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ABSTRACT Due to the high availability of large-scale annotated image datasets, paramount progress has
been made in deep convolutional neural networks (CNNs) for image classification tasks. CNNs enable learn-
ing highly representative and hierarchical local image features directly from data. However, the availability
of annotated data, especially in the medical imaging domain, remains the biggest challenge in the field.
Transfer learning can provide a promising and effective solution by transferring knowledge from generic
image recognition tasks to the medical image classification. However, due to irregularities in the dataset
distribution, transfer learning usually fails to provide a robust solution. Class decomposition facilitates
easier to learn class boundaries of a dataset, and consequently can deal with any irregularities in the data
distribution. Motivated by this challenging problem, the paper presents Decompose, Transfer, and Compose
(DeTraC) approach, a novel CNN architecture based on class decomposition to improve the performance
of medical image classification using transfer learning and class decomposition approach. DeTraC enables
learning at the subclass level that can be more separable with a prospect to faster convergence. We validated
our proposed approach with three different cohorts of chest X-ray images, histological images of human
colorectal cancer, and digital mammograms. We compared DeTraC with the state-of-the-art CNN models to
demonstrate its high performance in terms of accuracy, sensitivity, and specificity.

INDEX TERMS Convolution neural networks, class decomposition, data irregularity, medical image
classification, transfer learning.

I. INTRODUCTION
Classification of chest X-ray (CXR) images into normal
or having Tuberculosis (TB) is an essential component in
computer-aided diagnosis (CAD) of lung health-care [1]–[4].
Fig. 1 shows a negative example of normal CXR without any
signs of TB and a positive one with manifestations.

Statistical/classical machine learning algorithms have been
extensively used for lung classification [5]–[8] and nod-
ule diagnosis from computed tomography (CT) images [9].
For instance, in [10], three statistical features were calcu-
lated from lung texture to discriminate between malignant
and benign lung nodules using support vector machines
(SVM) classifier. A grey-level co-occurrencematrix (GLCM)
method was used along with back-propagation network
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FIGURE 1. Example of a) normal and b) abnormal CXR.

(BPN) [11] to classify computed tomography (CT) images
from being normal or cancerous. For emphysema diseases
of lung images, different approaches were used to describe
the texture features from lung region, such as in [12] Local
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FIGURE 2. Decompose, Transfer, and Compose (DeTraC) model: (a) decomposition of the original classes into
sub-classes, (b) transfer learning using ImageNet pre-trained CNN-based model, and (c) recombination back to the final
problem.

Binary Pattern (LBP) was used with k nearest neighbour
(kNN) as a classifier to classify the lung region into three
classes, and in [13] SVM also used with radial basis function
(RBF) kernel. Other statistical machine learning methods
have also demonstrated good classification performance in
other domains, with different data types [14]–[16]. Deep
learning algorithms have also demonstrated their great suc-
cess in different domains including bioinformatics [17]–[19],
plant identification [20], medical image analysis [3], [21],
[22] and wind power prediction [23]. With the availabil-
ity of enough annotated images, deep learning approaches
[2], [24]–[30] have demonstrated their superiority over the
statistical machine learning approaches [9]. In [31], two
deep learning approaches, deep belief network (DBN) and
restricted Boltzmann machine (RBM) were used to classify
the lung nodules from CT into malignant or benign based
on three feature extraction methods (GLCM, histogram fea-
tures, and wavelet transformation). A deep residual network
(ResNet) with curriculum learning and transfer learning was
applied in [32] to classify lung nodules, and in [33] the
stacked denoising auto-encoder (SDAE) was used for clas-
sification of the nodules in CT images into two classes:
benign and pulmonary and from CXR in [34]. Convolutional
networks (CNN) architecture is one of the most popular
deep learning approaches with superior achievements in the
medical imaging domain [35], [36]. The primary success of
the ConvNet is due to its ability to learn features automati-
cally from domain-specific images [37], unlike the statistical
machine learning methods. The popular strategy for training
a CNN architecture is to transfer learned knowledge from a
pre-trained network that fulfilled one task into a new task
[20], [38], [39]. This solution is efficient and easy to apply
without the need for a huge annotated dataset for training;
therefore many researchers tend to apply this strategy espe-
cially with medical imaging [19], [40]. Transfer knowledge
from pre-trained models via fine-tuning showed outstand-
ing performance in X-ray image classification [25], [36],
[41] and recently for the classification of 14 diseases as a
multi-task learning [42]. Transfer learning can be accom-
plished with three major scenarios [43]: a) ‘‘shallow tuning’’,
which adopts only the last classification layer to cope with the

new task, and freezes the parameters of the remaining layers
without training; b) ‘‘deep tuning’’ which aims to retrain
all the parameters of the pre-trained network from end-to-
end manner; and (c) ‘‘fine-tuning’’ that aims to gradually
train more layers by tuning the learning parameters until a
significant performance boost is achieved.

