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ABSTRACT Parkinson’s disease (PD) is one of the public neuro-degenerative disorders. Speech/voice
disorder is considered one of the symptoms at an early stage. Acoustic and speech signal processing methods
can potentially evaluate and measure PD-related vocal impairment. The present work proposed a novel
feature selection framework using two levels of the feature selection procedure for voice-loss detection in PD
patients. At the first level selection, the principal component analysis (PCA) and the eigenvector centrality
feature selection (ECFS) methods are initially calculated independently, and the selected features from each
method are considered as a separated sublist, namely ECFS selected features sublist, and PCA selected
features sublist, in the first set. Accordingly, the first set, which is the first level selection set, is generated
from the union of these two sublists using the top-selected features from both methods. In the training phase,
a second level selection, which forms the second set (which is a subset from the first set), is generated
to calculate the proposed weight of each selection method. Since in the present work, the ECFS provided
superior performance to the PCA in the first level selection, the ECFS is applied to the first set in order
to find weight values based on the contribution/ impact of the top-selected PCA- and ECFS- features in
the second level. This weight is determined by finding a proposed ratio, which is multiplied directly by the
selected ECFS features in the first level. The selected weighted ECFS features are then combined with the
same PCA features to avoid ignoring any of the top-ranked features from the first level. This combination
includes the final weighted-hybrid selected features that fed to a support vector machine (SVM) classifier to
evaluate the proposedweighted hybrid selected features. Hence, in the test phase, the generatedweight is used
directly without any further need for the second level selection. Several comparative studies were conducted
to evaluate the proposed feature selection performance for PD voice-loss detection. The experimental results
established the superiority of the proposed procedure using cubic kernel-SVMwith 94% accuracy for voice-
loss detection in PD, while, with the same classifier, 88% accuracy was achieved without using the proposed
selection method.

INDEX TERMS Parkinson’s disease, voice loss, feature extraction, feature selection, principal component
analysis, eigenvector centrality feature selection.

I. INTRODUCTION
Parkinson’s disease is a progressive, enduring neurological
disease leading to deterioration or death of the brain cells.
It has several symptoms, includingmemory problems, as well
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as depression, movement problems, including slowness, stiff-
ness, and tremor. Also, walking/ balance problems, such as
the freezing of the gait, are observed at the last stages of PD.
Such indicators with their progression differ from patient to
patient [1]. Generally, there are five main PD stages. In the
earliest stage (stage 1), the PD patient suffers from mild
symptoms on one side of the body, such as rigidity and tremor
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in one hand or leg [2]. In stage 2, symptoms appear on
the body’s sides without balance impairment. In this stage,
the PD patient suffers from speech abnormalities, loss of
facial expression, the trunk’s muscle stiffness, and stooped
posture [3]. In the moderate stage (stage 3), the patient suffers
from slow of movement, loss of balance, and occurrence
of falling. In the last two severe stages (stages 4 and 5);
patients are unable to live independently without assistance
in walking and standing. Generally, in stage 5, the PD patient
may fall while standing and may suffer from the freeze of gait
while walking. Furthermore, the patient’s physical andmental
vitality decline [4]. Commonly, not all patients experience
these five stages of PD progression in their order. In addition,
the five stages vary in severity and time duration from patient
to patient. In some cases, the PD patients facing all the five
stages, whereas other patients skip from an early stage to an
advanced one without suffering from the in-between stages.
This leads to difficulty and complications in predicting PD
progression, which attracts researchers to explore such an
active research area and develop automated and accurate PD
detection and prediction models [5]–[11].

For PDmonitoring and telemedicine systems, early stages’
detection and diagnosis become essential. In such cases,
speech abnormalities are observed, including monotone
voice, soft voice, slurring speech, and fading of the voice’s
volume after starting loud-speaking [12], [13]. These changes
in the voice’s characteristics in PD patients are considered
the milestone for early detection of PD based on using
features extraction procedures and classification techniques.
Consequently, recent studies are concerned to use the link-
ing between PD and speech loss and weakness, where,
disordered vowels have widespread changes in the vibrations
from approximately periodic to extremely aperiodic com-
plex patterns. Such random properties in the PD patients’
sounds facilitate the ability to extract an enormous number
of dysphonia features. This leads to inconsistency in the
feature space. Several diagnostic methods for Parkinson’s
disease were based on speech signals [14]–[23]. Moreover,
different speech signal processing methods were designed
for detecting PD cases from the variation in the speech sig-
nals and also grading the PD severity. For example, Sakar
et al. [24] applied machine learning-based classification on
huge, recorded voice samples of sentences, words, and sus-
tained vowels in PD patients. The results established the dis-
criminating characteristics in the sustained vowels compared
to the other types of samples.

