic components and
devices are enlisted in Table 1.

Ill. HEALTH MONITORING OF ELECTRONICS
COMPONENTS

Prognostic and diagnostic techniques assess the current
health of electronic components, which further determines
the residual life of the component. Fig. 4 summarizes the
process of health monitoring, starting from data collection to
maintenance of electronic component, as per decision given
by diagnostic and prognostic process. The method initiates
with the data collected from various sensors and systems,
and it grows towards fault detection, root cause diagnosis,
and optimization of the system. Life estimation is decided by
the prognosis method, and necessary repair/maintenance is
scheduled as per the decision.

A. DIAGNOSTIC OF ELECTRONIC COMPONENTS

The diagnostic is a process to determine the problem or
fault in a machine, system, or component and evaluating the
reason(s) of fault. Also, failure may have processed within
the system or device and appraising the condition or suscep-
tibility of such a system or device either during working con-
ditions, off-shelf, or under development stage. Table 2 depicts
the comparative analysis of various failure techniques.

To support globally integrated manufacturing activities,
propose the remote prognostic, diagnosis, and maintenance
system [49]. They also introduce remote diagnosis techniques
to be developed for their globally integrated system. The sin-
gle fault, as well as multiple faults, and study both gear fault
and bearing fault in the drive-line [50]. Wavelet transforms
to process the real-time domain vibration signals, and then
these preprocessed signals are used in the drive-line. Neural
networks are used to investigate the fault and identify the
specification of a fault occurring in the model drive-line.

Furthermore, it is explored that, by using multilayer arti-
ficial neural networks, single faults, as well as multiple
faults, are successfully classified into distinct groups. Using a
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TABLE 1. Device types and failure modes.

Device type Failure mode Device type Failure mode
-Short
. .. . . -Open . -Short
Capacitor, aluminium, electrolytic, foil -Elpe ctrolyte leak Capacitor, paper -Open
-Capacitance reduced
-Short -Short
Capacitor, ceramic -Change in value Capacitor, mica/glass -Change in value
-Open -Open
-Open -Short
Capacitor, plastic -Short Capacitor, tantalum -Open
-Change in value -Change in value
-Short -Change in value
Capacitor, tantalum, electrolytic -Open Capacitor, variable, piston -Short
-Change in value -Open
-Short -Short
Diode, general -Open Diode, rectifier -Open
-Parameter change -Parameter change
-Short -Parameter changes
Diode, silicon control rectifier (SCR) -Open Diode, small-signal -Open
-Short
-Failed off -Failed off/on
Diode, TRIAC -Failed on Diode, thyristor -Short
-Open

TABLE 2. Comparative analysis of failure techniques.

Techniques

Application Stage

Overview

FHA (Fault Hazard Analysis)
FMA (Failure Mode Analysis)
FEA (Failure Effect Analysis)

FMEA (Failure Mode and Effect
Analysis)

FMECA (Failure Mode, Effect and
Criticality Analysis)

FTA (Fault Tree Analysis)

ETA (Event Tree Analysis)

Development stage
Design Phase

Under fault and failure

Manufacturing and Assembly

Design and Manufacturing

Under fault and failure
Design and Manufacturing

An individual component; whose failure can affect

the entire system.

It identifies how failure could occur and preventive

measures for safety.

Fault analyzing for every component, comprising of

a complete system.

Detection, Diagnosis, and Correction.

Identify critical failure modes and safety hazards.

They were used for maintenance planning.
top-down approach with deductive failure analysis
Risk assessment tool using probability. Stops the

fault to accelerate further.

multivariate state estimation technique using the Bayesian
network, explain the response of feasibility study and provide
both faults diagnostic as well as fault estimation compe-
tencies for the Space Shuttle Main Engines (SSME) [51].
In their research, they simulate various single sensor failure
and five-component failure models for correct prognostic
and diagnosis. The output of simulation shows that it is a
feasible technique for fault estimation and fault diagnosis.
Using artificial neural networks ANN, suggest a method
for fault diagnosis and prognostics of rolling element bear-
ings [52]. Time-varying failure rate and weather conditions
are used to analyze the failure of PV systems, in contrast to
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the conventional failure model [53]. To select the diagnos-
tic methods and techniques decision-making model, mostly
used in predictive maintenance programs [54]. The suggested
model uses the integration of tools such as factor analysis
(FA) and analytic hierarchy process (AHP). This model is val-
idated in screw compressors, where a combination of lubri-
cant and vibration analysis is used. For condition monitoring
applications, A fuzzy logic-based expert system precisely,
prognosis, and diagnosis of the diesel engine through oil anal-
ysis [55]. A fault diagnosis method based on neural networks
has been developed by [56]. In normal healthy operating con-
ditions, a robust observer is designed to check and diagnose
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FIGURE 4. Health monitoring process of electronic components.

the faults and failures. Incorporating Neural Networks, vari-
ous states have been analyzed and compared, which helps for
fault prognosis. It also presents the implementation technique
for fault estimation and fault diagnosis [57]. After checking
their real-time availability for measurements, the proposed
method considers two independent and self- directed mod-
ules, which are the survival of fault indicators (for moni-
toring purposes). In Fault Detection and Diagnosis (FDD)
of gas turbine engines use a synergistic approach [58]. The
methodology employs soft computing, statistics, and signal
processing in a complementary behaviour to target fault esti-
mation at transient conditions. Traditional failure detection
and diagnosis methods use engine signatures acquired at
steady-state conditions. However, using steady-state engine
signatures, it is difficult to diagnosis emerging faults. Herein,
only moderate faults are developed and detected. Using a
fuzzy logic-based model and artificial neural networks, The
review of various vehicle fault prediction techniques [59].
To model a fault estimation service, different variables have
been studies. This method helps estimate and predict faults as
well as useful as a precautionary measure to avoid tangible
and intangible losses.

