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ABSTRACT The uncertain and stochastic output of the wind farm results in a lot of problems when it is
connected to the power grid. In order to improve the wind power’s friendship to the grid, the wind farm
should has a certain self-discipline level. In this paper, it is studied from the perspective of the wind farm
self-discipline interval. First, the concept of wind farm self-discipline interval is proposed, followed by
a comprehensive index which is used to evaluate the wind farm self-discipline level by comprehensively
considering the interval width and the interval accuracy. Second, an optimization method is discussed
to obtain the optimal self-discipline interval. This method has general applicability, not only suitable for
normal distribution and other known distributions but also for arbitrary distributions (such as non-symmetric,
multi-peak distributions). Finally, the size of the energy storage system (ESS) in the wind farm is optimized
to guarantee a suitable wind farm self-discipline level. Simulation results show that the proposed method not
only effectively improves the self-discipline level of the wind farm but also has general applicability.

INDEX TERMS Wind power, self-discipline, energy storage system (ESS), optimization.

I. INTRODUCTION
As a clean and widely available resource, wind energy has
become one of the most popular renewable sources. However
the stochastic and uncertain characteristic of wind power also
brings rigorous challenges for the safety and stability of the
power grid when large scale wind power is connected to
system [1]–[4].

In order to mitigate the uncertain and stochastic nature of
wind power, improve the ability of the power grid to accept
the wind power, and eventually ensure a healthy and reliable
running of the power grid, many previous references have
studied it from many different aspects.

In [6], a fuzzy-based discrete Kalman filter approach is
proposed for smoothing output power fluctuations of the
wind and PV generation systems using a battery energy stor-
age system. The proposed approach incorporates the state
of health of the battery as a feedback to not only obtain
smooth output power but also improve the battery health by
adaptively regulating the battery power. In [7], a coordinated
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control system based on two control algorithms is proposed.
The first proposed algorithm chooses eligible Smart Parking
Lots(SPLs) for charging/discharging activity before receiving
a new sample of the wind farm output power. Afterwards,
the second proposed algorithm determines qualified vehicles
in selected SPLs. In [8], the fluctuation feature of wind
power output is analyzed both in time domain and frequency
domain. The degree of fluctuation is extracted and illus-
trated as quantization index (QI). Based on QI clustering,
the wind scenario with largest power fluctuation is selected as
‘‘worst performance,’’ according to which, scheduling time
horizon, along with the capacity and charging/discharging
power of ESS, can be determined. In [9], the authors opti-
mized the capacity of energy storage devices with the objec-
tive of minimizing wind power prediction errors. By quan-
tifying the functional relationship between energy storage
capacity and unserved energy, the minimum energy stor-
age capacity corresponding to different unserved energy is
analyzed. Reference [10] proposes to use discrete Fourier
transform (DFT) and discrete wavelet transform (DWT)
methods to schedule grid-scale energy storage systems
to mitigate wind power forecast error impacts while
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considering energy storage properties. The authors of [11]
reduce the impacts of wind power forecast errors while pro-
longing the lifetime of ESS. In [12], a mathematical model
and an optimization method is proposed to compensate the
forecast error of wind power and reduce the uncertainty of
wind power output. In [13], a direct control strategy is
proposed to track the deviation of the wind power plan,
the control strategy in this paper can change the charge and
discharge power of energy storage in real-time according to
the deviation of wind power and the state of charge.

Although massive efforts have been launched to improve
the acceptance ability of the grid to the wind power, very
little research has performed regarding the detailed analysis
from the perspective of the wind farm self-discipline interval.
In fact, the power grid itself has a certain ability to accept the
uncertainty of the wind power by fully utilizing the spinning
reserve to absorb the small uncertainty of the wind farm.
On the other hand, for the large scale of uncertainty, the wind
farm itself should has some methods of control, which in here
means the self-discipline.

Lu et al. in [4] has also stated that the coordinated
autonomous control strategy is strongly recommend for large
scale wind farm, because of its higher reliability and effi-
ciency than the joint operation strategy.