Generally, the association between various speech mea-
sures and movement (non-speech) measurements in PD
patients has a great impact on the detection of PD cases. This
assertion was verified by Goberman [25] through the analysis
of the acoustic articulation, prosody, and phonation. The
results depicted that seven acoustic measures out of sixteen
speech features were considerably associated with movement
measures, such as facial expression, gait, postural stability,
posture, rest tremor, and postural tremor. These results estab-
lished the correlation between the speech measures with both

axial- and non-axial- motor signs. Another study was con-
ducted by Orozco-Arroyave et al. [26] on the recorded speech
of different languages, namely German, Czech, and Spanish.
Initially, a segmentation process was applied to the speech
signals of utterances to separate the unvoiced and voiced
frames. Afterward, unvoiced sounds’ energy was modeled
25 bands using the Bark scale and 12Mel-frequency Cepstral
coefficients. This approach proved its accuracy to classify the
speech signal of PD patients and healthy control individuals
with an accuracy range of 85% to 99% based on the spoken
language.

To separate healthy individuals from early-stage PD
patients, Rusz et al. [27] assessed the impairment on the vocal
to conclude the existence of the disorders in the speech at the
PD early phases. The results proved that the main features to
detect the PD cases are the dissimilarities in the fundamental
frequency, where 78% of the early PD patients suffer from
vocal impairment. Little et al. [28] extracted the fractal scal-
ing and recurrence features during the speech analysis. These
features were used to detect speech disorders as symptoms of
the PD. Afterward; a bootstrapped classifier was applied to
discriminate disordered from normal voices.

In a healthy voice, the pattern of vocal fold vibration has
approximately periodic distribution. Thus, Tsanas et al. [29]
extracted a huge number of extracted dysphonia features
(132 dysphonia measures), including shimmer and jitter fea-
tures as well as other features from the speech signals of
both healthy and PD individuals. To overcome the uneven
feature space with the possibility of over-fitting, different fea-
ture selection (FS) methods were compared, such as mRMR
(minimum redundancy maximum relevance), LLBFS (local
learning-based feature selection), LASSO (least absolute
shrinkage and selection operator), and Relief [30]. Finally,
support vector machines (SVMs) and random forest classi-
fiers were used to classify to discriminate healthy individ-
uals from PD cases. Recently, for PD patients’ detection,
Sakar et al. [16] extracted the tunable-Q wavelet coefficients
and Mel-frequency Cepstral from the recorded voice signals
of 252 individuals for feature extraction. Afterward, ensem-
ble learning techniques were applied for classification after
selecting the significant features based on their relevance
using themRMRFS scheme. The used ensembles entailed the
k-nearest neighbor, multilayer perceptron, Random Forest,
SVMwith linear/ RBF kernels, logistic regression, and Naive
Bayes classifier. The highest achieved accuracy was 86.0%
with 0.84 F1-score by feeding the top 50 selected features to
SVM with an RBF kernel classifier.

The preceding studies concluded the impact of the voice
signal analysis to detect the PD cases, where several fea-
tures can be extracted, such as glottis quotient, pitch-period
entropy, F0-related measures, recurrence period density
entropy, tunable-Q wavelet coefficients, Mel-frequency Cep-
stral, and empirical mode decomposition excitation ratio [16],
[31]. This enormous number of different extracted features
and dysphonia leads to inconsistent feature space with the
possibility of over-fitting. This inspired the present work to
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propose a novel FS procedure to reduce the feature subset
and facilitate the interpretation of the speech/ voice signals
to gain perceptions into the PD detection problem using the
most significant features. This also guarantees the efficiency
and power of the detection and classification model using a
reduced number of features.

In the present work, the significant features in the extracted
features, by Sakar et al. [16], are selected using the proposed
novel feature selection framework for voice-loss detection
of the PD patients. A first-level selection was proposed by
selecting the significant features using both the principal
component analysis (PCA) and the eigenvector centrality
feature selection method (ECFS), separately, and then merg-
ing them by performing a union of the two subsets con-
tain the top-ranked features of both. Afterward, the second
level selection is conducted by applying other ECFS on
the hybrid selected features to find a weight factor. Finally,
the weighted-hybrid selected features were used as the fea-
ture vector space to be inputted to the cubic- SVM classi-
fier for distinguishing the PD cases. Different comparative
studies were also conducted to evaluate the performance of
the proposed feature selection method for PD voice- loss
detection.