Vibration signal based condition monitoring, and the fore-
casting system to improve the specific critical equipment in
an industrial plant are discussed [60]. To detect and diag-
nose faults and failures of heavy-duty diesel engines, Infor-
mation modeling, and established databases for lubrication
samples [61]. They propose a new methodology based Spec-
trometric Oil Analysis Programme (SOAP) of lubrication
samples. The proposed technique is validated and analyzed
for both the mean time between failure as well as accuracy
in detecting the faults. As compare to prognostics, the fault
diagnostics is widely researched. It includes the detection and
classification of faults. Previously, the prognostic element
has not been given much attention. This research attempts to
review and study the prognosis element of condition-based
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maintenance (CBM) and its use in the manufacturing and
design industry to prevent and identify the faults and failures.
The Health monitoring paradigm of electronics components
is shown in Fig. 5.

B. PROGNOSTICS OF ELECTRONIC COMPONENTS
The prognosis is a technique that makes use of the acquired
condition monitoring data to predict a variety of useful infor-
mation relating to the condition of the machine or equipment
under study. It is an estimation technique for residual life of
a component/ equipment or device, probable condition of the
device after the specified time, and the probabilities of reli-
able operations henceforth. The advantages of the prognostic
technique, as the prediction of faults and failures, reduce
repairing cost and reduce unforeseen failures [62].
Pijnenburg ef al. survey the pitfalls of existing probabilis-
tic models. They use statistical analysis using regression type,
with explanatory variables acting additively on the hazard
function [63]. Siddiqui et al. treat the remaining useful life
as a random variable that represents the residual life of a unit
or entity [64]. Lim et al. consider the variable mean residual
life (MRL) as a life distribution parameter [65]. Tang et al.
review the remaining life as a random variable and using
various distribution functions; its reliability function is repre-
sented its asymptotic behaviour [66]. Hong Suh et al. specify
continuous and discrete wavelets for equipment prognosis
and diagnosis [67]. For gear fault diagnosis and prognosis,
they explain the wavelet-based techniques. Using plant oper-
ating data, Bom e al. explore the Weibull statistics as a useful
tool in estimating the residual life of a component [68].
Weibull distribution is used to analyze the reliability of
electronic devices using the rule of power law. This study
also summarized the sensitivity of hyperparameters under
different voltages [69]. Expose the multi-layer perceptron
neural networks in condition monitoring [70]. To determine
the residual life of a component, present a life consumption
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FIGURE 5. Health monitoring paradigm of electronics components.

monitoring methodology [71]. Due to vibration and temper-
ature, damage accumulation is measured using the physics
of failure in combination with recorded data. The dam-
age data information obtained from the test board measures
the remaining life of the solder joints. Here, two differ-
ent methods, namely, direct method and iterative method,
are applied to predict the residual useful life of a system.
Attempt to forecast reliability by using neural network tech-
niques using the history of failures [72]. The reliability
study of surface-mounted on printed circuit boards (PCBs)
is conducted using cycling thermal loading, and lifetime is
explored [73]. The review the existing residual life analyzing
and estimation techniques that are employed in gadgets and
electronic systems [74]. A health monitoring technique is pro-
posed, which estimates the remaining useful life of electronic
appliances and components and employs this technique in
spacecraft applications. For assessing the remaining useful
life (RUL) of washing machine components, propose a com-
plete two-step methodology for assessing residual life [75].
In the first step, using Weibull analysis, they utilize the mean
time between failure data to assess the average life of the
component. In the second step, they develop artificial neural
networks and analyze condition monitoring and prognostic
health data. At last, the residual life of the component is
explored by integrating ANN analysis with Weibull analysis.
In drilling operations, hybrid modeling technique for on-line
assessment performance and prediction of residual life using
vibration signals [76]. Using the wavelet packet decom-
position (WPD) technique, features have been extracted
from vibration signals. For analyze the health assessment
of tool wear, a hybrid Logistic regression (LR) analysis
with maximum likelihood technique is used. For estimate
the RUL (remaining useful life), the Auto-regressive moving
average (ARMA) model is then deployed. The proposed
model is validated using drilling operations, and the same
can also be implemented in other manufacturing processes.
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Demonstrate an experimental methodology to assess the
component’s life [77]. They summarize that progression is
directly related to acoustic emission. So, acoustic emission
has become a strong tool for the health prognosis of gears. For
reuse evaluation, investigate a new technique, based on the
determination of a threshold value [78]. Review the various
health prognostic techniques from different viewpoints such
as tools, concepts, and approaches to figure out the realistic
challenges of this methodology [79]. Assuming that based on
this estimation, repairing and maintenance and the minimiz-
ing of prediction errors is meaningful. Here, they demonstrate
a hybrid predictor based on the neuro-fuzzy ANFIS technique
for prognostic health studies. The hybrid prediction technique
estimates the residual life of electronic devices [80]. The
benefits of moth the techniques are fused into this proposed
methodology. Demonstrate the technique to estimate residual
lifetime as well as reuse the capability of used electronic
components [81]. The power semiconductor and capacitor are
explored using physics of failure, under ageing effect, and
feasibility of the multistate degraded system is analyzed [82].
For NIMH battery cells, The methodology to analyze remain-
ing useful life for reuse purposes, so that battery can be
reused, in case they are disposed of before the end of their
life [83]. Artificial Neural Network technique is used for the
prediction of residual life of machines [84]. For the life esti-
mation of the washing machine’s components, the vibration
method [85]. Accelerated life testing is conducted, vibration
signals are measured on electric motors. When the degrada-
tion state of equipment is not observable, suggest a methodol-
ogy to analyze the reliability, and the mean residual life [86].
Use the latest developed models for predicting the residual
useful life [87]. Explore the strengths and weaknesses of the
different prognostic models and identify the relative efficacy
of these models in different prognostic situations [88]. During
the implementation of the process model, the advantages
and necessity of Proportional Hazards Model (PHM) are
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discussed [89]. They propose an updating practice, where
samples are generated during model implementation, and pre-
vious samples are updated. A simulation-based observation
is carried out on a component degradation model. By this
method of updating sample values, it is analyzed that more
accurate reliability of remaining useful life is calculated. The
generalized likeness prognostic technique for a similarity-
based residual life estimation model [90]. Applications of the
Gaussian model is discussed for time-based health monitor-
ing of gear [91]. Gaussian model is used to explore the critical
value of harmonic components. Gaussian model is a nonpara-
metric model with the capability of flexibility and uncertainty
estimation. Due to its enormous advantages, it is used for time
series modeling and dynamic systems estimations.

