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ABSTRACT Recently, much attention has been paid to beams carrying orbital angular momentum (OAM)
for radio communication, which faces a great challenge of dynamic generation of OAM with different
topological charges. In this paper, a novel reflective metasurface is designed to generate mode-reconfigurable
OAM beams in radio frequency domain. Each unit cell of the proposed metasurface consists of an octagonal
ring slot and a varactor diode. The response of each element to incident radio field can be engineered
individually by controlling the voltage of the corresponding varactor diode, thereby dynamically producing
OAM with different modes. Full-wave simulations show that the designed reflective metasurface can
generate frequency-adjustable OAM beams with different topological charges of [ = 41, 42, —1, —2 overa
frequency range of 5.2 GHz~5.8 GHz. An OAM purity analysis further verified the reliability of OAM beams
generated by the proposed metasurface. The obtained results are in good agreements with the theoretical
analyses, demonstrating a good prospect of practical application.

INDEX TERMS Orbital angular momentum (OAM), metasurface, varactor diode.

I. INTRODUCTION
In 1992, Allen et al. first found the fact that the
Laguerre-Gaussian (LG) light beams can carry a certain
mode of orbital angular momentum (OAM) [1], and pro-
posed that light beams with a helical phase front have the
potential to benefit the relevant applications in optical manip-
ulation. In addition, OAM modes are orthogonal to each
other, making it possible to increase the channel capacity of
wireless communication system without additional frequency
resources [2], [3]. In the past decades, the OAM vortex beam
has become an important research topic due to its excel-
lent physical nature and the potential applications [4]-[9].
In 2007, Thidé extended the investigations on OAM from
optics to microwave and proposed to generate OAM using
phased array antennas [10], promoting the development of
OAM in microwave communication [11].

A variety of methods have been reported to generate OAM
vortex waves in microwave range, including spiral phase

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Angiulli

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

plate (SPP) [12] and phased array antenna [13]-[18]. The
structure of SPP is simple, but it can only obtain the OAM
beam with a single mode, restricting the practical applica-
tion. In addition, it is not easy to precisely fabricate a SPP
with a screwed structure, resulting in the divergence and
mode purity reduction of generated OAM beam. The circular
phased array antenna could precisely control the phase distri-
bution and generate OAM mode with high purity. However,
it usually needs to employ complex feeding network with
phase shifters, and the gain is not high due to the loss of
complicated feeding circuits. To solve these problems, there
have been some new ways to generate OAM vortex waves
such as holographic plate [19], travel-wave antenna [20]—[24]
and dielectric resonator antenna [25], [26]. Holographic plate
and dielectric resonator antenna can produce OAM beams
with small divergence angle, but they have relatively low
gains. The circular travel-wave antenna can generate mul-
tiple OAM modes simultaneously, but it has large size and
high profile. Very recently, metasurface has been introduced
to microwave range to generate OAM beams owing to its
advantages such as low profile, high gain, and flexible
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capability of modulating electromagnetic waves [27]-[38].
However, the previous studies of microwave metasurface
rarely produced OAM beams possessing the characteristics
of reconfigurable mode and adjustable working frequency
simultaneously, which greatly hinders its applications.

In this paper, we propose a novel reflective metasurface
to generate mode-reconfigurable and frequency-adjustable
OAM beams in microwave range. Each unit cell of the pro-
posed reflective metasurface can actively engineer the phase
profile by a varactor diode. The proposed metasurface is illu-
minated by a horn antenna and introduces an azimuthal phase
profile of &//# (g is the azimuthal angle) into the reflect elec-
tromagnetic waves, generating vortex waves. Numerical sim-
ulation results show that the proposed reflective metasurface
can generate mode-reconfigurable OAM beams with high
purities in the bandwidth. Our proposed method has potential
application in future wireless communication system.
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FIGURE 1. (a) Schematic model of the reflective metasurface for OAM
generation. (b) Schematic diagram of the proposed element. (c) Top view
and (d) Side view of the proposed element.