The structure of the remaining sections is as follows.
Section II includes the dataset description, background, and
methodology of extracting features and applying feature
selection methods by introducing the proposed procedure.
In sections III and IV, the experimental results with compara-
tive studies are reported and discussed, respectively. Finally,
the proposed work is concluded in section V.

II. MATERIAL AND METHOD
A. DATASET
The used data set consists of voice signals recorded from
188 PD patients and 64 healthy persons as a control group.
Each of these cases has 3 records or repetitions, which pro-
vided an overall number of samples equals 756 samples.
Thus, the 753 features (attributes) were extracted from each
patient in the dataset of 756 instances [16]. Speech features
are employed to assess PD patients. The most popular speech
baseline features are the fundamental frequency parameters,
harmonicity parameters, jitter, shimmer, WT coefficients,
MFCCs, recurrence period density entropy (RPDE), pitch
period entropy (PPE), and Detrended fluctuation analysis
(DFA) [16], [29]–[31]. In the present work, the used dataset
entails 753 extracted features from speech signal process-
ing procedures [16]. Such features include wavelet trans-
form (WT) based features, time-frequency features, tunable
Q-factor wavelet transform (TQWT) features, Mel frequency
Cepstral coefficients (MFCCs), and vocal fold features which
were extracted from the recorded speech of PD patients.
These extracted features are related to the effects of the PD
on the speech which include voice becomes softer, the speech
might be incomprehensive, slurred, expressed rapidly, and the
voice’s tone might become monotone.

B. METHODOLOGY OF VOICE-LOSS DETECTION IN
PARKINSON’S DISEASE
1) TRADITIONAL FEATURES EXTRACTION AND SELECTION
Several speech signal processing processes were applied to
PD patients recorded speech for clinically extract convenient
information for PD valuation. These features in [16] are used
in the present work to evaluate the proposed FS method.
The huge number of 753 features increases the feature space
dimensionality and increase the existence of irrelevant fea-
tures possibility. Accordingly, FS is the main process to
reduce the dimensionality of the feature space by selecting
significant features. FS techniques can be categorized into
filter methods that use the proxy measure to score features,
wrapper methods, and embedded methods [32]. Robust FS
methods select significant features and discard irrelevant and
redundant features [33]. This improves the data quality and
the performance of the used classifier, accordingly. In the
present work, the PCA and ECFS methods are applied as a
hybrid combination procedure to gain the benefits of both of
them.

a: PRINCIPAL COMPONENT ANALYSIS
The PCA is used to reduce the dimensionality of the feature
space of the samples. This concept is achieved by trans-
forming data into a new set of variables by calculating the
eigenvectors and eigenvalues of the covariance matrix. In the
PCA, the principal components are computed for an input
matrix X of size m × n, containing m samples of n features
to find the eigenvalues and eigenvectors of the correlation
matrix, which is given by:

6 = Y TY (1)

Y = X − ηX (2)

where ηX is the mean value of the features. Hence, the prin-
cipal components matrix is given by:

R = US (3)

where S is a diagonal matrix of the singular values and U is
an n× nmatrix, also, the principal component Rj is given by:

Rj = sjUj (4)

This component represents the scaled left-singular vector
using the standard deviation of the data points in the consis-
tent direction, where the data variance is given by:

σ =
∑

j
λj (5)

where λj is the eigenvalue. The output of the PCA is the
principal component, where R contains the Rj principal com-
ponents of the input samples. Therefore, in the present work,
the PCA is applied to the feature space, and only the prin-
cipal components of the input samples, which provided a
good description of the data, were considered. Furthermore,
the ECFS method is applied in the present work.
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b: EIGENVECTOR CENTRALITY FEATURE SELECTION
The ECFS method orders the extracted features to rank the
features according to their relevance. Eigenvector selection is
a graph-based feature selection method for ranking features
according to a graph centrality measure (Eigenvector central-
ity). It maps the features as nodes in a graph and scores the
connected edges of the distributed features, where the edges
define the path between features. For a set of nodes F which
related to features F = {f1, . . . , fn}, an undirected graph is
defined as [34]:

G = (V ;E) (6)

where V is the set of vertices corresponding to each
feature f , and E represents the weighted edges between fea-
tures. To define the nature of the weighted edges, an adja-
cency matrix A is represented, which is associated with G.
In addition, each element aij of A, which represents a pairwise
potential term, is given by:

aij = ϕ(fi, fj) (7)

where the potentials are represented as a binary function
ϕ(fi, fj)of the node. Consequently, the adjacency matrix of the
graph can be expressed as [34]:

A = αK + (1− α)
∑

aij (8)

where A is the adjacency matrix of a directed graph is a
matrix n∗n, which contain nonnegative integers, such as aij=
number of arrows from all nodes. Also, α is a loading coef-
ficient ∈[0, 1], and K is a kernel obtained using the Fisher
criterion. Since the FS is used mainly to find discriminating
features, only the features that can distinguish the classes
are kept. Hence, mutual information is used to rank the
features by assigning a high score to the features that highly
can predict each class. This scoring can be expressed as
follows:

Si =
∑
y∈Y

∑
Z∈F

p(z, y) log(
p(z, y)
p(z)p(y)

(9)

Si is the scoring function used to select the features, Z is the
feature set of features F = {f1, . . . , fn}, and Y is the set
of class labels. For a set of nodes, F is related to features
F = {f1, . . . , fn}, where 1 ≤ i ≤ n, n = 753, and y
represents the class labels. Also, p(., .) is the joint probability
distribution function of the features measured to calculates
the likelihood of the two events (features and certain class)
occurring together at the same time. Thus, the probability
of the feature occurrence at the same time in a certain class
is measured. Also, the score is computed to keep only the
features that are related to or lead to these classes. In the ECFS
method, an eigenvectorA is calculated, which is defined as v0,
which is related to the largest eigenvalue representing the
strength of the connection between the nodes (i.e., features).

2) PROPOSED WEIGHTED-BASED TWO-LEVEL FEATURE
SELECTION HYBRIDIZATION
a: FIRST FEATURE SELECTION LEVEL (SET 1)
The proposed method consists of two-level selection, namely
level 1, where both the PCA and the ECFS are used
separately to obtain two separated feature vectors, PCd and
EVb, including the selected principal components and the
selected ECFS’s features, respectively. Then, both PCd and
EVb are combined to generate a new feature pool FV1. For
the m voice signal samples, the PCd becomes am× d matrix
of d selected principal components and EVb becomes am×b
matrix of b selected features using the ECFS. During this first
level selection, the selected features in the PCd were chosen
as the top-ranked PCA features (PC) based on the superior
obtained classification accuracy of the input samples in the
training phase. The same is repeated during the selection of
the best number of the selected features using the ECFS with
the cubic-SVM to find the top-ranked ECFS features in EVb.
To gain the benefits of the two feature pools from PCA and
ECFS, where these subsists considered two disjoint subists,
the obtained selected features PCd and EVb are combined in
the present work, leading to h selected features in FV1, which
can be expressed as follows:

FV1 = [PCd ,EVb] (10)

where FV1 is the set of the combined feature vector of level 1
selection.

b: SECOND FEATURE SELECTION LEVEL (SET 2)
In the present work, the proposed second features selection
level is applied to the FV1 using the ECFS method again to
determine the weights of the selected features. Consequently,
the new generated feature vector FV2 is expressed as:

FV2 = [PCk ,EVl] (11)

where PCk and EVl are the top-ranked selected features using
the second level selection. Here, k < d and l ≤ b as k
and d are the number of the PC selected features in FV1
and FV2, respectively. In addition, l and b are the number
of the selected EV features in FV1 and FV2, respectively.
In addition, g < h, where g is the total number of selected
features resulting from the second level selection including
PCk and EVl . The set of the selected features from the second
level (S2) is considered a subset of the set of top- selected
features from the first level selection (S1). Consequently,
a newly proposed non-zero weight wimpact is defined to
indicate the ratio and impact of each selected feature from
PCA features or the ECSF features that have the greatest
contribution in FV2, where the features from each method
were labeled. This weight is proposed to increase the effect
of the feature (impact) on the overall selected features set.
This proposed weight factor is calculated using the following
expression:

wimpact = k/d + l/b (12)
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FIGURE 1. Block diagram of the proposed system, where (a) training phase, and (b) test phase.

This proposed weight reflects the relation and contribution of
the selected features using both methods. Thus, if k/d > l/b,
then PCd will be replaced by wimpact × PCd , while keeping
EVb without change. Otherwise, if k/d < l/b, then replace
EVb by wimpact × EVb while keeping PCd without change.
In the present work, according to the reported results, l/b is
greater than k/d , accordingly wimpact is multiplied by the
selected features from the ECFS method in FV1 using the
following expression:

EVb−weighted = wimpact × EVb (13)

Hence, the final hybrid combination consists of PCd and
EVb−weighted , which can be given by:

FVf =
[
PCd ,EVb−weighted

]
m×h (14)

where FVf includes h features in each sample, which are the
modified selected features of first-level selection step using
wimpact , which include the union of the selected features in
the proposed method. Henceforth, the proposed weighted
selected features assigned feature weights that signify the
selected features prominence based on the achieved highest
classification accuracy.