Reactive Preventive

Maintenance

Automaintenance Predictive

FIGURE 6. Types of reliability centered maintenance.

C. MAINTENANCE AND REMEDY FOR FAULTY
ELECTRONIC COMPONENTS

Maintenance is a recurring and regular technique to keep
specific equipment or component healthy in a reasonable
operating condition so that component or equipment will
produce the expected outcome without the degradation of
service or derating of component life. There are four types of
reliability centered maintenance in practice, namely reactive
or condition-based breakdown maintenance (CBM), preven-
tive maintenance, predictive maintenance, and auto mainte-
nance [92], as shown in Fig. 6. In reactive or breakdown
maintenance, the equipment and machines are repaired after
failures occur. In preventive maintenance, equipment and
tools are maintained before breakdowns arise to reduce the
recurrence of collapse. Predictive maintenance determines
the condition of the on-shelf component to predict when
maintenance is required. Auto maintenance means periodi-
cally analyzing, cleaning, and maintaining equipment after
a regular interval. The latest research studies have presented
the fact that ageing-related failures can be supported using
preventive maintenance. But, condition-based maintenance
indicates the health condition of the device, it generates
an alarm when the device or component fails to produce
a specific result, and derating condition has been moni-
tored. Nowadays, the manufacturing and design industry
attracts more to condition-based maintenance (CBM). The
main motive of condition-based monitoring is to achieve
reliable, extended life and cost-effective operation of criti-
cal electronic equipment such as aircraft, spacecraft satel-
lite, or hydropower plants. The researchers have utilized
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condition-based maintenance for health prognostics of com-
ponents [93], [94]. In condition-based maintenance, collected
health data of equipment using vibration analysis, acoustic
analysis, or oil analysis, and then data has been analyzed and
processed [17], [95]-[97].

By condition-based maintenance approach, health moni-
toring of device or component has been explored, and resid-
ual life or mean time between failures has been estimated.
In CBM, health prognostics and condition monitoring of
device or component are two main issues to be identified.
An overview of the use of maintenance optimization models
has been given by Liao efal. [98] and Dekker [99]. For
single unit and multi-unit systems, review various mainte-
nance policies, and compare all the existing plans [100]. They
have put more emphasis on the single-unit system rather
than a multi-unit operation. A relationship between vari-
ous maintenance policies has also studied. To continuously
deteriorating and derating a single unit system, investi-
gate the analytical modeling of a condition-based inspec-
tion/replacement policy [101]. Considering the inspection
schedule, and replacement threshold value as decision param-
eters, a new maintenance policy for multi-level systems has
been proposed for gradually deteriorating single-unit sys-
tems. From the viewpoint of life cycle management, review
the adaptive role of maintenance. They suggest a mainte-
nance framework containing maintenance activities during
the product life cycle [102]. To set up an industrial plant,
an analytical model to select the most appropriate predic-
tion technique [103]. The new technique by integrating the
condition-based maintenance policy with sequential imper-
fect maintenance policy with Condition-Based Predictive
Maintenance (CBPM) [104]. Due to improper maintenance,
a new maintenance policy is proposed, which is concentrated
towards higher reliability and based upon the degradation
analysis. In the implementation of total productive mainte-
nance (TPM), focus on the systematic identification of obsta-
cles [105]. Propose a predictive maintenance technique based
on sensory updated degradation and derating method [106].
This proposed policy explores contemporaneous degrada-
tion models. In cumbersome process industries, for criti-
cally examine the components or assemblies, a summarized
review of the optimization models so that preventive steps for
repair or replacement of faulty components/assemblies can be
grasped [107].