However, building a robust image classification model for
datasets with imbalanced classes can be a very challenging
task, especially in the medical imaging domain [44]–[47].
Class decomposition aims to the simplification of the local
structure of a dataset, by learning the boundary between
certain characters within each class, in a way to cope with
any irregularities or imbalances in the data distribution. Class
decomposition has been previously used in various automatic
learning workbooks as a preprocessing step to improve the
performance of different classification models and in the
medical diagnostic domain, it has been applied to signifi-
cantly enhance the classification performance of models such
as Random Forests, Naive Bayes, C4.5, and SVM [48]–[52].

In this paper, we propose a novel convolutional neural
network architecture based on class decomposition, which we
term Decompose, Transfer, and Compose (DeTraC) model,
to improve the performance of pre-trained models on the
classification of X-ray images. This is done by adding class
decomposition and composition components, respectively,
before and after transferring knowledge using an ImageNet
pre-trained CNN model. The proposed workflow aims to
partition each class within the image dataset into k subsets
and then assign new labels to the new set, where each subset is
treated as an independent class, then those subsets are assem-
bled back to produce the final predictions (a classification
of a subclass is mapped to its parent class), as illustrated by
Fig. 2. For the classification performance evaluation, we used
images of CXR as an exemplar to distinguish between nor-
mal and abnormal cases. The dataset possesses complicated
computer vision challenging problems due to the intensity
inhomogeneity and the huge intensity-overlap between the
classes. Moreover, we evaluated our framework on two other
different cohorts of digital mammograms and images of
human colorectal cancer to demonstrate the robustness of our
solution to data irregularities.
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The paper is organised as follows. Section II provides
an overview of related work and motivates our work.
In Section III, we discuss, in details, the main components
of our proposed framework. Section IV illustrates detailed
experiments on three different image data sets. Section V
highlights the key findings of our work. Finally, Section VI
concludes the work with a summary and pointers to possible
future work.

II. CONTRIBUTION
With the availability of large annotated datasets, the chance
for the different classes to be well-represented is high. As a
consequence, the learned in-between class-boundaries are
most likely to be generic enough to new samples. On the
other hand, with the limited availability of annotated data,
especially when some classes are suffering more compared
to others in terms of the size and representation, the general-
isation error might increase. This is due to the fact that there
might be a miscalibration between the minority and majority
classes.

Class decomposition has its roots in [51], when it was first
proposed to enhance low variance classifiers by increasing
the flexibility of the decision boundary. A similar method has
been applied in enhancing k-Nearest Neighbours classifiers
using clusters (resulted from class decomposition) instead
of individual instances as the nearest neighbours, applying
gravity, density, and distance, as proximity measures [53].
Class decomposition found its way to enhance more classi-
fication methods like decision tree classifier [54], SVM [55]
and Random Forests [56], [57] which providing even more
flexibility to their respective decision boundaries. A special
focus on applying the method in the medical domain can
be traced in these papers. The reason behind this special
attention to medical data is the inherent complexity of the
decision boundaries in this domain. Classes can greatly over-
lap, resulting in harder to detect decision boundaries.

Although class decomposition has been successfully
applied to medical datasets, it is yet to be tested in the
area of medical imaging. Thus, the work reported in this
paper investigates the adoption of the method to classifica-
tion in medical imaging. In this paper, we propose a novel
image classification framework inspired by the capability
of class-decomposition in dealing with data irregularities
to improve the performance of ImageNet pre-trained CNN
models. To the best of our knowledge, this is the first attempt
to employ class decomposition within the CNN framework
for image classification. In this work, to demonstrate the
effectiveness and importance of class decomposition mecha-
nism in CNN, we compared the performance of our proposed
approach before and after the class decomposition process.
We used the Wilcoxon signed-rank test [58] to show that
applying class decomposition yields statistically significantly
more accurate classification results than not applying it.
Moreover, to demonstrate the robustness of our solution to
data irregularities, we evaluated and compared the perfor-
mance of our framework with state-of-the-art CNN models

on three different datasets of real chest X-ray images (with
binary class structure), histological images of human col-
orectal cancer (with multi-class balance structure) and digital
mammograms (with multi-class imbalance structure).