First, in this paper, a concept of wind farm self-discipline
interval is proposed. The actual output of the wind farm
should be limited within the self-discipline interval. A com-
prehensive index is also proposed to evaluate the wind farm
self-discipline level, not only considering the self-discipline
interval width but also the interval accuracy.

Second, in this paper, an optimization method is proposed
to solve the optimal self-discipline interval. Since at the same
confidence degree, the corresponding self-discipline interval
is not unique, how to find the optimal interval becomes a
problem need to be solved. The proposed method has general
applicability, it is suitable for arbitrary distributions (such as
non-symmetric, multi-peak distribution).

Finally, in order to guarantee the self-discipline interval,
energy storage system(ESS) is installed in the wind farm.
ESS is the device which can store energy at one time and
output it at another time. This characteristic enables the ESS
to mitigate the stochastic and uncertain output of wind power.
How to configure the ESS size is another problem to be
discussed in this paper. An optimal ESS size including the
optimal ESS rated power (Prate) and the optimal ESS rated
capacity (Erate) are configured in this paper.
Simulation results show that the proposed method not only

effectively improves the self-discipline level of the wind farm
but also has general applicability.

II. WIND FARM SELF-DISCIPLINE
Because the power grid has some spinning reserve, so it has
a certain absorption ability for the uncertainty of the wind
power. We should fully utilize the spinning reserve of the grid
to absorb some small uncertainty of the wind farm. As for the
large uncertainty of the wind power, the wind farm should

have a certain self-discipline to compensate. That is to say,
the wind farm output should be limited within a appropriate
interval, so that the wind output will be more friendly to the
power grid and can be more accepted by the grid.

If the wind farm output can be limited within a certain
appropriate interval, we call the wind farm has a certain self-
discipline.

A. THE SELF-DISCIPLINE INTERVAL
1) SELF-DISCIPLINE INTERVAL
The concept of self-discipline interval of the wind farm is first
defined in this paper.

Firstly, we will analyze the wind power actual output(Pact )
and the predict output(Ppre). Figure1 shows the actual wind
power and the predict wind power, Figure2 shows the wind
power predict error(e).

e = Pact − Ppre (1)

FIGURE 1. Wind power predict output and actual output.

where,
e is the wind power predict error;
Pact is the wind power actual output;
Ppre is the wind power predict output.

FIGURE 2. Wind power predict error.

From the historical data of the wind farm, we can obtain
the error distribution law. After the error distribution law is
determined, then the confidence interval under a certain con-
fidence degree(α%) can be obtained, as shown in Figure(3).
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FIGURE 3. Wind power predict error probability density function.

FIGURE 4. Wind power predict error and the confidence interval under
α% confidence degree.

eup and elow are upper limit and lower limit of the confidence
interval α %.

By analyzing the wind power predict error and the error
confidence interval, we can obtain the wind power predict
interval, the upper limit(Pup) of the interval is the predict
power add eup, the lower limit(Plow) is the predict power add
elow, as shown in Figure(5).

Pup = Ppre + eup Plow = Ppre + elow (2)

The wind farm self-discipline interval is defined as the
interval between the Pup and Plow.

FIGURE 5. Wind power self-discipline interval.

We expect the actual output of the wind farm can be limited
within the self-discipline interval, the actual wind output
outside the self-discipline interval can be compensated by the
energy storage system(ESS).

2) SELF-DISCIPLINE INTERVAL WIDTH
The width of the self-discipline interval is defined
in formula (3).

WIDTH = Pup − Plow
= (Ppre + eup)− (Ppre + elow) = eup − elow (3)

where,
WIDTH is the self-discipline interval width;
eup is the upper limit of the error;
elow is the lower limit of the error;
Pup is the upper limit of the wind power;
Plow is the lower limit of the wind power.
The width of the self-discipline interval is an important

index. The narrower the wind power self-discipline interval
is, the less spinning reserve the grid needs. If the width is too
large, the self-discipline interval will be meaningless. Under
the same confidence degree, the corresponding self-discipline
interval is not unique, how to find theminimumwidth interval
among these intervals is very important for the wind farm
self-discipline and for the power grid.