IV. REMAINING USEFUL LIFE (RUL)

PREDICTION TECHNIQUE

The residual life of the component instructs the user to
replace or reuse the component as per the current health
status of the component. Fig. 7 shows the various tech-
niques for RUL prediction and assessment. Remaining use-
ful life (RUL) is a metric of component’s life that guides
the user to reuse the component again. Fig. 7 demonstrates
the various techniques which help predict the remaining
useful life [108]. The knowledge-based or human experi-
ence predicts the upcoming failure or fault. The prediction
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FIGURE 8. Empirical methods for RUL prediction.

based on historical field data or human experience is not
always accurate. So, statistical, analytical, or model-based
techniques are more successful than experience-based tech-
niques. Reviewed all existing methods and models of failure
prediction[109].

A. EMPIRICAL METHODS FOR RUL PREDICTION
Empirical standards are failure data collection resources
which are accepted by recognized industries and govern-
ment organization. Military handbook, Bellcore, Telecordia,
RIAC, etc. are the primary sources of empirical standards.
Military handbook is one of the empirical models that is based
on experience and survey-based data. The MIL-HDBK-217F
and MILHDBK-217-revised are two widely used versions
of the military handbook. The failure data is mostly from
US army maintenance data, test results, public information,
or field data. A topology is proposed for high gain dc-dc
converter reliability analysis using the military handbook, and
simulator n15 are opted to prove the theoretical results [110].
Similarly, other empirical standards like Bellcore,
TELECORDIA, RIAC, etc. explore components and have
collected their failure data. The empirical methods are shown
in Fig. 8. The different standards are useful in various appli-
cations, e.g., for military applications. MILHDBK-217F is
used, and for telecommunication applications, the use of
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TELECORDIA is famous. Table 2 compares the proper-
ties of the military handbook and TELECORDIA, analyzed
topologies and performances of five types of converters using
military handbook [111]. Reliability analysis of the digital
processor module using part stress method, incorporating
military handbook data (MILHDBK-217F) for reliability
prediction of nuclear power plant [112]. In such a way, the
military handbook has used as a powerful tool for the reliabil-
ity prediction of critical components and devices. Web-based
commercial software for failure prediction because rapidity
to produce the response also matters along with the accu-
racy [113]. Then, the comparison has been made of military
handbook and Bellcore method with commercially available
web-based software PRISM. Failure rate calculations have
been validated. Although it is easy to use pre-collected data,
as the technology advances and due to change in environmen-
tal parameters, most of the data in such standard books are
not up to date. The various reliability models are compared
in Table 3.

B. EXPERIMENTAL TECHNIQUES FOR RUL PREDICTION

Experimental methods are although time-consuming, but the
data is realistic. The respective component or device is kept
on the different stress conditions, and the behaviour of the
component or device is assessed. The accelerated life testing
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TABLE 3. Comparison between various reliability prediction models.

Parameters Reliability Prediction Models
MILHDBK-217F Telcordia SR-332/Bellcore NSWC-98/LE1
Application of Military Applications Telecommunication Industry Mechanical Industry

Reliability Models

Failure Calculation

Failure in Time (FIT) per million hours

Failure in Time (FIT) per billion hours

Use FIT along with material properties and

operating environment modes.

Environment

Classification

Fourteen environment classifications
(Three ground, eight air, one space, two

seas)

six environment classifications (Four

ground, one air, one space)

Three environment classification (two naval
and one ground) along with material

properties.

Device Model

SMT is available

SMT is not available

SMT is not available

Component level

lesser number of gate count IC

larger gate count IC

Mechanical components

Useful Life Analysis
Technique

the steady-state useful life failure rate

Infant mortality rate and steady-state

useful operating life failure rate

Part count and part stress

Manufacturer

Military handbook

Bell Communications Research

Naval Surface Warfare Center

method is the best method to explore the response of the
component or device in a particular set of conditions in less
time. The statistical techniques to analyze the accelerated life
testing method using step-stress tests [114]. For step-stress
accelerated life testing, develop a Bayes model [115]. The
accelerated life testing processes on a different set of capaci-
tors and analyze the most stable and reliable set of capacitors
by calculating the final capacitive and ESR failure time [116].
The experimented on electrolytic capacitors to find out its
life time [117]. This method proves to be a practical predic-
tive method. He has exposed the capacitors on accelerated
thermal and voltage environment and noted the survival time
of all the capacitors and estimated the total lie time of the
component. The thermal stress test of electrolytic capaci-
tors and ensured the weight of capacitors. Declination in
weight represents the evaporation of electrolyte, which in turn
increases the capacitance and decreases ESR [118]. Such a
way, accelerated life testing has proved as an effective way
to obtain the residual useful life, so that necessary action can
be taken before permanent failure[20]. Using accelerated life
testing and DOE approach explored the component’s relia-
bility incorporating the physics of failure [119, 120]. Acceler-
ated thermal electric testing is conducted for the development
of electronic products, at elevated temperature and electrical
load[121].

