IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received March 6, 2020, accepted March 28, 2020, date of publication April 21, 2020, date of current version May 5, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989408

Utilizing an Autoencoder-Generated Item
Representation in Hybrid Recommendation

System

TAN NGHIA DUONG ~, TUAN ANH VUONG, DUC MINH NGUYEN, AND QUANG HIEU DANG

School of Electronics and Telecommunications, Hanoi University of Science and Technology, Hanoi 100000, Vietnam

Corresponding author: Tan Nghia Duong (nghia.duongtan @hust.edu.vn)

This work was supported by the Domestic Master’s/Ph.D. Scholarship Programme of the Vingroup Innovation Foundation under Grant

VINIF.2019.TS.43.

ABSTRACT While collaborative filtering (CF) is the most popular approach for recommendation systems,
it only makes use of the ratings given to items by users and neglects side information about user attributes
or item features. In this work, a natural language processing (NLP) technique is applied to generate a more
consistent version of Tag Genome, a side information which is associated with each movie in the MovieLens
20M dataset. Subsequently, we propose a 3-layer autoencoder to create a more compact representation of
these tags which improves the performance of the system both in accuracy and in computational complexity.
Finally, the proposed representation and the well-known matrix factorization techniques are combined into
a unified framework that outperforms the state-of-the-art models by at least 2.87% and 3.36% in terms of

RMSE and MAE, respectively.

INDEX TERMS Collaborative filtering, matrix factorization, neighborhood-based, recommendation system,

similarity measure.

I. INTRODUCTION

Nowadays, the habits of consumers have been greatly
changed due to the rapid growth of information technology
and networking. People have access to tremendous amount
of online multimedia content, such as movies, music, news
and articles. While this growth gives users more choices, it
is more challenging for them to find relevant information.
Or, in another perspective, it is critical that the system can
provide automated and personalized recommendations to its
users. Such systems are called recommendation systems (RS)
these days [1]-[3].

In general, there are three main approaches for recom-
mendation systems [4]: the content-based method, the col-
laborative filtering (CF) method, and the hybrid method.
Content-based methods [5]-[9] suggest items based on the
correlation between the item description and user’s pref-
erence profile. This requires a substantial amount of item
features and users’ past behaviors. User preference models
are then estimated by machine learning techniques such as

The associate editor coordinating the review of this manuscript and

approving it for publication was Tossapon Boongoen

75094

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

stochastic gradient descent or mini-batch gradient descent.
However, the main drawback of this content-based method
is that the information representing item content is not
always available or, if available, not reliable. In contrary,
CF systems [10]-[14] generate recommendation of items
based on the analogy of users with similar preference with-
out making use of item content information. Furthermore,
CF techniques can examine the similarity in preference
between users based on their ratings on items. In more detail,
CF methods can be classified into two groups: memory-
based and model-based. Early implementations of RS are
memory-based (aka neighborhood-based) where neighbor-
hood algorithms are used to predict unknown ratings. Recent
implementations of RS are more devoted to model-based
techniques, after the success of matrix factorization model
in Netflix Prize [15]. The fundamental idea of model-based
approach is to learn a predictive model by analyzing the
user-item interaction for estimation of missing ratings. Both
types of CF often give better accuracy in prediction than
content-based one due to the fact that the behavior of a
specific user might be inferred from the behavior of users
who share same tastes. Nevertheless, the main weakness

VOLUME 8, 2020

https://orcid.org/0000-0002-2442-6263
https://orcid.org/0000-0002-2874-1922

T. N. Duong et al.: Utilizing an Autoencoder-Generated Item Representation in Hybrid RS

IEEE Access

of CF systems is that their performance decreases sharply
when the rating matrices are very sparse. Unfortunately, this
situation occurs frequently in practice because consumers are
often not willing to provide their evaluation on items that they
purchase or like. Furthermore, CF techniques are not capable
of suggesting new items that have not yet any interaction with
users, which is the cold-start problem. Consequently, hybrid
methods [16]-[19] which utilize both side information and
user preference appear to get the best of both worlds. The
proposed model in this paper can be classified as a hybrid RS.

Hybrid methods can be categorized into two sub-classes:
loosely coupled and tightly coupled methods [20]. Loosely
coupled methods simply combine the outputs of individual
content-based and collaborative filtering systems to make
final ratings using a linear combination [21] or a voting
scheme [22]. Tightly coupled methods are more sophisticated
in integrating user-item ratings and auxiliary information to
generate unified systems. In [17], authors incorporated user
profiles, movie genres and past interaction data into a single
model for predicting dyadic response in a generalized linear
model framework. One limitation of this work is the usage of
user profiles, which is currently a privacy issue that prevents
users from providing their personal information. In [19], each
item (scientific paper) is described by a 0/1-valued word
vector indicating the absence/presence of the corresponding
word from a dictionary of given unique words. Besides, there
are citation (links) between the papers that make the dataset
look like a social network which can be viewed as a graph
in which the nodes represent the papers (objects) and the
edges represent the links between objects. Making use of item
content (word vector) and relationship between items (links),
authors proposed a generalized latent factor model where
content-related information is considered as features for the
collaborative filtering methods. In [16], authors proposed a
unified view of matrix factorization where additional sources
of movie information (movie’s genres, movie’s actors) are
crawled from the Internet Movie Database to augment the
ratings in Netflix Prize data. Another model named Factoriza-
tion Machines (FM) which combines the strength of matrix
factorization and support vector machine techniques [23] is
also capable of utilizing both rating and auxiliary information
to make predictions. Nevertheless, the common point of these
methods is that the features such as movie’s genres or word
vector for a scientific paper are considered as good represen-
tations of the item content. In practice, this assumption is not
adequate for the recommendation task. It is often the case
that raw content-based information needs to be processed
carefully in order to be suitable for using in RS. This task is
called feature engineering which is often performed manually
and therefore tedious. It is even more challenging when the
content of items is texts, images or videos, which always
requires a hard and time-consuming work to discover good
representation for items. Collaborative Filtering Regression
(CTR) [18] is the state-of-the-art method leveraging textual
information for recommendation, seamlessly integrates col-
laborative filtering and topic modeling. Although CTR is an

VOLUME 8, 2020

appealing method which can produces interpretable recom-
mendations with high accuracy, the representation capability
of the model is limited to the topic model where items have
a rich textual content information (the title and abstract of a
scientific paper or the plot of a movie).