III. THE DETRAC MODEL
In this section, we describe in detail our proposed Decom-
pose, Transfer, and Compose (DeTraC) model. The proposed
approach has three phases. In the first phase, we use Ima-
geNet pre-trained CNN as an off-the-shelf feature extractor
to extract a set of local features from the individual images.
Accordingly, a class-decomposition method was used to sim-
plify the complexity of the local structure of our image
dataset. In the second phase, we apply a sophisticated gradi-
ent descent optimisation method to fine-tune the same CNN
model (of the first phase) pre-trained from ImageNet to our
image classification task. Finally, we adapt and refine the
final classification of the input images using error-correction
criteria applied to a softmax layer. Fig. 3 shows an overview
of the proposed network. We adopt an ImageNet pre-trained
CNN model to the classification of our images into the origi-
nal classes. This step aims to a) extract a set of representative
features for the differentiation between the different classes,
and b) fine-tune the CNN feature maps accordingly. The
high-dimension feature space is reduced using principal com-
ponent analysis (PCA) (black arrow) and a class decomposi-
tion method (yellow arrow) is used to simplify the complexity
of the data, which results in more classes. Then the converged
CNNweights can be transferred to the same network structure
(blue arrow) but adopted specifically to cope with the new
classes. The benefit of this transformation is to speed up
the convergence and to cope with the limited availability of
training samples and irregularities. Finally, a class relabelling
(red arrow) is used to remap the classification back to the
original problem using a simple error correction criterion.

A. CLASS DECOMPOSITION
A shallow-tuning mode was used during the adaptation,
weight initialisation, and training of an ImageNet pre-trained
CNN model using our image dataset. The representation
was considered from the last fully-connected layer. In other
words, we used the off-the-shelf CNN features of pre-trained
models on ImageNet (where the training is accomplished
only on the final classification layer) to construct the image
feature space. However, due to the high dimensionality asso-
ciated with the images, we applied PCA to project the
high-dimension feature space into a lower-dimension, such
that the highly correlated features were ignored. This step
is important for the class decomposition to produce more
homogeneous classes, reduce the memory requirements, and
improve the efficiency of the framework.

Now assume that our feature space (PCA’s output) is rep-
resented by a 2-D matrix (denoted as dataset α), and L is a
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FIGURE 3. The generic architecture of DeTraC model: (a) feature extraction using ImageNet pre-trained CNN model and principle component
analysis (black arrow), (b) class decomposition process (yellow arrow) with weight transformation (blue arrow), and (c) fine-tuned ImageNet
pre-trained CNN model with error correction using class composition (red arrow) for output prediction.

class category. α and L can be written as

α =


a11 a12 . . . a1m
a21 a22 . . . a2m
...

...
...

...

an1 an2 . . . anm

 , L = {l1, l2, . . . , lc} , (1)

where c is the number of classes and m is the number of
features. For class decomposition, we used k-means cluster-
ing [59] to further divide each class into homogeneous sub-
classes, where each pattern in the original class L is assigned
to a class label associated with the nearest centroid based on
the squared euclidean distance (SED):

SED =
k∑
j=1

n∑
i=1

‖ a(j)i − µj ‖, (2)

where centroids are denoted as µj.
Now, if k = 2 then each class in L is divided into two

clusters, resulting in a new dataset (denoted as dataset B)
with 4 sub-classes denoted as (normal1, normal2, abnormal1,
abnormal2), see Fig. 4.
Let C = {l11, l12, . . . , l1k , l21, l22, . . . , l2k , . . . lck}, rep-

resents the set of subclasses/clusters (i.e. |C| = c × k)
and |.| denotes the number of elements in the set. Note
that this definition applies for homogeneous decomposition,
where each class is decomposed to the same number of
clusters/subclasses (e.g. k = 2).