C. DATA-DRIVEN METHODS FOR RUL PREDICTION

The data-driven reliability technique is about analyzing the
data and estimate the reliability of components through sta-
tistical as well as intelligence techniques.

1) STATISTICAL METHODS

Statistical methods are describing or summarizing a collec-
tion of data. There are different techniques. Regression and
Bayesian techniques are the widely used statistical methods
for RUL prediction.
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2) REGRESSION METHOD

The regression line describes the relationship between the
predictor variable and response. explore a technique to ana-
lyze the equipment performance and to estimate the residual
life of the electronic equipment [122]. It follows proactive
maintenance practices. In the first stage, by considering the
logistic regression concept with maximum-likelihood tech-
nique, a performance model is established. They discuss the
practical situation using historical data or the non-availability
of sufficient empirical data. In the proposed logistic model,
using features of online data, Real-time performance is then
analyzed. For fault and failure detection of actuators, The
technique based on a data-driven approach [123]. Using
Gaussian based regression method, for remaining useful life
estimation of milling cutter, use an experimental approach,
using a small set of data [124]. Based on regression models
and time-series estimation methodologies, discuss a method
for the condition monitoring of machines The case of metal
cutting tools, the health prognostics, and condition monitor-
ing is done by using Hidden Markov Models (HMM) [125].
They claim that using HMM, estimation of remaining useful
life with higher accuracy is possible. The residual helpful life
of bearings is predicted using a logistic regression model in
combination with a hazard model [98]. Analytical expression
using regression analysis for tool life, with decision param-
eters such as temperature, cutting speed, feed, and depth of
cut [126]. The case of complex systems when it is challenging
to measure internal variables or sensors are unable to access
internal state variables, then how the residual useful life
can be predicted[127]. The residual life estimation of the
machine based on vibration analysis [128]. They suggest the
hybridization of two models Generalized Auto-Regressive
Conditional Heteroscedasticity (GARCH) and autoregressive
moving average (ARMA) model. Propose a hybrid technique
that integrates Logistic Regression (LR) with Relevance Vec-
tor Machine (RVM) to evaluate the actual degradation and
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estimate emerging failure until real failure takes place [129].
RVM analyzes the probability of failure after completion of
the training process. The proposed technique is validated by
applying the experimental data and simulated response to
this machine. The result interprets the effectiveness of the
proposed model. The similarity-based model is discussed for
health prognostics and to estimate the residual useful life of
the equipment [130]. The condition monitoring technique for
drill bit [131]. They combine logistic regression with autore-
gressive moving average model and assess the residual useful
life. The need and advantages of updating a proportional
hazard model (PHM) [89]. New samples are extracted by the
process of model implementation and estimate the remaining
useful life of a system—the existing techniques for predicting
failure before it occurs [87].

3) BAYESIAN METHOD

In inferential statistics and decision making, Bayesian logic
plays a vital role. Here, the prior knowledge of historical
events is used to estimate the upcoming events Construct
an assistant for on-line shopping, which helps an e-shopper
to choose the desired product from various on-line shops
based on user personal choice and preference [106]. This
proposed shopping assistant is developed based on value
networks that extend Bayesian networks with user prefer-
ence. This technique is validated by taking an example of
on-line shopping for bicycles. This made the system more
convenient and cost-effective. They review various methods
for condition monitoring of the system. The practical appli-
cability of Bayesian decision networks to review the effect of
design decisions on the life cycle performance [107]. Appris-
ing of Bayesian methods where real-time data of condition
monitoring updates the stochastic parameters of exponential
degradation models [108]. For monitored devices, they dis-
cuss a closed-form remaining useful life prediction model,
using degradation models updated data. At last, accelerating
life testing of bearings are conducted, degradation signals
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are extracted. The degradation data model and residual life
model are applied to these degradation signals and estimated
the residual life. The new methodology for the root cause
analysis and review of the case study of workplace accidents
such as floor-level falls [109]. This proposed methodology is
based on the machine learning concept, such as the Bayesian
decision network, which is trained using various algorithms
such as support vector machines and fault tree approaches.
Then responses obtained from various techniques are com-
pared. The Bayesian network proves to be the best methodol-
ogy for this research. The evaluation process of the residual
useful life of complex systems, where accessibility of internal
state variables is a problem [102].

4) ARTIFICIAL INTELLIGENCE (Al) METHODS
Artificial intelligence is concerned with programming com-
puters to perform specific tasks more efficiently and that too
at a higher pace, which in toto could be substantially better
than what could have been achieved by humans.

The various artificial intelligence techniques are shown
in Fig. 9.