B. MINIMIZE THE SELF-DISCIPLINE INTERVAL WIDTH
1) WIND POWER PREDICT ERROR DISTRIBUTION
In order to obtain the minimum self-discipline interval
width, we should first analyze the wind power predict error
distribution.

Some previous references assumed that the error distri-
bution obeys a certain known distribution, such as normal
distribution, gamma distribution, beta distribution and so
on [17]–[20]. But the wind power predict error is uncertain
and stochastic, by far, there are still no specific known dis-
tribution that can accurately describe it. If a specified known
distribution being used, inaccuracy will occur.

A non-parametric kernel density estimation method is
introduced to estimate the error distribution in this paper [12].
The non-parametric kernel density estimation method is suit-
able for arbitrary shape error distribution. It can be applied
more generally and fits the distribution of the real data well.
It doesn’t use any prior knowledge of data distribution, nor
any assumptions of data distribution. Instead, it is a method
to study data distribution characteristic by data sample itself.
Thus it can describe the data distribution more accurately.

The general expression of non-parametric kernel density
estimation method is:

f (x) =
1
Nh

N∑
i=1

K (
x − xi
h

) (4)

where,
f (x) is the probability density function;
N is the total number of the sample;
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h is the bandwidth or smooth parameter;
xi is a given sample;
K ( ) is the window function.
The common window functions are Uniform function,

Gaussian function, trigonometric function, Gamma function,
etc. When Gaussian window function is used, its probability
density function is:

f (x) =
1
Nh

N∑
i=1

1
√
2π

exp(−
1
2
(
x − xi
h

)2) (5)

The advantage of this estimation is its general applicability.
It fits arbitrary shape distribution and is more consistent with
the true data distribution which leads to a better estimation
accuracy.

2) SOLVE THE MINIMUM SELF-DISCIPLINE INTERVAL
When the confidence degree(α%) is the same, the corre-
sponding self-discipline interval is not unique, as shown in
Figure(6). Figure(6) shows some of the intervals (not all
intervals) which satisfied the α%confidence degree. The goal
is to find the minimum interval.

For the symmetric distribution, we can use the traditional
method (symmetrical quantile method) to solve the mini-
mum self-discipline interval. For the arbitrary shape dis-
tribution(e.g. non-symmetric, or multi-peak), if we use the
traditional method (symmetrical quantile method) to solve
the self-discipline interval, the result is not necessarily the
minimum. How to find the minimum interval width of the
arbitrary shape distribution is a problem to be discussed in
this section.

FIGURE 6. Different self-discipline intervals under α% confidence degree.

An optimization method is proposed to obtain the min-
imum self-discipline interval. Let f (x) be the probability
density function of the predict error, it is given by formula (5),
let F(x) be the error probability distribution function, so F(x)
equals the integral of the f (x), as shown in formula(6 ).

F(x)=
∫
f (x)dx=

∫
1

Nh
√
2π

N∑
i=1

exp(−
1
2
(
x − xi
h

))dx (6)

Let x1 be the lower limit of the confidence interval; x2 be
the upper limit of the confidence interval. Let P(x1 ≤ x ≤ x2)

be the confidence degree(α%), which means the probability
occurred in the interval (x1 ∼ x2), then:

P(x1 ≤ x ≤ x2) = F(x2)− F(x1) (7)

The optimization problem can be expressed as follows:
Objective function:

min(x2 − x1) (8)

Constraint condition:

F(x2)− F(x1) = α% (9)

where,

F(x2)− F(x1)

=

∫ x2

x1
f (x)dx

=
1

Nh
√
2π

N∑
i=1

∫ x2

x1
exp[−

1
2
× (

x − xi
h

)2]dx

=
1

Nh
√
2π

N∑
i=1

h

√
π

2
[erf (

x2 − x1
√
2h

)− erf (
x1 − xi
√
2h

)]

=
1
2N

N∑
i=1

[erf (
x2 − xi
√
2 h

)− erf (
x1 − xi
√
2h

)] (10)

where:

erf (x) =
2
√
π
×

∫ x

0
e−

t
2 dt (11)

We use the interior-point method to solve this optimization
problem, and the minimum self-discipline interval can be
obtained.