Also, the feature space of both dataset A and B can be
illustrated as:

A =



a11 a12 . . . a1m l1
a21 a22 . . . a2m l1
...

...
...

...
...

...
...

...
... l2

an1 an2 . . . anm l2

 ,

B =



b11 b12 . . . b1m l11
b21 b22 . . . b2m l1c
...

...
...

...
...

...
...

...
... l21

bn1 bn2 . . . bnm l2c

 . (3)

where aij = bij,∀i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}.
Table 2 shows the new distribution of the dataset when

AlexNet was used as the pre-trained model with our class
decomposition approach.

B. TRANSFER LEARNING
In this phase, we used several ImageNet pre-trained CNN
models before and after class decomposition including: a)
AlexNet [60] which is composed of 5 convolutional layers
and 3 fully connected layers. AlexNet uses 3×3 max-pooling
layers with ReLU activation and different kernel filters (e.g.
11 × 11, 5 × 5 and 3× 3); b) VGG16 and VGG19 [61] with
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FIGURE 4. Class decomposition process: (a) original class distribution
(e.g. CXR dataset A), and (b) new class distribution after class
decomposition (e.g. CXR dataset B).

13 and 16 convolution layers, respectively, 3×3 sized filters,
and 2×2max-pooling; c) GoogleNet [62], which has a deeper
architecture with 22 layers with a smaller number of param-
eters compared to AlexNet and VGGNet; and d) ResNet
[63], which showed excellent performance (with 3.57% of
the error rate) on ImageNet with only 18 layers. Here we
consider different training scenarios. We consider fine-tuning
parameters of all (except the last fully-connected layer) or a
part of CNN layers (when the rest are randomly initialised and
the last layer is adapted according to our specific application).
We also conduct an off-the-shelf CNN features of pre-trained
models on ImageNet and train only the final classification
layer to cope with our task. All those scenarios have been
investigated before and after class decomposition to highlight
the robustness and effectiveness of our solution.

With the limited availability of training data, stochastic
gradient descent (SGD) can heavily be fluctuating the objec-
tive/loss function and hence overfitting can occur. To improve
convergence and overcome overfitting, the mini-batch of
stochastic gradient descent (mSGD)was used tominimise the
objective function, E(·), with cross-entropy loss

E
(
yj, z(x j)

)
= −

1
n

n∑
j=0

[yj ln z
(
x j
)

+

(
1− yj

)
ln
(
1− z

(
x j
))

], (4)

where x j is the set of input images in the training, yj is the
ground truth labels while z(·) is the predicted output from a
softmax function.

Due to the onerousness in collecting and annotating a
huge amount of medical images, large scale annotated image
datasets (such as ImageNet) provide effective solutions to
such a challenge via transfer learning where tens of mil-
lions parameters (of CNN architectures) are required to be
trained. In addition to the fact that DeTraC can deal with
data irregularities by class decomposition, DeTraC can also
provide an efficient solution when a limited number of train-
ing images are available. This is by transferring knowl-
edge from a generic object recognition task (i.e. large-scale
image classification) to our specific-domain tasks (i.e. medi-
cal image classification) using ImageNet pre-trained models.
A potential limitation of DeTraC is that since it is an

FIGURE 5. Confusion matrix tabular: (a) Binary classes within dataset A,
and (b) Multi-classes after applying class decomposition process
(dataset B).

image-wise CNN, it might confuse when coping with com-
plex large images. This is due to the down-sampling process
of input images that might result in losing some spatial infor-
mation during the training.

C. COMPOSITION AND EVALUATION
For performance evaluation, we adopted Accuracy (ACC),
Specificity (SP) and Sensitivity (SN) metrics from the con-
fusion matrix, see Fig. 5. They are defined as:

Accuracy(ACC) =
TP+ TN

n
, (5)

Sensitivity(SN ) =
TP

TP+ FN
, (6)

Specificity(SP) =
TN

TN + FP
, (7)

where, TP is the true positive in case of abnormal and TN
is the true negative in case of normal, while FP and FN
are the incorrect model predictions for abnormal and normal
cases, which are indicated with a red and a blue triangle
respectively for dataset A, and the summation values of all the
red and blue triangles respectively after error correction for
dataset B.More precisely, with class decomposition, the TP is
the summation of all the values in abnormal1 and abnormal2
which is represented with the red square while TN is the
summation of all the values in normal1 and normal2, which
is represented by the blue square.