Recently, deep learning models have proven great poten-
tial for learning effective representations and gained dom-
inant performance across many domains such as computer
vision, speech recognition or text processing [24]—[29]. Nev-
ertheless, there is relatively little work on developing deep
learning techniques for recommendation tasks in contrast to
the enormous amount of researches on CF. Reference [30]
uses restricted Boltzmann machines instead of the traditional
matrix factorization formulation to perform CF and [31]
leverages user-user and item-item correlations to extend the
original work. Even though, these models actually belong
to CF methods due to the fact that they do not incor-
porate content information into making recommendations.
Some models using a convolutional neural network or deep
belief network for content-based music recommendation are
described in [32], [33]. However, models for predicting latent
factors from music audio are trained using the latent factors
learned by applying weighted matrix factorization to usage
data as ground truth. In other words, neural network is linked
directly to the rating matrix, which means the performance
degrades significantly when the ratings are highly sparse and
MF fails. Recently, Collaborative Deep Learning (CDL) [20]
has been proposed for joint learning a stacked denoising
autoencoder (SDAE) and CF, and proven encouraging per-
formance. Its idea is trying to learn a representation from
item content through some denoising criteria: firstly, a cor-
rupted version of the input is fed to an AE to reconstruct
the original input; then the response of the encoder part is
used as features of the CTR model. This work improves the
well-known model CTR for the particular problem of article
recommendation by replacing its Topic Model component
with a Bayesian AE. Collaborative Denoising Autoencoder
(CDAE) [34] might be regarded as a generative version of
CDL which addresses the general top-N recommendation
problem and the inputs are user behaviors instead of arti-
cle/item features. A drawback of CDAE is that it does not
take into account of side information (item features or user
attributes) which can be important for producing semantically
meaningful models and deal with the cold-start problems.
Besides, CDL and CDAE both make use of implicit data
which indicates whether a user likes/purchases an item or not.
It means that explicit data (item ratings) which is a highly
valuable information on user preference is not fully utilized.
Therefore, these models mainly focus on top-N recommen-
dation task, not suitable for rating prediction task. A newly
proposed model using an AE for rating prediction task is
item-based AutoRec (I-AutoRec) which estimates missing
values by applying one AE per item whose input size is
the number of known ratings [35]. In contrary to CDL and
CDAE, I-AutoRec directly handles explicit data to make reli-
able rating predictions. However, I-AutoRec only considers

75095

IEEE Access

T. N. Duong et al.: Utilizing an Autoencoder-Generated ltem Representation in Hybrid RS

user-item interaction and ignores secondary data like side
information which may lead to the difficulty in explaining
the produced recommendations.

In this paper, our work concentrates on movie rating
prediction, a classic research topic in recommendation sys-
tems since the Netflix Prize. Our empirical studies are
conducted on the latest version of the MovieLens dataset
released in October 2016. The MovieLens 20M dataset con-
sists of 20,000,263 ratings and 465,564 tag applications
across 27,278 movies created by 138,493 users. There is no
information about user profile; however, the dataset includes
a current copy of the Tag Genome which was based on
user-contributed content including tags, ratings and textual
reviews [36]. In other words, movies in this dataset are associ-
ated with secondary data reflecting content-related informa-
tion. To address the challenges mentioned above, we propose
methods to utilize side information of movies available in the
MovieLens 20M dataset in order to improve the performance
of the traditional recommendation systems. The main contri-
butions of this paper are summarized as follows.

« Utilize word2vec, an NLP technique, to preprocess the
raw data included in the Tag Genome to produce a more
consistent description of each movie.

« Apply auto-encoder, a deep learning technique, on the
cleaned version of Tag Genome to generate a more com-
pact and accurate representation for each movie which
not only reduces the error rates of predicted ratings but
also speeds up the whole system.

o Integrate the output of matrix factorization model
(SVD++) as the baseline estimate of user rating into
the hybrid content- and neighborhood-based system to
provide more precise recommendations over the state-
of-the-art techniques.

The rest of the paper is organized as follows. Section II
formalizes the problem and discusses existing solutions for
rating prediction task. Section III summarizes our previous
work. Experimental settings are described in Section IV. The
proposed models and their performance are presented along
with state-of-the-art techniques for comparison in Section V.
We conclude with a summary of this work and discussion of
future work in Section VI.

Il. PRELIMINARIES

In this paper, u, v denote users and i, j denote items. The
preference by user u for item i is denoted by 7,;, also known
as the rating, where high values indicate strong preference.
The (u, i) pairs for which r,; is known are stored in the set
K = {(u, i)|rui is known}. Uj; is the set of all users that rate
both items i and j, and U; is the set of all users that rate item i.
The task is to predict the unknown rating 7,; if user u has not
rated item i before. Two popular CF techniques for the rating
prediction are briefly formulated as follows.

A. MEMORY-BASED CF
There are two types of memory-based (or neighborhood-
based) CF: (i) user-oriented (or user-user) model [37] and

75096

(i1) item-oriented (or item-item) model [38], [39] of which
the latter is gaining more successes in practice [2]. An item-
item CF system (ii-CF) finds the most relevant items to the
item which was purchased or liked by a specific user and rec-
ommend them to her. The central component of these systems
is a measure indicating the similarity degree s;; between two
items which can be computed using common formulas such
as cosine similarity function (Cos) or Pearson correlation
coefficients (PCC) as follows.

2 ueu; Tuiluj

557 = cos(xi, x) = = - e)
\/ZueUi rui\/ZMGUj ruj

pec > ueuy (rui — i) - (ruj — 1)))

s =)

\/ZueU,-j (rui — Mi)z : \/ZueUij (r“J - /J“/)z

where (1, u; are the average mean ratings of items i and j,
respectively.

Recently, a modified version of (2) was proposed replacing
i, ; by baseline estimates by;, b,; which account for the user
and item effects:

ZueUij (rui — bui) - (ruj - buj)
\/ZMEUU (rui — bui)? - \/Zuew (ryj — buj)2

Then a shrunk correlation coefficient which helps avoid
overfitting when two items share only few common raters is
integrated into (3) to create a new similarity measure named
PCCBaseline:

3

Pij =

gPCCBaseline _ |Ull| —1 .
Y |Ujj| — 1 + shrinkage

ﬁt’j (4)

where |U| is the number of common users between items i
and j, and shrinkage is the shrunk correlation coefficient [40].

Let S (i, u) denote the set of k most similar items to i rated
by user u, then the predicted value of r,; can be computed
as a weighted average of the ratings of similar items (named
KkNNBasic model):

iy SV

_ Z,es (i,u) SijTuj (5)

";kNNBasic
ZjeSk(i,u) Sij

ui

or as a weighted average of the ratings of the similar items
while adjusting for user and item effects through the baseline
estimates (named KNNBaseline model [40]):

Zjesk(i;u) Sij (ruj - buj)

kNNBaseline = by
ZjeS"(i;u) Sij

~
Fyi

(6)

B. MODEL-BASED CF

Latent factor models are typical model-based CF techniques
aiming at uncovering latent features that explain the observed
ratings, among which the matrix factorization ones have
proved their superior accuracy and flexible scalability in the
Netflix Prize [41]. By using SVD factorization, both users
and items are mapped into a latent space of dimension k,
where each user can be characterized by a user-factors vector

VOLUME 8, 2020

T. N. Duong et al.: Utilizing an Autoencoder-Generated Item Representation in Hybrid RS

IEEE Access

pu € R¥ and each item by an item-factors vector ¢; € RX.
The prediction is done by taking an inner product 7,,; = qiT Du-
An extended version of SVD, named SVD++-, was proposed
to improve the accuracy by taking into account implicit feed-
backs for additional indication of user preferences. That is
why a second set of item factors is added, relating each item i
to a factor vector y; € R¥. The predicted rating is computed
as follows.