3) OVERALL PROPOSED VOICE-LOSS DETECTION IN
PARKINSON’S DISEASE
After selecting the significant features and using the weight,
the final pool of features FVf is used in the classification-
based PD detection. Typically, there are different types
of machine learning classifiers that can be used to detect

voice-loss in PD. The weighted-hybrid features are fed to
cubic-SVM. Also, a number of classifiers including the artifi-
cial neural network (ANN), and SVMs with different kernels
were used for a comparative study. The proposed overall
system of voice-loss detection is illustrated in Figure 1, which
consists of two phases, namely train, and test. In the proposed
feature selection method, the final, significant features in
the selected features of both PCA and ECFS are weighted
without ignoring any of these features. In the second level
selection, the ECFS was applied for a second time to FV1
for determining the value of wimpact based on the impact and
the number of features in PCk and EVl . Then, the calculated
weight factor is multiplied by EVb, where the number of
ECSF selected features in FV2 is greater than the number
of selected features from the PCA features, as proved in the
results section, leading to the final selected feature subset
FVf . The final selected based weighting hybrid features are
then used for final classification to detect the PD cases and
distinguish the healthy and PD patient’s classes. The FVf is
then inputted to the trained cubic-SVM classifier to attain the
final PD detection using the classification results. These pre-
ceding steps are illustrated in Fig. 1 (a) in the training phase.
In the training phase, the results of the second level selection
depicted that the ECFS has a great impact compared to the
PC selected features. Consequently, after calculating wimpact
and based on the obtained results (in the Results section),
wimpact it is multiplied by the ECFS selected features directly
in the test phase. In this test phase, the combination of features
FV1 is used with the weight factor, which obtained from
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the second level selection in the training phase, to determine
the final selected feature vector FVf . The final design of the
proposed system is demonstrated in the test phase (Fig. 1(b)).

In Fig. 1, the final binary classifier using the selected
features FVf is able to accurately discriminate the PD patient
cases from the healthy control ones.

III. RESULTS AND DISCUSSION
The proposed system was designed to reduce the dimension-
ality of the features with accurate classification for voice-loss
detection in PD cases.

A. PERFORMANCE EVALUATION COMPARATIVE STUDY
FOR DIFFERENT CLASSIFIERS WITHOUT FEATURE
SELECTION
To ensure the efficiency of the proposed FS framework,
a comparative study was conducted between the cubic-SVM
and another 16 broadly used machine-learning procedures.
The classification performance of several classifiers was eval-
uated using the feature subsets of 753 features from every
756 samples, as demonstrated in Figure 2.

FIGURE 2. Comparative study of different classifiers accuracies in
percentage using the 753 features.

Fig. 2 established the superiority of the SVM using a
cubic kernel which achieved 88% accuracy. Thus, in the
present work, the cubic- SVM has the best accuracy com-
pared to using the other classifiers, including the ANN,
Linear SVM, Quadratic SVM, Fine Gaussian SVM, Medium
Gaussian SVM, Coarse SVM, Medium KNN, Coarse KNN,
Cosine KNN, Cubic KNN, Weighted KNN, Boosted trees,
Bagged trees, Subspace discriminant, Subspace KNN, and
RUSboosted trees. Consequently, the cubic-SVM is used for
the remaining cases in the current study of PD detection.
In the present work, several sequential steps were performed
and evaluated to reach the final proposed complete model
evaluation as follows.

B. STEP 1: CUBIC- SVM BASED PCA
The performance of the cubic- SVM classifier with select-
ing the top-ranked principal components of the input sam-
ples using a different number of principle components r is
reported in Table 1 as an example, where the other possibili-
ties were also examined.

TABLE 1. Performance of cubic-SVM using PCA in the test phase.

Table 1 showed that the highest classification accuracy of
value 91.1% is achieved by selecting the first 100 top-ranked
principal components, which are used in the further coming
steps as the selected features from the PCA.

C. STEP 2: CUBIC- SVM BASED ECFS
In this section, all the 753 extracted features from the voice
signal in [16] were used. During the classification process,
70% of samples were used for training, while 30% were used
for testing. Then, feature ranking using the ECFSmethod was
applied to select the best top-ranked features. Table 2 reported
the accurate measurements of the cubic-SVM classifier after
features ranking using the first 753, 700, 600, 500, 300, 200,
100, and 50 ranked/ selected features for all samples, as an
example of the obtained results from using grid search to find
the best number of the selected ECFS features.