5) ARTIFICIAL NEURAL NETWORK (ANN) METHOD

Artificial neural networks are one of the algorithms used in
machine learning. The neural network technique is a tech-
nique where computational methods stimulate the behaviour
of neurons. It explores the effect on computation time
when the dataset is increased or decreased. Artificial neural
networks help to predict, which is the best-suited model.
Backpropagation neural network suggested back propaga-
tion neural network technique as a widely used technique
in major industries as well as real-time applications, such as
grading of fruits maturity [132].Radial basis function (RBF):
using RBF and ANN, the remaining useful life of bear-
ings were estimated by Gebraeel et al. [133]. For achieving
more accurate RUL prediction in case of pump bearings,
Zhigang et al. suggest an artificial neural network (ANN)
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based method subject to condition monitoring. Mazhar et al.
integrated Weibull analysis with artificial neural networks
model to predict the useful residual lifetime of components
for reuse purpose [75]. Using historical data of condition
monitoring [134], Zhigang Tian et al. discuss an artificial
neural network approach [135]. Jihong Yan et al. suggest a
useful technique for estimating the residual life of compo-
nents by utilizing artificial neural networks approach and reli-
ability method [136]. Genetic algorithm and Particle swarm
optimization (PSO): Ozel et al. use neural network modeling
for prediction of surface roughness and tool flank wear of
various cutting conditions in turning [137]. Jesuthanam et al.
discuss the case of surface roughness estimation, where a
novel hybrid approach of Neural Network (NN) trained with
GA and PSO is incorporated [138].

6) FUZZY INFERENCE SYSTEM (FIS) METHOD

In condition monitoring and health prognostics, knowledge
from expert systems is mostly inaccurate. Therefore, mea-
sures of the uncertainties in expertise are required for an
expert system to produce robust outcomes. In fuzzy logic the-
ory, Uncertainty measures that are commonly used are prob-
ability and fuzzy member functions. In tool wear detection
and end of life prediction, fuzzy logic and fuzzy set theory
are extensively used. Using a fuzzy-based Bayesian tech-
nique, Yadav et al. propose a structured model for estimating
reliability improvement during product development [139].
In turning operations, Jiao et al. develop a fuzzy adaptive
network (FAN) to model surface roughness [140]. The fuzzy
adaptive network has the capability of linguistic representa-
tion of complex and indistinct data set as well as the learn-
ing ability of the neural network. A model is established
to validate the methodology, which represents the effects
of machining parameters on surface roughness. Afterwards,
this proposed model is validated by using the results from
pilot surveys. Daniel ef al. suggest the use of surface rough-
ness prediction techniques using fuzzy-nets [141]. The main
objective of this technique is to establish a hybrid fuzzy
net- surface roughness prediction model that uses vibra-
tion data and predicts surface roughness of turned work-
piece. Peter ef al. develop a graphic user interface based
on fuzzy logic, which monitors the life prediction of laser
machines [142]. Sivarao et al. compare machine performance
using neural networks and fuzzy logic [143]. Attarzadeh et al.
suggest a fuzzy logic-based realistic model attain higher
accuracy in software cost prediction. Sikorska et al. investi-
gate the cons and pros of the primary prognostic model to
deduce the real-time applications for prognostic models and
review their utility in engineering prognostics and diagnosis
areas [88]. For the tractive performance of the intelligent
air cushion system estimation, Hossain et al. adopt an adap-
tive approach using fuzzy logic [144]. Wang ef al. explore
an experimental model having a small set of data, using
Markov chain Monte Carlo simulation [145]. For failure
prediction of the component, they utilize the fuzzy logic
technique.
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7) ADAPTIVE NEURO-FUZZY INFERENCE

SYSTEM (ANFIS) METHOD

Lee et al. propose a method using an adaptive neuro-fuzzy
inference system(ANFIS), that co-relates texture features of
the surface image with actual roughness of surface [146].
Antony et al. use the design of the experimental approach
using the Taguchi method in integration with the neuro-fuzzy
model and provide deep insight for solving a multi-response
optimization problem [147]. For nonlinear dynamic systems
modeling, Golob et al. propose a decomposed neuro-fuzzy
model and its evolutionary learning model that uses an opti-
mized FIS technique [148]. To explore and estimate system
performance with more accuracy, transparency, and effi-
ciency, Xiao-Sheng et al. identify the forecasting problems
with a Belief Rule Base (BRB) [149]. Chen ef al. suggest a
new prognostic method using a hybrid technique of adap-
tive neuro-fuzzy inference system (ANFIS) and high-order
particle filtering [150]. The ANFIS is trained via machine
historical and empirical failure data. Based on Neuro-fuzzy
System (NFS) and Bayesian algorithms, Chen ef al. sug-
gest a novel approach for machine health conditions [151].
After training with machine data, the Neuro-fuzzy System
(NFS), is used as a health prognostic model to predict
the propagation of the time-based machine fault condi-
tion. From the comparison of actual and predicted data,
the probability density function is created using a neuro-fuzzy
system, and an online model update scheme is devel-
oped. By taking predicted data of model as prior infor-
mation, Bayesian estimation algorithms updated the degree
of belief, in combination with online measurements. The
outcome of the experiment interprets that the proposed
approach can predict machine conditions more accurately and
efficiently.