~ _1
Fui=aq] |put IR@IT2 Yy)
JER(u)

where R(u) contains the items rated by user u [42].

Ill. PREVIOUS WORK

In [43], we analyzed the distribution of the similarity scores
calculated using two commonly used formulas: cosine simi-
larity (Cos) and Pearson correlation coefficient (PCC) based
on the rating information. Intensive experiments on the origi-
nal MovieLens 20M dataset showed that the values of similar-
ity degree between two arbitrary items are 97% distributed in
the range of [0.85; 1] with a coefficient of variation of 4.83%.
Such a small coefficient of variation makes it difficult to
distinguish a pair of two relevant items from a pair of two
irrelevant ones. This badly affects the item-oriented models
which utilize the similarity degree between two items to
make useful recommendations. Based on this observation,
we proposed new similarity measures which could achieve a
wider spectrum of the similarity degree by using the cubed
version of the traditional formulas, named cubedCos and
cubedPCC, as follows.

‘ubedCos Cos\3
sgubedCos — (5Cos) ®)
cubedPCC __ , PCC\3
ij = (S,'j) 9
where sic.(’“, sf.CC are similarity measures calculated using

Cos and PCC, respectively. Experimental results on the orig-
inal MovieLens 20M dataset showed that newly proposed
measures totally outperform their counterparts at accuracy:
the item-oriented CF model using cubedPCC produces 6.4%
lower RMSE than using PCC.

In [44], we noticed that similarity measures using the rating
information faces some problems. Firstly, in practice the
rating matrix is highly sparse (for example, 99.47% of the
ratings in the MovieLens 20M dataset are missing); therefore,
evaluating the relevance between two movies that have many
ratings but share only few common users using above similar-
ity measures is not reliable. Secondly, calculating similarity
between two movies in practical recommendation systems is
a time consuming task due to the large number of users (often
in order of millions of users). To solve these problems, a novel
similarity measure was proposed using Genome Tag instead
of rating information. In more detail, each movie is character-
ized by a genome score vector g = {g1, g2, ..., 1128} Which
encodes how strongly a movie exhibits particular properties
represented by 1,128 tags [36], and the similarity s;; between

VOLUME 8, 2020

TABLE 1. Summary of the original MovieLens 20M and the preprocessed
dataset.

Ratings # Users | # Movies | Sparsity
Original dataset 20,000,263 | 138,493 27,278 99.47%
Preprocessed dataset 19,793,342 138,185 10,239 98.97%
movies i and j is calculated as follows.
G
CUSgennme Zk:l glkg]k
sm ™ = (10)
G 2 G 2
Zk=1 8ik D k=1 8k
or
G _ _
PCCenome > i—1(8ik — 8)(&jik — &)
Sgi.g = (11
8

VX9 ek — 802 S g — 2

where g; and g; are the mean genome scores of vectors g;
and g;, respectively; and G = 1128 is the length of genome
vectors. Experiments conducted on the preprocessed Movie-
Lens 20M dataset (keeping only movies with Tag Genome)
showed that the item-oriented CF models based on similarity
measures CoSgenome and PCCgenome provide accuracy equiv-
alent to the state-of-the-art CF models using rating informa-
tion whilst performing at least 2 times faster.

IV. EXPERIMENTAL SETUP

A. DATASET

In order to evaluate the performance of the models presented
in this paper, the MovieLens 20M dataset is used as a bench-
mark. The dataset, released by GroupLens in 2016, originally
contains 20,000,263 ratings and 465,564 tag applications
across 27,278 movies created by 138,493 users (all selected
users had rated at least 20 movies). The ratings are float
values ranging from 0.5 to 5.0 with a step of 0.5. Different
from the previously released datasets of GroupLens, this
dataset includes a current copy of the Tag Genome which was
computed on user-contributed content including tags, ratings,
and textual reviews [36].

Because the proposed system in this work makes use of the
information in tag genome vectors, it is necessary to apply
a preprocessing step into the original dataset. In more detail,
we firstly drop out the movies which do not have tag genome.
After that, only movies and users with at least 20 ratings are
kept. The preprocessed dataset now consists of 19,793,342
ratings (approximately 98.97% compared with the original
dataset) given by 138,185 users for 10,239 movies.

B. EVALUATION SCHEME

After preprocessing, the dataset is split into 2 distinct parts:
75% ratings of each movie are used as the training set and
the 25% remaining ratings as the testing set. To compare
the overall performance between models, three indicators are
used: RMSE (Root Mean Squared Error) and MAE (Mean
Absolute Error) for accuracy evaluation, and Time [s] for
timing evaluation. Here, RMSE and MAE are calculated

75097

IEEE Access

T. N. Duong et al.: Utilizing an Autoencoder-Generated ltem Representation in Hybrid RS

using the following formulas.

RMSE = Yoo (- ra)’ /ITESTSET| (12)
u,icTESTSET
MAE = > |fu — rui| /ITESTSET] (13)

u,icTESTSET

where |TESTSET)] is the size of testing set, 7; is the predicted
rating estimated by the model, and r,; is the actual rating
made by user in the testing set. Timing is measured as the
total duration for learning the model on the training set and
predicting all samples in the testing set.

All experiments are carried out on a workstation consist-
ing of an Intel®Xeon®Processor E5-2637 v3 3.50 GHz
(2 processors), 32 GB RAM and no GPU.

C. BASELINES AND EXPERIMENTAL SETTINGS

In order to evaluate the overall performance of the proposed
models in this paper, some popular methods for rating predic-
tion are implemented as baseline models.

o ii-CF [39]: PCCBaseline is used to measure the sim-
ilarity between movies and the number of neighbors
is set at 40.

e SVD [41] and SVD++ [42]: both models are trained
using 40 hidden factors with 100 iterations and step size
of 0.002.

o kNNBaselinegenome [44]: PCCgenome is used as the sim-
ilarity measure.

e I-RBM [30]: an item-based RBM is trained over
50 epochs with batch size of 1,000, learning rate of
0.01/batch size, momentum of 0.9 and a weight decay
of 0.01.

o FMgenome [23]: each feature vector is composed of user
and movie ID, movie genres and original genome scores
associated with each movie; the model is trained with
degree d = 2 and 50 iterations.

o I-AutoRec [35]: a 1-layer AE is trained using 600 hid-
den neurons, and the combination of activation functions
is (Identity, Sigmoid).

In our experiments, the optimal hyperparameters for
each baseline methods are carefully chosen using 5-fold
cross validation to guarantee fair comparisons. For
ii-CF model, the number of neighbors is picked from
{10, 20, 30, 40, 50, 100, 150}, and the similarity measures
implemented are Cos, PCC and PCCBaseline. SVD+-+
model is implemented with the number of latent fac-
tors k € {10, 20, 30, 40, 60, 80, 100, 120}. For I-AutoRec
model, the size of the hidden layer is set as n €
{200, 400, 600, 800, 1000} units; and the choices of acti-
vation functions f(-), g(-) are experimented with (Identity,
Identity), (Identity, Sigmoid), (Sigmoid, Identity), (Sigmoid,
Sigmoid). Finally, the regularization strength is tuned A €
{0.001, 0.01, 0.1, 1, 10} for all baselines.