C. EVALUATION OF THE SELF-DISCIPLINE LEVEL
The width of the self-discipline interval is an important index
of the wind power self-discipline level. The narrower the self-
discipline interval width, the less the spinning reserve needed
of the grid.

The minimum self-discipline interval of the wind farm
is always expected for the grid. However, is the self-
discipline interval width enough to evaluate the wind farm
self-discipline level? Besides the interval width, we should
also consider the accuracy of the self-discipline interval. The
interval accuracy is the percentage of actual values falling into
the interval [21], [22].

The index PICP (the prediction interval coverage prob-
ability) can be used to evaluate the self-discipline interval
accuracy. PICP is the percentage of actual values falling into
the confidence interval, as shown in formula (12 ).

PICP =
1
N

N∑
i=1

ci (12)

where,
N is the number of test samples;
If the test sample is located in the confidence interval,

ci = 1, otherwise ci = 0.
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We always hope the wind farm self-discipline interval has
narrower width and largerPICP.But in fact, these two indexes
are conflict and restrict each other mutually. Under the
same confidence degree, the narrower the width, the smaller
thePICP, while thewider thewidth, the larger thePICP. How
to comprehensively evaluate these two contradictory indexes
is an urgent problem.

In this paper, a comprehensive evaluation index F-measure
from the field of information retrieval is introduced to
the field of the wind power. F-measure can comprehen-
sively evaluate the two indexes which restrict and contradict
mutually [12].

F-measure equals the weighted harmonic average of the
two contradictory indexes. In this paper, the wind farm
self-discipline level (SDL) can be evaluated by F-measure.
SDL is defined as the weighted harmonic average of PICP
and WIDTH, as shown in formula(13).

SDL =
2× PICP× 1

WIDTH

PICP+ 1
WIDTH

(13)

SDL comprehensively considers the two contradictory
indexes. It gives us an easy method to evaluate the level of
the wind farm self-discipline.

III. THE ENERGY STORAGE SYSTEM CONFIGURATION
In order to provide an optimal self-discipline interval of the
wind farm, ESS should be installed in the wind farm to
compensate the actual wind power outside the self-discipline
interval.

When the actual wind power is greater than the upper limit
of the self-discipline interval, the ESS charges; when the
actual wind power is less than the lower limit of the self-
discipline interval, the ESS discharges; when the actual wind
power is between the lower limit and the upper limit, the ESS
does not work. Through the appropriate ESS configuration,
the wind farm output can be limited in the interval between
the lower limit and the upper limit, which means the wind
farm can provide a self-discipline interval to the grid.

In this section, we will discuss how to configure the ESS to
provide the optimal wind farm self-discipline interval to the
grid [27].

FIGURE 7. Self-discipline intervals and the actual wind power.

FIGURE 8. Self-discipline interval and the actual wind power.

A. THE ESS RATED POWER
Let PESS [i] be the actual charging and discharging power of
the ESS, as shown in the following formulas:

When Pact > Pup or when e > eup:

PESS [i] = Pact − Pup = Pact − (Ppre + eup) = e− eup

When Pact < Plow or when e < elow:

PESS [i] = Pact − Plow = Pact − (Ppre + elow) = e− elow
Plow < Pact < Pup

When:

PESS [i] = 0

where,
PESS [i] is the actual charging and discharging power of

the ESS;
eup, elow are the upper limit and lower limit of the wind

power predict error;
Pup, Plow are the upper limit and lower limit of the wind

power self-discipline interval;
Pact are actual wind power.
To sum up:

PESS [i] =


0 Plow < Pact < Pup
Pact − Pup Pact > Pup
Pact − Plow Pact < Plow

(14)

Or

PESS [i] =


0 elow < e < eup
e− eup e > eup
e− elow e < elow

(15)

The ESS rated power is the maximum absolute value
of PESS [i], as shown in formula (16).