In the case of a multi-classification problem, the model has
been evaluated using a multi-class confusion matrix of [64].
Before error correction, the input image can be classified
into one of (c) non-overlapping classes. As a consequence,
the confusion matrix would be a (Nc × Nc) matrix, and TP,
TN , FP and FN for a specific class i are defined as:

TPi =
n∑
i=1

xii (8)

TNi =
c∑
j=1

c∑
k=1

xjk , j 6= i, k 6= i (9)

FPi =
c∑
j=1

xji, j 6= i (10)

FNi =
c∑
j=1

xij, j 6= i (11)
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Algorithm 1 DeTraC
1: procedure

• Input:
– Input images.
– Image-wise labels.

• Output:
– Classification scores.

Stage I. Class Decomposition:
2: Load and initialise weights of an ImageNet

pre-trained CNN model.
3: Extract off-the shelf CNN deep features using input

images.
4: Reduce the dimensionality of the feature space using

PCA.
5: Decompose original classes into a number of sub-

classes.
Stage II. Transfer Learning:

6: Adapt the final classification layer of the selected
pre-trained CNN model to the new classes.

7: Apply the mini-batch of sophisticated gradient
descent optimisation method to fine-tune the adapted
CNN model.
Stage III. Class Composition:

8: Calculate the classification scores for images associ-
ated to the decomposed classes.

9: Refine the final classification using error-correction
criteria.

where xii is an element in the diagonal of the matrix.
We applied the same scenario after error correction to evalu-
ate our framework for colorectal cancer and digital mammo-
grams datasets.

D. ALGORITHMIC DESCRIPTION
Having discussed the formulations of DeTraC model, in the
following, the procedural steps of DeTraC model are sum-
marised in Algorithm 1.

IV. EXPERIMENTAL RESULTS
In this section, we validate the performance of DeTraC with
three different datasets:
• CXR image dataset from the Japanese Society of Radi-
ological Technology (JSRT) [65], [66], which consists
of 138 images (with 4020 × 4892 pixels) divided into
58 abnormal cases and 80 normal cases.

• Histological images of human colorectal cancer [67]
of 5000 histological images (with 150 × 150 pixels),
divided into three classes (see Table 8 for the number of
samples in each class): tumour epithelium, stroma and
mucosal glands.

• Digital mammograms from [68], which contains
322 mammograms images (with 1024 × 1024 pixels)
and divided into seven classes (see Table 10 for the

TABLE 1. The sensitivity to the parameter k in each dataset.

TABLE 2. The number of instances in dataset A and B.

number of samples in each class): normal, calci-
fication (CALC), well-defined/circumscribed masses
(CIRC), spiculated masses (SPIC), ill-defined masses
(MISC), Architectural distortion (ARCH) and asymme-
try (ASYM).

Each dataset was randomly divided into two groups; 70%
as training/validation set, and 30% as testing set. We used
10-fold cross-validation technique to fine-tune the parame-
ters of DeTraC while the performance of DeTraC has been
evaluated on the testing set. For a fair comparison, all the
experiments in our work have been carried out in MATLAB
2019a on a PC with the following configuration: 3.70 GHz
Intel(R) Core(TM) i3-6100 Duo, NVIDIA Corporation with
the donation of the Quadra P5000GPU, and 8.00 GB RAM.

A. PARAMETER SENSITIVITY
To demonstrate the sensitivity to changes in the parameter k
(the number of classes in class decomposition component)
with the three datasets, we evaluated the performance of our
framework (based on 10-fold cross-validation) when different
k values were used. As illustrated by Table 1, the highest
accuracy of 71.2% and 73.2% were obtained when k = 2 for
chest X-rays and digital mammograms datasets, respectively,
while 77.5% was obtained when k = 3 for colorectal cancer
dataset. Hence, the value of k was fixed to 2 for both chest
X-ray and digital mammogram datasets and 3 for the col-
orectal cancer dataset. We also tested the variability between
features of PCA to reduce the dimension of feature space in
each dataset. We found that the first 5, 127 and 77 compo-
nents for chest X-ray, digital mammograms, and colorectal
cancer datasets, respectively, explain more than 95% of all
variability.