V. PROPOSED MODEL

In this paper, we have three main contributions. Firstly, when
investigating the genome scores information used in our pre-
vious article [44], we found that the total number of tags can
be reduced by combining similar tags together while still get-
ting competitive results. Secondly, we could even compress
this information further by a method in deep learning called
autoencoder to automatically learn the hidden representation
of the genome scores. Finally, the resulting information can
be combined with the global information caught by the state-
of-the-art models like SVD and SVD++ to improve the
overall performance of the neighborhood models.

A. CLUSTERING RELEVANT GENOME TAGS

We find from genome data that there are many tags which
share the same meaning but have different names. This hap-
pens because GroupLens allows users to choose tags that they
find most appropriate with the movie without any limitation.
For instance, both user A and user B know that Captain
America: The Winter Soldier (2014) is a super hero movie;
however, user A can attach tag superhero for this movie
while user B can choose tag super-hero. Other examples are
displayed in Table 2. In theory, this would not be a problem
if the relevance values corresponding to similar tags are the

TABLE 2. Six movies along with a group of closely related genome tags from the MovieLens 20M dataset. New tag is assigned a composite score

calculated using the mean or median value of individual ones.

Genome Tag The 40-Year-Old Virgin Despicable Me Grown Ups Kick-Ass Kung FuPanda Toy Story Toy Story 3
fun 0.30 0.65 0.67 0.52 0.72 0.88 0.61
fun movie 0.26 0.61 0.49 0.68 0.62 0.82 0.64
funniest movies 0.80 0.05 0.10 0.11 0.06 0.04 0.05
funny 0.92 0.87 0.87 0.69 0.76 0.69 0.60
funny as hell 0.78 0.15 0.11 0.30 0.20 0.16 0.15
humor 0.84 0.64 0.46 0.89 0.66 0.63 0.57
humorous 0.83 0.70 0.53 0.69 0.72 0.69 0.59
fun_newmean 0.68 0.52 0.46 0.56 0.54 0.56 0.46
fun_newmedian 0.80 0.64 0.49 0.68 0.66 0.69 0.59
Difference 0.12 0.12 0.03 0.12 0.12 0.13 0.13
(17.65%) (23.08%) (6.52%) (21.43%) (22.22%) (23.21%) (28.26%)

75098

VOLUME 8, 2020

T. N. Duong et al.: Utilizing an Autoencoder-Generated Item Representation in Hybrid RS

IEEE Access

TABLE 3. Clustering relevant tags together. For brevity, we just show
several samples here, but there are 148 tags to be combined into
64 groups.

Original tag
007

007 (series)
soccer
football
gangs
gangster

New tag

007_new

football_new

gangster_new

gangsters

good acting
good action good_acting_new

great acting

same or at least close to each other so that the similarity
calculation would not be affected. Nonetheless, when ana-
lyzing the dataset we see that these values are frequently
distributed across a large range. For example, tag fun movie
of movie The 40-Year-Old Virgin has a genome score of
0.26; at the meantime, tag funny’s score is 0.92, and other
analogous tags such as fun, funniest movies and funny as
hell have scores varying in a large range from 0.30 to 0.80.
This situation occurs regularly as can be seen in Table 2.
Underlined genome scores represents the extreme values in
a typical group of relevant tags for six movies. Obviously,
content-related information of a movie cannot be described
exactly using such largely distributed values. This affects
negatively the accuracy of evaluating the analogy between
two movies using genome scores as in [44].

To eliminate the effect of freely user-created tags, we
propose to apply a mapping process: original tags which share
the common context are grouped into a new tag associated
with a composite score. More specifically, a cleaning step
including lemmatization and removing stop words and non-
alphabetic characters is performed to generate appropriate
form of raw tag genome. Then a natural language process-
ing technique named word2vec [45] is used to cluster the
same meaning tags. In this work, we use spaCy library! to
implement pre-processing and calculate the semantic sim-
ilarity between genome tags: two tags are considered to
share analogous meaning if their similarity score is greater
than a fixed threshold (chosen as 0.65 in our experiments).
After clustering similar tags, the size of genome vector is
reduced from 1,128 to 1,044. Table 5 demonstrates four of the
newly combined tags while Figure 1 illustrates the strength
of semantic relationship corresponding to each pair of these
original tags.

Finally, a composite score is assigned to the new tag. Two
methods to calculate this score are deployed in this paper:
mean and median. As can be seen in Table 2, (fun, fun movie,
funniest movies, funny, funny as hell, humor, humorous) are
considered as closely related tags and grouped into a new

1 https://github.com/explosion/spaCy

VOLUME 8, 2020

007

007 series

soccer -
football -
gangs -

0.90
0.75
I 0.60

-0.45

gangster -
gangsters -

good acting -
-0.30

good action -

great acting - -0.15

007 -

007 series -
football -
soccer -
gangs -
gangster -
gangsters -

o
c
=
O
©
©
o
o
(o2}

FIGURE 1. The magnitude of semantic similarity between some genome
tags.

good action
great acting

one named funye,. Then a score is attached to funy,,, using
the mean/median value of the individual scores. Clearly,
there is a significant disagreement between two methods: in
this example, the relative difference is approximately 22%
in most cases. The best choice is determined by substitut-
ing both values into (10) and (11) to calculate the simi-
larity between two movies. In order to evaluate the effect
of clustering similar tags, two baseline models utilizing the
content-based information in the rating prediction are imple-
mented: KNNBaselinegenome and FMgenome. KNNBaseline
model with different values of neighborhood size is imple-
mented to evaluate the performance of new genome tags.
For the purpose of comparison, the error rates and
complexity of KNNBaselinegenome and FMgenome mod-
els using original and newly generated tags are presented
in Tables 4 and 5, respectively. Experimental results show that

TABLE 4. Performance of kNNBaselineg and FMg models
using 1,128 original genome tags.
Model RMSE | MAE | Time [s]
kNNBaseline | Cosgrema | 0.8202 | 0.6243 | 1,521
(k=40) PCCS;;‘,;‘%;‘,‘;; 0.7912 | 0.6034 1,701
kNNBaseline | Cosgotome | 0.8037 | 0.6135 | 1,360
(k=10) PCCoEmL | 0.7905 | 0.6025 | 1,474
FMguemal 0.7918 | 0.6037 | 42,788

TABLE 5. Performance of kNNBaseline and FMgenome models using
1,044 new genome tags.