II. PRINCIPLE AND DESIGN OF

REFLECTIVE METASURFACE

Figure 1(a) schematically shows the proposed reflective
metasurface, which is normally illuminated by a horn antenna
and transform the incident waves into reflected OAM vortex
waves. The substrate of the metasurface is TMM13i with
dielectric constant of &, = 12.2, loss tangent of tan§ =
0.0019, and thickness of 1.5 mm. The substrate with high
dielectric constant can be helpful to miniaturization of the
structure since higher dielectric constant results in lower res-
onant frequency [39]. Considering the specific phase profile
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of vortex beam and the cost, the metasurface totally consists
120 units arranged in five circles. From inner to outer, these
circles has radius of 20 mm, 30 mm, 40 mm, 50 mm and
60 mm, and contains 8, 16, 24, 32, and 40 uniformly dis-
tributed unit elements, respectively. Our design can be read
from Fig. 1(a). Therefore, to simplify the structure and avoid
disturbing, the structure is designed as a ring, whose inner and
outer radius is 15 mm and 70 mm, respectively. It is because
that space of the central part of the metal plate is not enough to
accommodate unit elements for OAM beam generation, and
the reflected field from this area will interfere with that from
unit elements, disturbing the generated OAM beam.

TABLE 1. Parameters of the unit element.

Parameters R; R> Le We D d
Unit/mm 36 44 08 04 10 1.3 1.5

To ensure the metasurface working at frequency range
of 4.5GHz~6.5GHz, the geometric parameters have been
numerically optimized. The unit structure of the proposed
metasurface is shown in Fig. 1(b-d) and its parameters are
given in Table 1. In the top layer, an octagonal slot is cut into
a metal patch, and a varactor diode is inserted into the slot
to connect the inner and outer metal patches. Note that we
choose octagonal ring rather than circular and square rings
since octagonal ring slot is more feasible to insert varactor
diode than the circular case and provides larger reflection
area of antenna than the square case. The inner metal patch
is connected to a metal column through a via inside the
substrate, through changing the voltage applied between the
metal column and the outer metal patch, the diode capacitance
can be well controlled. The metal column is not connected to
the bottom ground, therefore we can manipulate the varactor
diode individually by using the field programmable gate array
(FPGA). This method minimizes the outer disturbing on the
reflection field. As a result, the capacitance of the varactor
diode can be changed by applying a voltage to the inner
and outer metal patches, therefore changing the responses of
metasurface to incident electromagnetic field. This concept
may allow us to dynamically engineer the phase distribution
of reflective field and generate mode-reconfigurable OAM
beams with a unique metasurface.

To demonstrate, simulation models of the designed ele-
ment are built by using a commercial software High Fre-
quency Structure Simulator (HFSS) which is based on the
finite element method. In the simulations, the floquet port
excitation is adopted as the incident source and perfect elec-
trical conductor condition is used as ground, as shown in
Fig. 1(b). To simulate the response of each unit element,
master—slave boundary condition is set at the boundaries in
both x- and y-direction to save the computing memory and
time. To simulate the designed metasurface, radiative bound-
ary condition is used in horizontal boundaries instead. We set
incident source as a spherical wave with y-polarization, which
can be generated by Vivaldi antenna and horn antennas in
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microwave regime [29], [30]. This kind of source will not
block the reflection aperture. In our design, the parameter
of varactor diode is chosen as MAVR-000120-1411 from
MACOM [40], whose capacitance value ranges from 0.14 pF
to 1.1 pF. In the simulation, we consider an ideal case and the
capacitance value is described by an equivalent RLC bound-
ary, in which the resistance and inductance are not taken into
consideration. Even though loss from resistance may affect
the reflected wave, luckily, it has been demonstrated that
its influence on reflection phase can be negligible [41]. The
unit element, which is composed of the octagonal slot, metal
patch, and varactor, can be represented with an equivalent
LC circuit. The metallic part and varactor can be modeled
by inductance L and capacitance C, respectively. The load
impedance can be calculated by Z.¢r = jwL+1/jwC. By utiliz-
ing the tunable capacitance of varactor, we can manipulate the
load impedance to create different surface impedance of the
unit element. It is known that the electromagnetlc response