8) SUPPORT VECTOR MACHINE (SVM) AND SUPPORT
VECTOR REGRESSION (SVR) METHODS

Based on the statistical learning concept, Support Vector
Machine (SVM) is a powerful reliability analysis technique,
based on the learning system. It is one of the supervised learn-
ing algorithms, in which the learning machine is given a set of
features (or inputs) with the output values. A support vector
machine is an implicit tool for exploring nonlinear classifi-
cation and function prediction. Chun-Hsin Wu et al. reviews
the practical application of support vector regression (SVM).
They predict travel times and analyses the traffic data [152].
To predict engine reliability, Chiang Hong et al. attempt to
apply the support vector machine [153]. The result interprets
that this support vector regression model has better perfor-
mance than the conventional models. A new health prognos-
tic technique is proposed by Zhao et al., which is based on
LS-SVM as well as wavelet packet transform [154]. Using
an artificial neural network and support vector regression,
Reddy et al., trade with the development of accurate warpage
estimation model for plastic injection moulded parts [155].
To predict surface roughness in end milling based on machin-
ing parameters. Wang et al. introduce the least square support
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vector regression (LS-SVR) method [156]. Tomar et al. pro-
pose a novel methodology that estimates the pretext operating
margin by applying the support vector machine and compared
different kernel functions with weight [157]. The suggest
a hybrid technique, containing a probability approach and
support vector machine approach (SVM) to estimate degrada-
tion [158]. It is summarized that the remaining useful life pre-
diction using regression analysis, artificial neural networks,
and Fuzzy logics are widely used. Moreover, it is found from
the literature survey that Neuro-Fuzzy and support vector
regression techniques are not extensively used for modeling
tool life prediction problems. This lacuna seen is one of the
factors motivating the author to take up aforesaid techniques
for failure prediction of electronic components.

D. MATHEMATICAL MODEL FOR RUL PREDICTION

The mathematical model establishes a numerical relation
between influential variables and their output response. Var-
ious researchers have been used mathematical tools and
techniques for research problem identification and formula-
tion, for example, linear and dynamic programming, linear
and non-linear optimization, formulation and validation, etc.
Most of the mathematical models are complex and non-
linear, where heuristic methods have been used to find the
optimal solution. In [159] addressed the reliability assessment
of assembly parts in the remanufacturing context. A hybrid
linear column-creator technique was used to solve problems,
which consumed milliseconds. The disassembly issue was
addressed by [160]. They assessed cost and time taken by
the end of life products by graph-based linear programming
with a decision-making approach. The quality and value of
disassembly and reassembly concepts were targeted in this
paper. Reference [161] performed a cost-benefit function
using fuzzy logic for reverse logistics and closed-loop sup-
ply chain. Reference [162] used the stochastic model and
reliability theory for the assessment of degradation prod-
ucts. For the refurbishment of obsolete electronic compo-
nents [163] suggested decision-making software. They have
tried to ensure the replacement of end of life products using
testing and conduction of case study. For reliability assess-
ment of cell phones, [164] discussed quality based tests using
the simulation environment, for replacement or refurbishment
process. A linear programming based decision-making tech-
nique was formulated by [165]. They used the Markov chain
model and mathematical mapping using simulation-based
environment. Reference [166] discussed general reliability
prediction for stochastic models. Reference [167] used the
Taguchi approach for the design of experiments and analyzed
the reliability of cutting tools. For-profit maximization [168]
used particle swarm optimization. Consumer behaviour was
investigated by [169] using utility theory. Quadratic program-
ming with a sequential approach was used by [170]. They
used a sequential model for optimizing non-linear models.
Reference [70] used Brownian motion for the reuse concept
of faulty products.
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E. THE MODEL-BASED TECHNIQUE FOR RUL PREDICTION
The reliability prediction using empirical models are not
accurate and do not identify the root causes. With the evo-
lution of the latest technologies and devices, the need for
physics of failure technique becomes high. This type of
reliability technique considers failure modes and analysis to
identify the time to failure and cause behind the failure. For
exploring the reliability of semiconductor devices, Various
physics of failure techniques [171]. The wear-out mechanism
is deeply investigated using the physics of failure, and the life
of components is estimated with higher accuracy. It identifies
and models the dominant failure mechanism. The products
are exposed to an accelerated level of stress to explore the
minimum and maximum limit of operation. Using accelera-
tion factors has reviewed the effect of environmental factors
and electrical parameters, i.e., temperature and voltage, on the
performance of capacitors [172]. They have calculated actual
life by considering acceleration factors of voltage and tem-
perature. The reliability prediction approach is employed for
power electronic converters within a useful life and wear-out
period, using converters modeling the random hardware fail-
ures [173]. Table 4 shows the comparison between PoF and
MILHDBK.

Monte Carlo simulation: proposed a FORM and physics-
of-failure based approach using Monte-Carlo simula-
tions [174]. Incorporated Monte-Carlo and physics-of-failure
with history standards in qualification testing for prognostics
health management [175]. Graphical failure analysis: For
medium scale industries, proposed a hybrid model combining
empirical methods with graphical failure analysis by POF
of failed parts [176]. Statistical and deterministic approach:
explored statistical and deterministic approaches simultane-
ously to obtain accurate life expectancy information and to
create a reliable product [177]. FEM based PoF: combined
the design of experiments with FEM based physics-of-failure
models to define response surface methods for plastic IC
packages and make recommendations on increasing reli-
ability. Arrhenius model: discussed the challenges in the
estimation of reliability based on warranty data and proposed
a method for estimating component reliability using an accel-
erated life test model [178]. Stochastic based model: acceler-
ated life testing is incorporated to determine the momentum
of a wheel with physics of failure [179].