TABLE 2. Performance of cubic-SVM using ECFS in the test phase.

Table 2 depicted the best classification accuracy obtained
with selecting the first 300 features using the ECFS method
for voice- loss detection with 93.1% accuracy. Accordingly,
we used these 300 ECFS top-ranked features in the further
coming steps.

D. STEP 3: FIRST LEVEL SELECTION WITH THE
GENERATED HYBRID SELECTED FEATURES (FV1)
This step in the results section applied the procedure men-
tioned in section 2.1 of the first level selection. The proposed
study gained the benefits of combining the selected features
from the two FS methods in steps 1 and 2 to obtain the
hybrid model of selected features. In the first level selec-
tion, 300 top-ranked selected features using ECFS(shown in
step 1), and 100 top-ranked selected principal components of
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PCA (in step 2) were integrated and summed up to a total
of 400 features in a set called S1, i.e. FV1 = 400, which
are used in our proposed hybrid system. These 400 features
were applied to a cubic-SVM, where the input has a size of
756 × 400, while the target was a 756 × 1 matrix with ‘1’
indicating PD patient and ‘-1’ indicating healthy individual,
then the cubic-SVM achieved about 93.3% accuracy. This
result indicated that the hybridization increases the classifi-
cation performance compared to the preceding cases, namely
using the whole extracted features without selection, using
the ECFS only, and using the PCA only. This inspired the
present work to study the impact of the selected ECFS and
the selected PCA features in FV1 using the proposed sec-
ond level selection as follows, where the number of the
selected features in the first level selection is found to be
N (FV1) = 400.

E. STEP 4: SECOND LEVEL SELECTION (FV2) AND WEIGHT
FACTOR IN THE TRAINING PHASE
This step in the results section applied the procedure
mentioned in section 2.2 of the second level selection by
calculating the weight factor in the training phase. To find
the contribution/ impact of the different FS methods in
FV1, a second level selection was applied to the hybrid
selected features FV1 = 400 using another ECFS. Thus,
the 400 combined and labeled selected features in the first
feature selection are fed again to other ECFS to determine
the top-ranked selected features for further use to determine
the weight factor. Table 3 presented the accuracy of the
cubic-SVM classifier after ranking using the first 200, 300,
350, and 370 ranked/ selected features for all samples from
the 400 selected features as an example, where the classifica-
tion accuracies were calculated for all ranking possibilities.
Thus, Table 3 includes the worst and best cases.

TABLE 3. Performance of cubic-SVM using ECFS for second-level
selection in the training phase.

Table 3 depicted that the highest classification accuracy
of 93.8% is achieved by a new set called S2, using 350 top-
ranked selected features from the hybrid selected features of
ECFS and PCA. Since the selected features were labeled,
it was found that the whole 300 ECSF features were included
in this finally selected pool, while only 50 PCA features
were used in this final selection stage out of a total 100 PCA
features. Accordingly, the result showed that the percentage
of using PCA is 50% (i.e., half of the PCA components that
ranked in the second level selection) from the total number
of selected features in the first level selection, while the
percentage of using ECFS is 100% (i.e., all the ECSF that
used and ranked in the first level selection were passed to

the second level selection). Accordingly, the weight factor
was calculated using the obtained values of k, d, land bto
substitute in Eq. (12) as follows:

wimpact = k/d + l/b = (300/300)+ (50/100) = 1.5 (15)

Thus, in the present work, the weight factor is found to be
wimpact = 1.5.

F. STEP 5: OVERALL PROPOSED FINAL SELECTED
FEATURES SET (FVf ) AND VOICE LOSS DETECTION BASED
CLASSIFICATION IN THE TEST PHASE
This step implements the test phase in the overall proposed
framework shown in Fig. 1 (b) using the deduced weight
value in the previous step. The calculated weight value
wimpact = 1.5is thenmultiplied by the selected ECFS features
in FV1leading to EVb−weightedas given in Eq. (11), where the
impact of the ECFS features is greater than the impact of the
PCA features.

From the previous study, we found that the percentage
of the selected features using ECFS is greater than PCA
in the hybrid method, and the performance of selected fea-
tures using eigenvector only is greater than PCA only. So,
we multiplied the 300 selected features from eigenvector by
the weight factor of 1.5 to increase the effect of the ECFS
features on the overall hybrid selected features set in FV1 to
find the final weighted- hybrid selected features set FVf . To
prove the correctness of this way using the calculated weight
factor by using (12), other weight values were tested and
multiplied by the ECFS features and gathered with the PCA
selected features with computing the value to find the relation
between changing the weight and the classification accuracy
as illustrated in Fig. 3 using FVf in (14).