B. CLASSIFICATION PERFORMANCE ON
CHEST X-RAY DATASET
Wefirst validatedDeTraC on the chest X-ray dataset (Table 2)
based on AlexNet with a fine-tuning strategy by training spe-
cific layers of its architecture, see Table 3. We have stopped
the training of the layers at the layer named Conv3 to avoid
overfitting due to the limited availability of the data and the
deep architecture of the network. Note that we have followed
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TABLE 3. Classification performance before and after class decomposition, obtained by AlexNet using 10-fold cross-validation.

TABLE 4. Classification performance before and after class decomposition, obtained by VGG16 using 10-fold cross-validation.

TABLE 5. Classification performance before and after class
decomposition, obtained by VGG19, GoogleNet, and ResNet in case of
shallow tuning.

the conventional naming of layers in the pre-trained CNN
architectures [60], [61]. Likewise, we used the pre-trained
network VGG16 by fine-tuning its parameters starting from
the last fully connected layer (fc8) and incrementally learn
layers until approached Conv4-1, see Table 4. As illustrated
by Tables 3 and 4, DeTraC shows better performance in terms
of accuracy, sensitivity, and specificity when compared to the
classical models (AlexNet and VGG16) in both shallow and
fine-tuned modes, in a layer-wise fashion. DeTraC achieved
the highest accuracy of 74.7% with VGG16 with a sensitivity
of 67.3% and a specificity of 85.0%.

Moreover, three different pre-trained CNN models
(VGG19, GoogleNet, and ResNet) were also tested based on
a shallow tuning mode before and after class decomposition,
where the comparison is reported in Table 5. Note that the
classification performance has been slightly improved in all
cases with the highest accuracy of 75.4% with a sensitivity
of 82% and specificity of 83% when ResNet was used. The
standard deviation (std)) was calculated and used as a robust-
ness measure (when a 10-fold cross-validation technique was
used for the accuracy, sensitivity, and specificity metrics), see
Fig. 6. As illustrated by Fig. 6, applying class decomposition
yields more robust results than not applying it with all the
used pre-trained models.

To demonstrate the effectiveness of DeTraC classifica-
tion framework, we train DeTraC on the previously used

pre-trained models (i.e. AlexNet, VGG, GoogleNet, and
ResNet) with a deep-tuning strategy. First, a data augmen-
tation with multiple pre-processing techniques was used to
increase the number of samples in each class. We used a vari-
ety of pre-processing methods such as flipping, transforma-
tion (translating, scaling, and rotation with various angles),
colour processing and small random noise perturbation. This
process resulted in a total of 40,000 lung fields. Second,
we investigated the effect of various training/testing sizes
on the classification performance, see Fig 7. As illustrated
in Fig. 7, the under-fitting issue is occurred more clearly by
gradually decreasing the size of the training set.

The base learning rate was set to 0.0001 for all the CNN
layers of all pre-trained models and 0.01 for the last fully
connected layer, and was decreased by value 0.9 after every
3 epochs. L2-weight decay was applied with value 0.001 and
the momentum of 0.9 was used. As illustrated by Table 7,
DeTraC has achieved excellent performance in the classifi-
cation of chest X-ray images, when compared to the related
state-of-the-art statistical machine learning and deep learning
methods. The highest accuracy of 99.8% was obtained with
ResNet and outperformed 8 previously proposed approaches.

The previous experiments demonstrated the effectiveness
of class decomposition. We also measured the statistical sig-
nificance using the Wilcoxon signed-rank test [58] with con-
tinuity correction to establish the statistical significance of the
results. At 0.05 significance level, the p-value = 0.0008506.
This confirms the alternative hypothesis: true location shift is
not equal to 0 (i.e. classification result obtained by applying
class decomposition is statistically significantly more accu-
rate than not applying it).

Fig. 8 shows the learning curves of the accuracy and
loss in case of deep tuning scenario with AlexNet, without
under-fitting or overfitting problems.
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FIGURE 6. The standard deviation for ACC, SN, and SP obtained by DeTraC (after class decomposition) and standard pre-trained models (before
class decomposition).

FIGURE 7. Loss error curves obtained by various sizes for the training set (blue curves) and testing set (red curves): (a) 70% Training and 30% test,
(b) 60% Training and 40% test, and (c) 50% Training and 50% test.