RMSE MAE .
Model Time [s]
Mean Median Mean Median

kNNBaseline Cosgsx)me 0.8123 | 0.8102 | 0.6187 | 0.6173 1,472
(k=40) PCCirome | 0.7894 | 0.7888 | 0.5992 | 0.5983 1,644
kNNBaseline Cosgﬁ,‘:’(,me 0.7992 | 0.7981 | 0.6102 | 0.6094 1,312
(k=10) PCCgﬁ;ﬁ‘mc 0.7886 | 0.7875 | 0.5982 | 0.5975 1,398
FMghome 0.7906 | 0.7898 | 0.6025 | 0.5995 40,106

75099

IEEE Access

T. N. Duong et al.: Utilizing an Autoencoder-Generated ltem Representation in Hybrid RS

using median value for new tags is a better choice. The large
gap between mean and median values, as seen in Table 2, is
due to the appearance of abnormal scores which are much
lower or higher than the majority. Therefore, a mean value
is heavily affected by these outliers while a median one
could effectively eliminate them. The benefit of clustering
relevant tags has been demonstrated at both the accuracy
and timing indicators of all models. It can be seen that
kNNBaselinegenome (k=10) model using PCCgenome as sim-
ilarity measure works best with both original and new tags.
However, substituting original tags with new ones helps lower
RMSE by 0.38% and MAE by 0.83% whilst performing
5.16% faster. Obviously, combining the same meaning tags
together not only creates a more precise representation for
each movie but speeds up the process of measuring similarity
degree due to using shorter genome vectors.

B. LEARNING NEW REPRESENTATION FOR EACH MOVIE
WITH AN AUTOENCODER

Experiments in the previous section show that cleaning orig-
inal data slightly improves the accuracy of the recommenda-
tion system. However, the number of new tags is rather large
(reduced by about 7% from raw ones); more importantly,
there may still exist groups of tags which are to some extent
related to each other. In other words, combining genome tags
based on only the semantic similarity may not explore hidden
links between tags. It is desirable to generate a more concise
and accurate representation for each movie which can capture
concealed but valuable information about the relationship
between tags.

Among current techniques for data engineering and learn-
ing representation, an autoencoder is widely used to discover
latent features embedded in raw data. It not only eliminates
the information redundancy but also generates new data rep-
resentation which is more precise and efficient [24], [46].
The simplest form of an autoencoder is a feedforward, non-
recurrent neural network which has an input layer and an
output layer with the same number of nodes, and one or
more hidden layers connecting them. An example of a 1-layer
autoencoder is illustrated in Figure 2. This neural network
is trained to minimize the difference between the input and
the output. Therefore, it can be considered that an autoen-
coder is constituted by two main parts: an encoder that maps
the input into the code, and a decoder that reconstructs the
original input from the code. In practice, only the first part
of this architecture is generally used to create a compressed
representation of the input that preserves the most relevant
information.

In this work, to keep reducing the dimension of genome
tags and learn hidden structures we attempt to apply an
autoencoder to newly created tags in the previous section.
Firstly, a 1-layer autoencoder is implemented with input
and output layers having 1,044 neurons corresponding to
1,044 new tags. KNNBaseline with &k = 10 and FMgenome
are chosen to evaluate the performance of new representa-
tions. Furthermore, we also apply a 1-layer autoencoder with

75100

Hidden layer

Input layer (“Bottleneck”)

Output layer

Encoder

FIGURE 2. lllustration of an autoencoder with 1 hidden layer.

1,128 nodes at input and output layers to original genome
tags for comparison. Similarity measure of KNNBaseline
model is still implemented with two options CoSgenome and
PCCgenome to determine the best method. The number of
hidden units is decreased from 1, 000 to 300 with the step
of 100 to find the optimal value. A grid search is performed
showing that the hyperparameters learning_rate = 0.01,
dropout = 0.2, num_epochs = 50, regularization = 0.01
gives good performance on the test set. Experimental results
are displayed in Table 6 where the optimal model is
highlighted.

The advantage of the data cleaning process in the previous
section is once again demonstrated in Table 6: taking the
newly created genome tags as the input of the autoencoder
generates a more precise representation for each movie than
original ones in all cases. Hence, we only focus on the cleaned
version of genome tags hereafter.

Figure 3 shows RMSE and MAE at different sizes of
hidden layer. The best result in the previous section is used
as reference (green lines Ref.). When the number of hidden
units is in the range [1,000; 800], the accuracy of the pro-
posed models has a modest improvement. However, when the
hidden layer has smaller sizes error rates drop out sharply
and reach the minimum value at 600. Compared to the ref-
erence model, we find that encoding 1,044 genome tags as a
600-element feature vector not only decreases the time com-
plexity but enhances the accuracy of the recommendations.
kNNBaseline model with CoSgenome provides a 0.19% lower
RMSE and a 0.12% lower MAE while performing 1.39 times
faster. With PCCgenome, the improvement over the reference
model is most impressive: our model has a 2.15% lower
RMSE and a 2.03% lower MAE while speeding up the whole
system by 1.33 times. FMgenome model ranks the second
in terms of accuracy; nonetheless, it performs significantly
slower than its counterparts. The lower error rates indicates
that the autoencoder can find hidden relationships among

VOLUME 8, 2020

T. N. Duong et al.: Utilizing an Autoencoder-Generated Item Representation in Hybrid RS

IEEE Access

TABLE 6. Performance of kNNBaseline and FMgenome models at different sizes of the hidden layer.

#Hidden Model 1,128 original tags 1,044 new tags
odel
units RMSE | MAE | Time[s] | RMSE | MAE | Time [s]
C 0.7987 | 0.6098 1,311 0.7933 | 0.6049 1,296
kNNBaseline OSgenome
1,000 PCCgenome | 0.7862 | 0.5969 1,330 0.7819 | 0.5939 1,314
FMgenome 0.7880 | 0.5978 39,838 0.7854 | 0.5962 39,822
. Cosgenome 0.7976 | 0.6085 1,226 0.7922 | 0.6042 1,203
kNNBaseline
900 PCCgenome | 0.7851 | 0.5960 1,295 0.7805 | 0.5922 1,274
FMgenome 0.7865 | 0.5971 36,026 0.7833 | 0.5947 36,003
. Cosgenome 0.7963 | 0.6074 1,160 0.7910 | 0.6033 1,138
kNNBaseline
800 PCCgenome | 0.7836 | 0.5949 1,132 0.7783 | 0.5898 1,210
FMgenome 0.7852 | 0.5960 30,681 0.7818 | 0.5939 30,658
Cos 0.7939 | 0.6056 1,101 0.7883 | 0.5980 1,075
kNNBaseline OSgenome
700 PCCgenome | 0.7798 | 0.5916 1,154 0.7742 | 0.5880 1,129
FMgenome 0.7828 | 0.5944 27,372 0.7792 | 0.5909 27,346
. Cosgenome 0.7913 | 0.6034 1,032 0.7860 | 0.5968 1,003
kNNBaseline
600 PCCgenome | 0.7767 | 0.5890 1,078 0.7706 | 0.5854 1,048
FMgenome 0.7781 | 0.5896 23,382 0.7743 | 0.5881 23,352
C 0.7982 | 0.6094 1,013 0.7934 | 0.6050 980
kNNBaseline OSgenome
500 PCCgenome | 0.7916 | 0.6036 1,106 0.7857 | 0.5964 1,073
FMgenome 0.7935 0.605 21,135 0.7880 | 0.5978 21,102
. CoSgenome 0.8036 | 0.6135 959 0.7988 | 0.6099 924
kNNBaseline
400 PCCgenome | 0.8003 | 0.6110 1,047 0.7942 | 0.6058 1,011
FMgenome 0.8027 | 0.6129 15,912 0.7970 | 0.6082 15,876
. COSgenome 0.8080 | 0.6160 934 0.8036 | 0.6135 895
kNNBaseline i
300 PCCgenome | 0.8061 | 0.6151 1,032 0.8002 | 0.6110 994
FMgenome 0.8075 | 0.6156 8,794 0.8024 | 0.6127 8,756

the genome tags and learn a more accurate representation
for each movie. Besides, the reduced computational com-
plexity in neighborhood-based models is owing to describing
a movie with an approximately 43% shorter feature vector
which helps reduce the time to calculate the similarity degree
between movies. However, all proposed systems work much
worse if we keep decreasing the size more: compressing the
data input to a very low dimension may cause a huge infor-
mation loss which eventually leads to irrelevant suggestions.