FIGURE 3. The relation between the change in the weight factor value and
classification accuracy, where the x-axis indicates the weight factor value.

Fig.3 showed the performance of cubic-SVM using
weighted hybrid features. It described the effect of changing
the proposedweight value on the final classification accuracy.
Accordingly, it is concluded that the proposed weight applied
to the selected ECFS features improves the classification
performance up-to 94% with a weight of value 1.5. This
weight value equals the sum of the PCA contribution’s per-
centage in the hybrid selected features set, and the ECFS
selected features percentage in the second level ECFS. So, the
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proposed weighted-hybrid selected features achieved the best
accuracy to classify and detect the voice-loss in PD patients.
Moreover, other classification performance metrics of the
proposed weighted-hybrid selected features were measured.
Such metrics include the sensitivity, specificity, precision,
negative predictive value, miss rate (false negative rate), fall
out (false positive rate), false discovery rate, false omission
rate, and accuracy, which have the following values, 84.4%,
97.3%, 91.5%, 94.8%, 15.6%, 2.7%, 8.5%, 5.2%, and 94%,
respectively. Finally, the Receiver Operating Characteris-
tic (ROC) Curve, which is a probability curve for comparing
diagnostic tests, is plotted in Fig. 4. Also, the area under the
curve (AUC) indicates that the classification performance is
close to the perfect classifier.

FIGURE 4. ROC of cubic SVM using the proposed weighted-hybrid
selected features.

Figure 4 illustrated that the AUC equals 0.97 using the
proposed method.

IV. DISCUSSION AND COMPARISON WITH
STATE-OF-THE-ART WORK
In the proposed method, the weighted-hybridizing based
second level selection (from training phase) was performed
by merging both the PCA- based selected features and the
weighted ECFS-based selected features. Lastly, theweighted-
hybrid selected features were inputted to the SVM classifier
to detect the voice- loss signals identifying PD cases. The pre-
liminary feature selection using the PCA and the ECFSmeth-
ods supported by the response of the cubic-SVM indicated the
strength of features’ association in the feature space. Never-
theless, ultimately, our purpose is to improve the association
between the selected features using the PCA and ECFS. This
goal was achieved by multiplying the selected features using
the ECFS by a weight factor wimpact , where the accuracy of
using EVb separately is superior to using the PCA selected
features PCd . Consequently, the final binary classifier using
the selected dysphonia measures FVf was able accurately
to discriminate the PD patient cases from the healthy con-
trol ones. To ensure the efficiency of the proposed method,
a comparative study was conducted between the cubic-SVM
and another 16 broadly used machine-learning procedures.
This comparative study which reported in Fig. 2 proved the
superiority of using the cubic-SVM. Furthermore, the pro-

posed method is superior by 8% improvement in the accu-
racy to the obtained results in [16] that used the same
dataset, which achieved maximum accuracy of 86% with
0.84 F1-score and 0.59 MCC by feeding the top-50 features
selected by mRMR to SVM-RBF classifier. Thus, the preced-
ing results established the efficiency of the proposed selection
method for the PD voice-loss detection based classification
process. Subsequently, it is recommended to generalize this
proposed new feature selection framework for automatic
measurements and assessment method for PD patients at the
early stage as well as in a range of different applied clinical
purposes.

Moreover, a comparison between the proposed FS method
on text clustering is compared to the hybrid feature selection
method by Bharti and Singh in [35]. In [35], a modified union
based on sets intersection was designed to avoid ignoring any
of the selected features in the text clustering problem. The
authors selected all top-ranked features from two sublists as
well as the common features using the intersection between
the non-selected features. By comparing this procedure with
our proposed method, we represented the feature section
levels in the methodology section in terms of the sets and
sublists, where here the first set (S1) consists of 400 features
including the top-ranked features from first-level selection
(300 selected features of ECFS and 100 selected features of
PCA). In addition, the second set (S2), which includes the sec-
ond level top-ranked selected features, consists of 350 fea-
tures (300 of ECFS and 50 of PCA). This relation between
the two sets can be expressed as follows:

S2 ⊂ S1 (16)

In terms of the union and intersection operations, the relation
between the two sets, respectively, can be given as:

S1 ∪ S2 = S1 (17)

S1 ∩ S2 = S2 (18)

At the same time, the difference between the two proposed
sets is given by:

S1 − S2 = S3 (19)

where S3 consists of the features in S1 and not exist in S2,
which includes the remaining 50 features. Since S2 is a subset
of S1 without any remaining features in S1 and there is no
intersection between the remaining features sets, which is
expressed as follows:

S3 ∩ ∅ = ∅ (20)

Finally, by applying the concept of the modified union in [35]
in our proposed method, the final set is can be formulated as:

SF = (S1 ∪ S2) ∪ (S3 ∩ ∅) = S1 (21)

Accordingly, in the present work, the description of the two
levels, where S2 set is a subset of S1 is illustrated in Figure 5.