Prate = max |PESS [i]| (16)

B. THE ESS RATED CAPACITY
In this paper, the time window is taken as one day to con-
figure the ESS rated capacity [26]. The output data of sev-
eral typical days are extracted from the whole year’s data
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of the wind farm, and then the mathematical expectation
value of all typical daily energy storage configuration results
is calculated, which is the optimal configuration result of
the ESS.

By accumulating the charge and discharge of the ESS at
each sampling time, the energy fluctuation of ESS relative to
the initial state at different sampling time can be obtained as
formula (17).

E[n] =
n∑
i=1

(PESS [i]×1t) (17)

where,
E[n] is the energy fluctuation of ESS at the nth sampling

point relative to the initial state, i.e., the sum of accumulative
charge and discharge of the ESS in the first n sampling
periods. The unit is MWh;
PESS [i] is the actual charging and discharging power of

the ESS, as shown in formula (14) and (15);
1t is the sampling period. The sampling period in this

paper is 10 min, i.e., 1/6 hour, the unit is hours;
i is the nth sampling point;
n is the number of sampling point, If the time window is

one day, then n = 144.
According to the energy fluctuation in the whole sampling

period, the difference between the maximum and minimum
energy fluctuation can be calculated [5]. Considering the
limitation of the state of charge (SOC), the rated capacity of
the ESS can be obtained, as shown in formula(18).

Erate =
max(E[n])−min(E[n])

Sup − Slow
(18)

where,
Erate is the rated capacity of the ESS.
max(E[n]),min(E[n]) are the maximum and minimum

energy changes relative to the initial state in the whole sam-
pling period respectively.
Sup and Slow are upper and lower limit constraints of the

state of charge (SOC) respectively. In practice, in order to
avoid over-charging and over-discharging in actual operation
of the ESS, the values should be appropriately taken in (0, 1).
In this paper, the values are 0.9 and 0.1 [24], [25].

From the method in this section, we can obtain the optimal
ESS configuration to guarantee the optimal wind farm self-
discipline interval.

IV. CASE STUDIES
Field data of a wind farm in Ohio from 1 January to
31 December 2012 are studied in this paper. The sampling
interval is 10 min, and the maximum output of the wind farm
is 100 MW. Lithium batteries are selected for the ESS.

A. THE OPTIMIZATION OF THE WIND FARM
SELF-DISCIPLINE INTERVAL
1) WIND POWER PREDICT ERROR DISTRIBUTION
The non-parameter kernel density method is used to estimate
the predict error distribution. It is suitable for arbitrary shape

distribution, and is only determined by data itself, so it can
fit the data distribution more accurately. The result is shown
in figure (9). For comparison, the normal distribution and the
frequency histogram are also shown. It is obvious that the
non-parameter kernel density estimation method can better
fit the real data.

FIGURE 9. Wind power predict error distribution.

2) MINIMIZE THE WIDTH OF THE SELF-DISCIPLINE INTERVAL
For the arbitrary shape probability density function, we use
the optimization method in section II B to solve the minimum
self-discipline interval. The objective function is shown in
equation (8), and the constraints are shown in equations (9).
The optimization result is calculated and shown in table (1).

For comparison, we also use the traditional method (sym-
metric point method) to calculate the self-discipline interval,
the result is shown in Table (1).

TABLE 1. The self-discipline interval width under different confidence
degree.

From table (1), we can find that when the confidence
degree is the same, the corresponding self-discipline inter-
val is not unique. Under every confidence degree, the self-
discipline interval width obtained by the proposed method in
this paper is smaller comparing to the traditional method.

Taken 90% and 70% confidence degree as example,
Figure(10)∼ Figure(13) show the different interval obtained
by the two methods respectively.

From above analysis, by using the proposed optimiza-
tion method in this paper, we can obtain the mini-
mum self-discipline interval under every confidence degree.
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FIGURE 10. Self-discipline interval obtained by the traditional method
under 90% confidence degree.

FIGURE 11. Self-discipline interval obtained by the proposed method
under 90% confidence degree.

FIGURE 12. Self-discipline interval obtained by the traditional method
under 70% confidence degree.

Figure (14) and Figure (15) show theminimum self-discipline
intervals under 90% and 70% confidence degree respectively.