Normally, a deep neural network often outperforms a shal-
low one due to the capability of exploring more latent features
under the raw data. Therefore, we experiment with adding
more hidden layers to the autoencoder and evaluate the per-
formance changes. 3-, 5- and 7-layer autoencoders with the
bottleneck of 600 units are deployed with the same hyperpa-
rameters as above. Table 7 shows that a 3-layer autoencoder
which employs 2 layers at the encoder part generates a more
robust representation for each movie than a simple 1-layer
autoencoder. KNNBaseline with PCCgenome still works best
in all experiments: compared to the reference model, its error
rates are reduced by 2.32% and 2.24% in terms of RMSE and
MAE, respectively. Deeper architectures with more layers in

VOLUME 8, 2020

TABLE 7. Performance of kNNBaseline and FMgenome models when
using a deeper AE.

#Layers Model RMSE MAE Time [s]
Cosg, 0.7822 | 0.5942 1,046
kNNBaseline OSgenome
3 PCCgenome | 0.7692 | 0.5841 1,092
FMgenome 0.7702 | 0.5850 23,412
C 0.7895 0.5992 1,116
kNNBaseline OSgenome ? ’
5 PCCgenome | 0.7754 | 0.5890 1,230
FMgenome 0.7776 | 0.5895 23,531
Cos 0.7904 | 0.6024 1,238
KNNBaseline | =mom
7 PCCgenome | 0.7772 | 0.5894 1,371
FMgenome 0.7801 | 0.5919 23,712

the encoding part does not help to improve the accuracy so a
3-layer autoencoder is regarded as the best choice.
Empirical results also show that PCCgenome consistently
works better than CoSgenome. A possible explanation is that
PCCygenome applies a mean-centering procedure on vectors,
thereby the calculation of similarity degree between two

75101

IEEE Access

T. N. Duong et al.: Utilizing an Autoencoder-Generated ltem Representation in Hybrid RS

(a) RMSE metric
0.82
—o— Cos
0.81 e
—&— FM
—&— Ref. H
0.80 ,/

—_— .:;;7
0.79 Qe it

I\.\. u/
0.78 \'\

RMSE

0.77
0.76
1000 900 800 700 600 500 400 300
#hidden units
(b) MAE metric

0.620

—8— Cos
0.615 PCC T

—=— FM _—
0.610 e o /

0605 e— o o
0.600 \

n -
0.595 \._\
0.590 '\

0.585

MAE

0.580
1000 900 800 700 600 500 400 300
#hidden units

FIGURE 3. Plot of error rates with respect to the number of hidden units.
Reference model (not using autoencoder) is depicted as the horizontal
line.

TABLE 8. Comparison between the proposed model and baseline models.

Model RMSE | MAE | Time [s]
ii-CF 0.8046 | 0.6140 2,486
SVD 0.7922 | 0.6042 14,892

SVD++ 0.7894 | 0.5992 124,224

I-RBM 0.7951 | 0.6065 96,455

I-AutoRec 0.7808 | 0.5931 69,860
KNN-Content*E | 0.7692 | 0.5841 1,092

vectors does not take into account their analogy in absolute
values, only considers if they vary in the same way. We
name our selected model, KNNBaseline with & = 10 using
PCClenome 0n 600-element feature vectors compressed from
1,044 new genome tags by a 3-layer AE, as kKNN-ContentAF
and then compare it with baseline methods to evaluate
the overall performance. Experimental results in Table 8
demonstrates the superior of our proposed model against
the state-of-the-art techniques. Compared to SVD++, our
model totally outperforms in terms of accuracy and time
complexity: KNN-Content*F not only achieves 2.56% lower
RMSE and 2.52% lower MAE but works 113.76 times faster.

75102

I-AutoRec, an AE-based recommendation system, also
produces 1.51% higher RMSE and 1.54% higher MAE
but requires approximately 64x time complexity than the
proposed model. Compared to another popular deep learning-
based system, I-RBM, our model even operates more impres-
sively: the error rates are 3.26% and 3.69% lower in terms of
RMSE and MAE, respectively, while the duration for both
training and testing phases is 88.33 times shorter.

C. INTEGRATING WITH MATRIX FACTORIZATION
TECHNIQUES
Up to now, the proposed model can be regarded as a combi-
nation of content- and item-based neighborhood models: raw
information indicating the content of a movie is compressed
using an autoencoder to generate a feature vector which is
used in the process of measuring the similarity between two
movies. While neighborhood-based models could capture
local-level information and make reasonable recommenda-
tions promptly, their matrix factorization counterparts are
capable of extracting global-level information embedded in
the rating matrix in order to produce more accurate sugges-
tions at the cost of computational complexity. To enhance
the accuracy of the proposed hybrid model, a solution is
to integrate global-level characteristics explored by matrix
factorization methods into the system.

Recalling the rating prediction of kKNNBaseline model in
Section II-A:

ZjeS"’(i;u) Sij (ruj - buj)
Z}d%mo%
where b,; is the baseline estimate of the preference by user u

for item 7 and calculated as:

byi =+ by + b; (15)

The parameters b, and b; correspond to the observed devi-
ations of user u and item i, respectively. These parameters
b, and b; can be estimated from the least squares problem
as in [42]. The unknown rating r,; is composed of two parts:
the former is a coarse estimate and the latter serves as a fine
tuning against the former to generate a superior prediction.
Obviously, by; is the bottleneck of the prediction: an impre-
cise, or even not good enough, baseline estimate will lead to
an incorrect final rating.

We propose to replace b,,; by the rating produced by matrix
factorization methods. Therefore, the final results can have
the advantages of both content-based model and collaborative
filtering model including neighborhood and matrix factor-
izaton methods. To evaluate the performance, the outputs of
SVD and SVD++ models are in turn used as the baseline
estimate in (14). As shown in Table 9, substituting b,; with
the output of SVD++ provides lower RMSE and MAE than
of SVD. This is because originally the accuracy of SVD++
is superior to the one of its counterpart. Moreover, combining
the strengths of matrix factorization model with the model
proposed in the previous section constitutes a hybrid rec-
ommendation system which outperforms each individual in

~kNNBaseline
Tui = bui +

(14)

VOLUME 8, 2020

T. N. Duong et al.: Utilizing an Autoencoder-Generated Item Representation in Hybrid RS

IEEE Access

TABLE 9. Comparison between the proposed hybrid content-based and
CF model and baseline models.