V. CRITICAL ANALYSIS

This paper is bifurcated in three significant subsections. The
documents related to the reliability prediction of electronic
components are enlisted in one section. Most articles deal
with root cause analysis of capacitors, operation amplifiers,
bipolar junction transistors, field-effect transistors, etc. Still,
a lot of research is necessary for the reliability exploration
of advanced devices like memristors, FinFET, MEMS, etc.
The multicomponent failure analysis is missing in this area
of study. The reuse potential is least covered along with
physical testing. Future extensions should investigate how the
failure of one component affects the reliability of others and
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TABLE 4. Comparison between physics-of-failure (PoF) and military handbook (MILHDBK).

Problem

Physics of Failure

Military Handbook

Model development

Root cause analysis

Accuracy

Device coverage

Arrhenius Model

Operating temperature

Data requirement

The models based on PoF supports probabilistic and
deterministic applications

The root cause is identified.

The accuracy level is higher than the military
handbook.

POF models are available for advanced and latest
devices. Various computer tools are available for the
reliability analysis of microelectronics devices.
Arrhenius model indicates the relationship between

steady-state temperature and MTBF. It applies to POF.

Failures based on temperature are explicitly
considered.

POF gives insight information on materials, stress
levels, architecture, and predicts MTBF and identifies

It cannot provide accurate design or
reliability estimation, as data is outdated and
assumption-based.

The root cause is not identified. Wear-out
issues are not targeted.

As the military handbook is based on
assumptions of constant failure rate data, so
the accuracy level is low.

Data is generally not updated. It does not
cover new devices.

The military handbook doesn’t recognize
explicit temperature variations.

Steady-state temperature effect analysis is
not accurate, as it doesn’t identify root cause
and MTBF.

The military handbook doesn’t explore
material structure and architecture, failure

root cause analysis.

modes, and root cause. Field reliability is
not predicted.

what is the scope of recover the faulty component. The next
section discusses the prognostic health approaches, which are
further divided into three parts: (a) diagnostic (b) prognostic
(c) maintenance of electronic components.

The papers discussed in this section is concentrated on root
cause analysis and its remedial effects. It covers a wide range
of issues like basic health assessment of components, cause
and effect, damage and failure models, and corrective mea-
sures for faulty components. However, several other defects
are not covered, including burn-in and warranty policies for
refurbished components, condition-based reliability evalua-
tion, multistage evaluation for reuse potential, etc. The last
section of this paper targets the various techniques involved
in remaining useful life prediction. This section deals with
three themes: (a) empirical (b) data-driven (c) model-based
methods. The papers presented in this section cover a variety
of statistical, intelligent, and empirical models for reliability
and residual life prediction. But, RFID based data acquisi-
tion, benchmarking, policies related to the degradation model
based on time, and usage are highly ignored. The experimen-
tal method is mostly dealing with accelerated life test model,
whereas other modes of testing should also be included.

VI. FUTURE RESEARCH

Most of the papers discussed component degradation, but
very few articles proposed the refurbishment or reuse options
after maintenance. Health assessment and real-time condi-
tion monitoring of end of life components so that refurbish-
ment can be possible. Quality as well reliability should be
tested for the refurbished or reused components. Rigorous
condition monitoring should be done for the case, where
multi-components are deployed along with a refurbished
component. Various other experimental techniques should
be addressed apart from accelerated life testing. Reliabil-
ity related to different topics should also be investigated,
i.e., data collection through RFID and experimental methods,
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validation and verification of collected data, real-time field
survey data, frequency of faults or failures, the inclusion
of expert opinion to modify the essential characteristics of
components.

The reliability prediction of VLSI circuits and systems,
memristors, OLEDs, FinFETs, smart sensors are highly
ignored. Future work can be done to analyze its reliabil-
ity. The optimized number and placements of components
should be explored, which will save power, time, and cost
as the Nano-electronics is growing with the accelerating rate.
Reliability should be investigated for nanocomposite based
fabricated LEDs, sensors, and devices. The manufacturers
should provide different warranty models for a different mode
of application. Users should give the flexibility to choose the
model as per their application area. The papers addressing
such problems are very less.

Researchers should focus on the risk and safety issues of
users. Papers addressing GUI models for real-time interfacing
between user and device are very few. It would be helpful
for the user for real-time monitoring of used devices or
components. Replacement/ dis-assembly perspective should
be addressed. Warranty models, re-certifications should be
designed for reused components. Accelerated life testing,
maintenance, and diagnosis strategies should be maintained
for second-hand products.

VIl. CONCLUSION
This paper provides an overview of the studies hitherto con-
ducted in the area of component reuse, maintenance, diag-
nostics, prognostics, and residual useful life prediction using
different techniques. Most of the maintenance techniques
address the maintenance-free life prediction of large plants
and equipment only.

The existing maintenance practices mainly aim at repairing
or replacing the failed components. These procedures ignore
the potential of reuse capability of these components/parts.
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The prudent approach effectively utilizing the reuse potential
of these otherwise discarded components would go a long
way in making a substantial saving in production and labour
cost as also in achieving the objectives of reliable electronic
industry.

Therefore, there is a strong need for developing simple
methods to identify the reuse potential (RUL) of used com-
ponents and parts. The failure prediction of one component
can save the entire system and warns the user to replace the
component with the operating one immediately.
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