3) THE EVALUATION OF THE SELF-DISCIPLINE LEVEL
In order to evaluate the wind power self-discipline level
comprehensively, we calculate the PICP and SDL, the result
is shown in Table(2).

FIGURE 13. Self-discipline interval obtained by the proposed method
under 70% confidence degree.

FIGURE 14. The minimum self-discipline interval at 90% confidence
degree.

FIGURE 15. The minimum self-discipline interval at 70% confidence
degree.

FromTable(2), we find that under every confidence degree,
the self-discipline interval width obtained by the proposed
method is always the smaller. At 95%, 75% and 70% con-
fidence degree, the PICP obtained by the proposed method
are larger than that from the traditional method. At 90%, 85%
and 80% confidence degree, although the PICPs are smaller,
the SDLs obtained by the optimal method are larger. This
larger SDL trend is also found in other confidence degree
levels.
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TABLE 2. The self-discipline interval comparison under different
confidence degrees.

Since SDL can comprehensively reflect the wind farm
self-discipline level, the larger the SDL, the better the self-
discipline level, we can conclude that the self-discipline inter-
val obtained by the proposed method in this paper is optimal.

B. THE ESS CONFIGURATION
In order to guarantee the optimal wind power self-discipline
interval to the grid, the ESS should be installed in the

FIGURE 16. Self-discipline interval and ESS configuration by different
methods under 70% confidence degree.

wind farm to compensate the actual wind power outside the
self-discipline interval.

When the wind farm actual output is larger than the upper
limit of the self-discipline interval, the ESS charges; when the
the wind farm actual output is smaller than the lower limit
of the self-discipline interval, the ESS discharges. when the
wind power actual output is between the lower limit and the
upper limit, the ESS does not work.

The ESS installed in the wind farm should be optimally
sized to be able to provide the necessary compensation and
guarantee the optimal wind self-discipline interval. Through
the proposed method in section III, formula(16) and for-
mula(18), we can calculate the ESS rated powerPrate and ESS
rated capacity Erate. Different self-discipline interval will
need different ESS configuration. For comparison, we also
calculate the Prate and Erate obtained by the traditional
method.

Taken 70% as example, the self-discipline interval
obtained by the proposedmethod is different from the interval
obtained by the traditional method, so that the needed ESS
configuration is also different, as shown in Figure(16).

For other confidence degrees, the results are shown
in Table(3). From Table(3), we find that the ESS configura-
tion is different between the two methods.

By the proposed ESS configuration, the wind farm output
can be limited within the optimal self-discipline interval, and
thus the wind farm can provide an optimal self-discipline
interval to the grid.

TABLE 3. The ESS configuration under different confidence degrees.

V. CONCLUSION
In this paper, we discussed the problem of how to mitigate the
uncertainty of the wind power from the aspect of the wind
farm self-discipline interval. A novel optimization method
to obtain the optimal wind farm self-discipline interval is
proposed. The ESS configuration issue is also addressed in
this paper based on the historical wind data.

1) The concept of wind farm self-discipline interval is
first proposed in this paper. In order to evaluate the wind
farm self-discipline level, the indexes of the wind farm
self-discipline interval are also introduced, not only consid-
ering the interval width but also the interval accuracy.

2) An optimization method is proposed to obtain the opti-
mal self-discipline interval. In order to guarantee the optimal
self-discipline interval of the wind farm, the ESS size is
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optimally configured to be able to provide the necessary
compensation.

3) Compared with the traditional method, the proposed
method has general applicability, not only suitable for nor-
mal distribution and other known distributions but also for
arbitrary distributions, such as non-symmetric, multi-peak
distribution.

Case studies with historical wind power data are fulfilled
to demonstrate that the proposed method can effectively
improve the wind power self-discipline level and the accep-
tance ability of the grid to the wind power, which can provide
a powerful decision-making base for the grid planning and
running.

In the future research, the wind farm, the solar energy and
the electric vehicle will be considered. The wind energy and
the solar energy can compensate each other, while the electric
vehicle can act as a kind of ESS to deal with the uncertainty
of the new energies.
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