TABLE 6. Classification performance on X-ray dataset obtained by original knowledge transformations and shallow-tuned and fine-tuned versions of
(DeTraC).

Fig. 9 illustrates the receiver operating characteris-
tics (ROC) curves between the true positive rate and
false-positive rate. Note that the ROC curve for the
ResNet (red) has an area under the ROC curve (AUC) that
is significantly greater than the other ROC curves obtained
by other models.

To demonstrate the direct effect of knowledge transfor-
mation between the original model and the fine-tuned one,

we compare the classification performance among the differ-
ent versions of the original model (with and without augmen-
tation) and DeTraC, see Table 6. Note how robust our model
to the knowledge transferred from the different pre-trained
models. As shown in Table 6, the best accuracy obtained by
the original model (using ResNet with ImagNet) was 82.24%
while DeTraC has achieved an accuracy of 99.8% with the
same pre-trained model.
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FIGURE 8. The learning curve accuracy and error obtained by AlexNet
pre-trained network.

FIGURE 9. Comparison of ROC curves obtained by training DeTraC with
deep tuning, based on different pre-trained models (e.g.AlexNet,VGG16,
GoogleNet, ResNet).

C. ROBUSTNESS TO DATA IRREGULARITY
1) CLASSIFICATION PERFORMANCE ON
HISTOLOGICAL IMAGES
To demonstrate the robustness of DeTraC model in coping
with data irregularity, we used 5000 histological images [67]
with three classes: tumour epithelium, stroma and mucosal
glands (see Fig 10).

The distribution of the original data (Dataset A) and
the generated one after class composition (Dataset B) is
shown in Table 8. DeTraC was trained using a learning rate
of 0.0001 for all the layers, the last fully connected layer was
0.01, the learning rate decreased by value 0.95 after every
4 epochs. The model was trained using mini-batch stochastic

TABLE 7. Classification accuracy obtained by DeTraC and other
state-of-the-art related models.

FIGURE 10. Example images from colorectal cancer dataset:(a) tumour
epithelium (b) stroma, and (c) mucosal gland.

TABLE 8. The number of instances in original classes and after class
decomposition.

gradient descent with 128 samples per batch except VGGwas
64, L2-weight decay was applied with value 0.0001 and the
default momentum in the network was 0.9.

To demonstrate the superiority of our model, the model
has been evaluated using a multi-classes confusion matrix
of [64] before and after class decomposition, see Table 9.
As shown by Table 9, DeTraC with ResNet achieved the
highest accuracy of 99.1% while DeTraC with VGG16 and
GoogleNet was behaving almost the same (with 99.8% and
99.7% accuracies, respectively), in case of the colorectal
cancer dataset.

2) CLASSIFICATION PERFORMANCE ON
MAMMOGRAM IMAGES
We also validated DeTraC on 322 mammogram images that
were taken from [68]. The size of all the images is 1024 ×
1024 pixels. The data set has seven types of classes as shown
in Fig 11. The data distribution in the different classes before
and after the composition is reported in Table 10.
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TABLE 9. Classification performance and elapsed time (ET.) on colorectal cancer dataset before and after (DeTraC) class decomposition, based on
different pre-trained networks.

TABLE 10. Samples distribution in digital mammograms database before and after class decomposition.

TABLE 11. Classification performance on digital mammograms dataset before and after (DeTraC) class decomposition, based on different pre-trained
networks.

FIGURE 11. Example images of digital mammograms: (a) normal,
(b) calcification (CALC), (c) well-defined/circumscribed masses (CIRC),
(d) speculated masses (SPIC), (e) ill-defined masses (MISC),
(f) architectural distortion (ARCH) and (g) asymmetry (ASYM).

All the images resized into 256 × 256 via the Bicubic
Interpolation method [70], which is very effective to pro-
duce images that are very similar to the original ones. The
network was trained using a learning rate of 0.001 for all
the CNN layers, 0.01 for the last fully connected layer,
and was decreased by value 0.9 after every 2 epochs. The
CNN model is trained using mini-batch stochastic gradient
descent with 64 samples per batch, L2-weight decay was

applied with value 0.00001 and the default momentum in
the network 0.9 is used. As demonstrated by Table 11, our
model shows the highest accuracy of 99.8% with ResNet and
99.6% with GoogleNet. Moreover, Tables 9 and 11, show
the ability of our framework to cope with data irregularities
effectively where significant differences, in terms of accuracy
and computational time, can be noticed before and after class
decomposition with all used pre-trained models.