Model RMSE | MAE | Time [s]
SVD++ 0.7894 | 0.5992 | 124,224
KNN-ContentAE 0.7692 | 0.5841 1,092
I-RBM 0.7951 | 0.6065 | 96,455
I-AutoRec 0.7808 | 0.5931 | 69,860
kNN-Content*E-SVD 0.7634 | 0.5796 | 15412
KNN-ContentAE-SVD++ | 0.7584 | 0.5732 | 124,856

terms of the accuracy. More specifically, Table 9 shows that
KNN-ContentAF-SVD++ gains:

e 3.93%-lower RMSE and 4.34%-lower MAE than
SVD++.

o 2.87%-lower RMSE and 3.36%-lower MAE than
I-AutoRec.

e 1.40%-lower RMSE and 1.87%-lower MAE than
KNN-ContentAE.

However, there is a trade-off between the accuracy and the
computational complexity. The ultimate hybrid model makes
better rating predictions than its separate components at the
cost of requiring more time to learn from data and make
recommendations. Indeed, the final rating is achieved after
a consolidation stage of outputs from individual models.

VI. CONCLUSION

In this paper, we first introduced an NLP-based clean-
ing process to eliminate the redundancy and conflict from
1,128 original genome tags which helped generate a more
precise description consisting of 1,044 new tags for each
movie. Then in order to discover the latent characteristics
under the genome tags and create a more concise repre-
sentation, a 3-layer autoencoder was utilized to compress
the newly generated tags into a 600-element vector. The
new representation not only helped produce a 2.32% lower
RMSE and a 2.24% lower MAE but speeded up the whole
system by 1.28 times compared to the reference model using
1,044 genome tags. Finally, we proposed to integrate the
strengths of the new representation for each movie and the
common CF techniques into a unified framework which
outperformed the state-of-the-art models by at least 2.87%
and 3.36% in terms of RMSE and MAE, respectively. This
improvement was achieved at the cost of increasing the com-
putational complexity because the final rating was predicted
using the outputs from individual models.

REFERENCES

[1] A.Rae, V. Murdock, A. Popescu, and H. Bouchard, “Mining the Web for
points of interest,” in Proc. 35th Int. ACM SIGIR Conf. Res. Develop. Inf.
Retr. (SIGIR), 2012, pp. 711-720.

[2] F. Ricci, L. Rokach, and B. Shapira, ‘“‘Recommender systems: Introduction
and challenges,” in Recommender Systems Handbook. Boston, MA, USA:
Springer, 2015, pp. 1-34.

VOLUME 8, 2020

[3]

[4]

[5

=

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]
(14]
[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]
(24]

[25]

[26]

[27]

(28]

[29]

T. Chen, X. He, and M.-Y. Kan, “Context-aware image tweet modelling
and recommendation,” in Proc. 24th ACM Multimedia Conf. (MM), 2016,
pp. 1018-1027.

G. Adomavicius and A. Tuzhilin, ‘““Toward the next generation of recom-
mender systems: A survey of the state-of-the-art and possible extensions,”
IEEE Trans. Knowl. Data Eng., vol. 17, no. 6, pp. 734-749, Jun. 2005.
K. Lang, “Newsweeder: Learning to filter netnews,” in Machine Learning
Proceedings. Amsterdam, The Netherlands: Elsevier, 1995, pp. 331-339.
M. Pazzani and D. Billsus, “Learning and revising user profiles: The iden-
tification of interesting Web sites,” Mach. Learn., vol. 27, no. 3,
pp. 313-331, 1997.

P. Lops, M. De Gemmis, and G. Semeraro, “Content-based recommender
systems: State of the art and trends,” in Recommender Systems Handbook.
Boston, MA, USA: Springer, 2011, pp. 73-105.

X.Li, M. Cheung, and J. She, “Connection discovery using shared images
by Gaussian relational topic model,” in Proc. IEEE Int. Conf. Big Data
(Big Data), Dec. 2016, pp. 931-936.

F. Narducci, P. Basile, C. Musto, P. Lops, A. Caputo, M. de Gemmis,
L. Iaquinta, and G. Semeraro, “‘Concept-based item representations for a
cross-lingual content-based recommendation process,” Inf. Sci., vol. 374,
pp. 15-31, Dec. 2016.

D. Billsus and M. J. Pazzani, “‘Learning collaborative information filters,”
in Proc. ICML, vol. 98, 1998, pp. 46-54.

A. Mnih and R. R. Salakhutdinov, ‘Probabilistic matrix factorization,” in
Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 1257-1264.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“BPR: Bayesian personalized ranking from implicit feedback,” 2012,
arXiv:1205.2618. [Online]. Available: https://arxiv.org/abs/1205.2618

X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering tech-
niques,” Adv. Artif. Intell., vol. 2009, Oct. 2009, Art. no. 421425.

Y. Wang, J. Deng, J. Gao, and P. Zhang, ““A hybrid user similarity model for
collaborative filtering,” Inf. Sci., vols. 418-419, pp. 102118, Dec. 2017.
J. Bennett and S. Lanning, “The netflix prize,” in Proc. KDD Cup Work-
shop, New York, NY, USA, 2007, p. 35.

A. P. Singh and G. J. Gordon, ‘“Relational learning via collective matrix
factorization,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, 2008, pp. 650—-658.

D. Agarwal and B.-C. Chen, “Regression-based latent factor models,”
in Proc. 15th ACM SIGKDD Int. Conf. Knowl. Discovery Data Min-
ing (KDD), 2009, pp. 19-28.

C. Wang and D. M. Blei, “Collaborative topic modeling for reccommending
scientific articles,” in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discov-
ery Data Mining (KDD), 2011, pp. 448-456.

W.-J.Li, D.-Y. Yeung, and Z. Zhang, “‘Generalized latent factor models for
social network analysis,” in Proc. 22nd Int. Joint Conf. Artif. Intell., 2011,
pp. 1705-1710.

H. Wang, N. Wang, and D.-Y. Yeung, “Collaborative deep learning for
recommender systems,” in Proc. 21th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2015, pp. 1235-1244.

T. Miranda, M. Claypool, A. Gokhale, T. Mir, P. Murnikov, D. Netes, and
M. Sartin, “Combining content-based and collaborative filters in an online
newspaper,” in Proc. ACM SIGIR Workshop Recommender Syst., 1999.
M. J. Pazzani, “A framework for collaborative, content-based and demo-
graphic filtering,” Artif. Intell. Rev., vol. 13, nos. 5-6, pp. 393-408,
Dec. 1999.