According to the obtained results, the 400 features from
the first level selection were used without ignoring any fea-
tures and without any change, which achieved an accuracy
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FIGURE 5. The relation between the proposed approach of the main two
sets, where (a) represents set 1 (S1) which includes the features of
first-level selection method, (b) represents set 2 (S2) includes the
features of second-level selection method and (c) represents the union
relation between the two sets.

of 93.3% classification- based PD detection. In addition, the
probability of the PCA features existence in level two is:

P(PCA) = 50/100 = 0.5 (22)

Also, the probability of the existence of ECFS features in
level two is:

P(ECFS) = 300/300 = 1 (23)

Subsequently, the proposed weighted-hybridizing based sec-
ond level selection (from training phase) was performed
by merging both the PCA-based selected features and the
weighted ECFS-based selected features without ignoring any
features. Lastly, the weighted-hybrid selected features were
inputted to the SVM classifier to detect the voice-loss signals
identifying PD cases, which achieved an accuracy of 94 %.

Generally, among the different feature selection methods
that dealt with voice signals, both PCA and ECFS were rec-
ommended in several studies such as in [36]–[38]. Generally,
PCA is very common as it projects the data into a new
space with reducing the dimensionality of feature space. This
guarantees the uncorrelated selected features from the PCA
and any other feature selection method, where the selected
PCA features are in a different space that differs from the
space of any other features that can be selected using another
feature selection method, such as the ECFS method. Hence,
in the present work, the independently selected features from
both the PCA and ECFS methods are uncorrelated, which
improves the performance of the selection method. This inde-
pendent and uncorrelated relation between the features from
PCA and ECFS is also proved in the present work, where
the intersection between their features is ∅. This accelerates
the PD detection-based classification by getting rid of the
correlated variables which do not contribute to any decision
making.

Since the proposed method achieved significant results,
it is recommended also to apply this proposed framework
along with data discretization in data mining applications

compared to the Tsai, and Chen [39]. In addition, the pro-
posed method can be incorporated with the feature selection
methods in [40]–[44] as well as different FS methods that
can be applied, such as random projection, independent com-
ponent analysis (ICA), and non-negative factorization. How-
ever, due to the limitations of using tail-and-error to select the
number of ranked/ selected features from each FS method in
stages 1 and 2, it is recommended to automate this process
using an optimization algorithm by using the classification
accuracy as the fitness function. Also, it is recommended to
generalize our efficient feature selection framework and test it
with different problems and datasets, where it is based on the
extracted features and their selection using our novel feature
selection framework and did not depend directly on the nature
of the signals and or the images (if used).

V. CONCLUSION
PD patients suffer from various symptoms in different body
parts, including the tongue that leads to voice- loss. Recent
researches are directed to find the association between speech
impairment and PD for further use in PD cases detection
and prediction. Dysphonia measures and other speech signal
processing procedures are directed to expect the severity of
PD symptoms using voice signals. Subsequently, numerous
features can be extracted from the speech signal processing
stage leading to over-fitting and the increased prospect of
finding irrelevant features along with the problem of the
imbalance in the datasets.

In this work, a novel cubic- SVM based weighted-hybrid
two-level feature selection for voice-loss detection in PD
was proposed. The first selection stage aims to select the
significant features using both the ECFS and the PCA com-
ponents for further hybridization. However, both FS methods
do not achieve the same classification accuracy separately;
this indicated that they do not have the same impact on the
overall hybrid combination. Hence, the second level selection
was proposed in the training phase only to find the proposed
weight factor, which is multiplied by the hybrid selected
features from the first selection of the most effective FS
method. In the present work, the results proved that using the
ECFS is superior to the PCA; accordingly, the final selected
feature set included the same PCA selected features from
the first selection stage while multiplying the selected ECFS
features by 1.5 (computed weight value). Therefore, the pro-
posed novel Cubic-SVM based two-level selection realized
94% classification accuracy, which is superior to several
well-known machine learning classifiers. Overall, the pro-
posed FS method established promising results in machine-
learning based voice- loss detection in PD patients.
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