D. TIME COMPLEXITY
To illustrate the time complexity of DeTraC model,
we describe the time complexity for each component: For
the PCA, the time complexity is O

(
p3 + p2n

)
, where n is

the number of data points, each one represented with p fea-
tures, O

(
p2n

)
is the covariance matrix, and its eigen-value

decomposition is O
(
p3
)
. The time complexity for the

k-means cluster is O (t × k × n× d), where t is number of
iterations, k is the number of clusters or class decomposition
component, n is the number of data points to be clustered and
d is the number of dimensions. Finally, the time complexity
for the core component of DeTraC network (e.g. convolution

operation) is O
(∑d

l=1 nl−1 × s
2
l × nl × m

2
l

)
, where d is the

number of convolution layer, nl and sl are the number and
the size of filters respectively, nl−1 is the number of input
channels of the l layer, andml is the size of the output feature
map. Subsequently, the total time complexity of DeTraC is
O
(
nd−1 × s2d × nd × m

2
d

)
.

V. DISCUSSION
The historical conception of computer diagnosis systems
from medical images has been comprehensively explored
through several approaches ranging from feature engineering
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to feature learning. Deep Convolutional Neural Network
(DCNN) is one of the most popular and effective approaches
in the medical imaging domain, especially for classification
problems. The superiority of DCNNs over classical/statistical
machine learning approaches comes from their ability to
learn different levels of abstraction in a hierarchical fashion
directly from the images. Training DCNNs can be accom-
plished using two different strategies. They can be used
as an end-to-end network, where an enormous number of
annotated images must be provided (which is impractical
in medical imaging). Alternatively, transfer learning usually
provides an effective solution with the limited availability of
annotated images by transferring knowledge from pre-trained
CNNs (that have been learned from a bench-marked natu-
ral dataset) to the specific medical imaging task. Transfer
learning can be further accomplished by three main scenar-
ios: shallow-tuning, fine-tuning, or deep-tuning. However,
data irregularities, especially in medical imaging applica-
tions, remain a challenging problem that usually results in
miscalibration between the different classes in the dataset.
Here, we propose an effective and yet efficient workflow
solution, we call DeTraC, to deal with such a challenging
problem by exploiting the advantages of class decomposition
within the CNN s for image classification. DeTraC achieved
high accuracies of 99.8% with ResNet on CXR images,
98.5% with VGG16 on digital mammograms, and 99.7%
with GoogleNet on CRC images, when class-decomposition
was applied with a deep-tuning strategy. The classification
performance of DeTraC when the shallow-tuning mode was
used, has shown a significant improvement based on sev-
eral ImageNet pre-trained models before and after class-
decomposition. Eventually, a full study has been provided to
demonstrate the effect of class decomposition on knowledge
transferred from the individual layers of AlexNet and VGG to
confirm the robustness and superiority of DeTraC in all cases.

VI. CONCLUSION AND FUTURE WORK
In this paper, we propose a CNN architecture based on a
class decomposition approach to improve the performance of
ImageNet pre-trained CNN models using transfer learning.
Our framework can provide effective and robust solutions
for the classification of medical images and cope with data
irregularity and the limited number of training samples too.
The proposed method has been validated with three different
datasets of chest X-ray, digital mammograms, and histolog-
ical sections of human colorectal cancer. Several pre-trained
architectures were integrated and tested with class decom-
position and the experiments demonstrated the effectiveness
with all architectures.

The work reported in this paper opens the door for a
number of research directions. First, the adoption of class
decomposition to other image classification tasks, especially
in the area of medical imaging, where different data irreg-
ularities exist, thanks to the underlying complexities of the
biological processes, is an interesting direction. Second, the
optimisation of different hyperparameters (e.g. number of

subclasses per class) required to carry out the class decom-
position process has the potential to further enhance the per-
formance of the models in terms of accuracy and convergence
time. Finally, the application of class decomposition to other
deep learning architectures like Recurrent Neural Networks
(RNNs) and Long Short TermMemory (LSTM) for sequence
models can be explored.
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