S. Rendle, ‘“‘Factorization machines,” in Proc. IEEE Int. Conf. Data Min-
ing, Dec. 2010, pp. 995-1000.

R. Salakhutdinov and G. Hinton, “Semantic hashing,” Int. J. Approx.
Reasoning, vol. 50, no. 7, pp. 969-978, Jul. 2009.

P. N. Huu, V. Tran-Quang, and T. Miyoshi, “Energy threshold adaptation
algorithms on image compression to prolong WSN lifetime,” in Proc. 7th
Int. Symp. Wireless Commun. Syst., Sep. 2010, pp. 834-838.

P. Nguyen Huu, V. Tran-Quang, and T. Miyoshi, “Video compression
schemes using edge feature on wireless video sensor networks,” J. Electr.
Comput. Eng., vol. 2012, Oct. 2012, Art. no. 421307.

N. Wang and D.-Y. Yeung, “Learning a deep compact image representa-
tion for visual tracking,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 809-817.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neu-
ral network for modelling sentences,” 2014, arXiv:1404.2188. [Online].
Available: http://arxiv.org/abs/1404.2188

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, 2015.

75103

IEEE Access

T. N. Duong et al.: Utilizing an Autoencoder-Generated ltem Representation in Hybrid RS

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

R. Salakhutdinov, A. Mnih, and G. Hinton, “Restricted Boltzmann
machines for collaborative filtering,” in Proc. 24th Int. Conf. Mach.
Learn. (ICML), 2007, pp. 791-798.

K. Georgiev and P. Nakov, “A non-1ID framework for collaborative filter-
ing with restricted Boltzmann machines,” in Proc. Int. Conf. Mach. Learn.,
2013, pp. 1148-1156.

A. Van den Oord, S. Dieleman, and B. Schrauwen, “Deep content-based
music recommendation,” in Proc. Adv. Neural Inf. Process. Syst., 2013,
pp. 2643-2651.

X. Wang and Y. Wang, “Improving content-based and hybrid music rec-
ommendation using deep learning,” in Proc. ACM Int. Conf. Multime-
dia (MM), 2014, pp. 627-636.

Y. Wu, C. DuBois, A. X. Zheng, and M. Ester, “Collaborative denoising
auto-encoders for Top-N recommender systems,” in Proc. 9th ACM Int.
Conf. Web Search Data Mining (WSDM), 2016, pp. 153-162.

S. Sedhain, A. K. Menon, S. Sanner, and L. Xie, “Autorec: Autoencoders
meet collaborative filtering,” in Proc. 24th Int. Conf. World Wide Web,
2015, pp. 111-112.

F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, p. 19, 2016.

J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic
framework for performing collaborative filtering,” in Proc. 22nd Annu. Int.
ACM SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR), 1999, pp. 230-237.
G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-
to-item collaborative filtering,” IEEE Internet Comput., vol. 7, no. 1,
pp. 76-80, Jan./Feb. 2003.

B. Sarwar, G. Karypis, J. Konstan, and J. Reidl, “Item-based collaborative
filtering recommendation algorithms,” in Proc. 10th Int. Conf. World Wide
Web (WWW), vol. 1, 2001, pp. 285-295.

Y. Koren, “Factor in the neighbors: Scalable and accurate collaborative
filtering,” ACM Trans. Knowl. Discovery Data, vol. 4, no. 1, p. 1, 2010.
S. Funk. (2006). Netflix Update: Try This at Home. [Online]. Available:
http://sifter.org/simon/journal/20061211.html

Y. Koren, ‘““Factorization meets the neighborhood: A multifaceted collab-
orative filtering model,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2008, pp. 426-434.

T. N. Duong, V. D. Than, T. H. Tran, Q. H. Dang, D. M. Nguyen, and
H. M. Pham, “An effective similarity measure for neighborhood-based
collaborative filtering,” in Proc. 5th NAFOSTED Conf. Inf. Comput. Sci.
(NICS), Nov. 2018, pp. 250-254.

T. N. Duong, V. D. Than, T. A. Vuong, T. H. Tran, Q. H. Dang,
D. M. Nguyen, and H. M. Pham, “A novel hybrid recommendation system
integrating content-based and rating information,” in Proc. Int. Conf.
Netw.-Based Inf. Syst. Cham, Switzerland: Springer, 2019, pp. 325-337.
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781. [Online].
Available: http://arxiv.org/abs/1301.3781

G. E. Hinton, “‘Reducing the dimensionality of data with neural networks,”
Science, vol. 313, no. 5786, pp. 504-507, Jul. 2006.

TAN NGHIA DUONG received the B.Sc. degree
in electronics and telecommunications and the
M.Sc. degree from the Hanoi University of Sci-

I % ence and Technology, Hanoi, Vietnam, in 2011

\ and 2014, respectively, where he is currently pur-

suing the Ph.D. degree. Since 2012, he has been

@ working as a Researcher and Lecturer with the
' Hanoi University of Science and Technology. His
' major research fields include signal processing

for ultra wideband communication (UWB), finger-

print recognition, image processing, and recommendation systems.

75104

TUAN ANH VUONG received the B.Sc. degree

in electronics and telecommunications from the

Hanoi University of Science and Technology,

e A Hanoi, Vietnam, in 2019. He is currently pur-
d :) suing the M.Sc. degree with Vietnam National
- University, Hanoi. His research interests include
recommendation systems and natural language

\) processing.

DUC MINH NGUYEN received the Ph.D. degree
in electrical engineering from the University of
Kaiserslautern, Germany, in 2009. He worked
as a Scientific Staff Member of the University
of Kaiserslautern. He is currently a Researcher
and Lecturer with the School of Electronics and
Telecommunications, Hanoi University of Science
and Technology, Vietnam. His research activities
involve digital hardware design, embedded sys-
tem design, formal verification of digital design,
embedded systems, and recommendation systems.

QUANG HIEU DANG was born in Hai Duong,
Vietnam, in October 28, 1976. He received the
B.Sc. degree in electronics and telecommunica-
tions from the Hanoi University of Science and
Technology, Hanoi, Vietnam, in 1999, and the
M.Sc. degree from the Delft University of Tech-
nology, Delft, The Netherlands, in 2003, where
he is currently pursuing the Ph.D. degree. From
1999 to 2001, he was a Research and Teaching
Assistant at the Hanoi University of Science and
Technology, where he has been working as a Researcher and Lecturer,
since 2009. His research interests include signal processing for long-code
WCDMA and ultra wideband communication (UWB), image processing,
and recommendation systems.

VOLUME 8, 2020

	INTRODUCTION
	PRELIMINARIES
	MEMORY-BASED CF
	MODEL-BASED CF

	PREVIOUS WORK
	EXPERIMENTAL SETUP
	DATASET
	EVALUATION SCHEME
	BASELINES AND EXPERIMENTAL SETTINGS

	PROPOSED MODEL
	CLUSTERING RELEVANT GENOME TAGS
	LEARNING NEW REPRESENTATION FOR EACH MOVIE WITH AN AUTOENCODER
	INTEGRATING WITH MATRIX FACTORIZATION TECHNIQUES

	CONCLUSION
	REFERENCES
	Biographies
	TAN NGHIA DUONG
	TUAN ANH VUONG
	DUC MINH NGUYEN
	QUANG HIEU DANG