can be described by the impedance Zs as E= Zs (n x H )

where 7 is a unit vector. Thus, the capacitance value changes
the surface impedance of the unit element, providing us with
an opportunity to engineer the reflected electric field. In this
method, the radio-frequency performance can be dynamically
altered through simple low-cost bias voltage, and the cou-
pling between investigated radio-frequency and dc voltages is
negligible [35], [39].
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FIGURE 2. Simulated (a) magnitude and (b) phase of reflection
coefficient for the unit element with different capacitance values from
0.14 pF to 1.1 pF.

Figure 2 shows the simulated magnitude and phase of
reflected wave from a unit element as functions of varactor
diode capacitance and incident frequency. Note that, we are
trying to achieve mode-reconfigurable OAM beams by using
varactor diode. Thus, it is not considered to change the
geometry parameters, such as the position and size of the
varactor diodes. Instead, we dynamically tune the capacitance
value of the varactor diode from 0.14 pF to 1.1 pF and the
incident frequency is over a broadband range from 4.5 GHz
to 6.5 GHz. It can be seen from Fig. 2(a) that the amplitude
changes abruptly at specific frequency when the capacitance
value changes, indicating the unit element could resonantly
interact with the incident electromagnetic field at this fre-
quency. In addition, the resonance frequency decreases as the
capacitor value increases. It means that interaction between
the unit element and the incident field will change when the
capacitance has different value, and it may result in phase

VOLUME 8, 2020

shift of reflected wave at fixed frequency. Figure 2(b) shows
that the reflected phase could shift from O to 2 by controlling
the capacitances of varactor diode, which could satisfy the
requirement of OAM beams generation. According to these
results, we choose 5.2 GHz to 5.8 GHz for two reasons: first,
variation of the reflected amplitude is smaller than 0.5 dB in
this frequency range when the capacitance changes; second,
beyond this range it either cannot cover entire phase shift
of 0-2r or is difficult to precisely control the capacitance.
Similar experiment of precisely controlling the capacitance
value of varactor can be referred to [41].

To generate an OAM beam, the phase distribution at meta-
surface generally consists of two parts: one is the helical
phase distribution of the form /% along the azimuthal axis,
where [ represents the topological charge of an OAM beam,
and the other one is the compensation for the phase of inci-
dent wave, which is determined by the source. In our case,
the phase shift could be represents by [31], [33]

¢ (x,y) =1 - arctan (J—C) — —Txy €))]
y Ao

where (x, y) is the coordinate in the metasurface plane,
Ao is the wavelength in vacuum, ryy is the distance from
the center of horn to the location (x, y). Here, the incident
spherical wave is 75 mm away from the metasurface. The
phase value of compensation for each unit element can be
calculated. Figures 3(a-d) show the phase distributions of the
designed metasurface to generate OAM beam with topologi-
cal charge of [ = —1, 4+1, —2, 42, respectively, which are
calculated from Eq. (1). In the following, we demonstrate
the performance of the proposed metasurface to generate
mode-reconfigurable OAM beams.
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FIGURE 3. Phase distributions of the reflective metasurface to generate
OAM mode with topological charge of (a) | = -1, (b) I = +1, () | = -2,
d) I =+2.

IIl. RESULTS AND DISCUSSION

As discussed above, the reflected phase response of the pro-
posed structure varies with the capacitance and the results
in Fig. 2 suggests us to generate OAM beams in the frequency
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ranging from 5.2 GHz to 5.8 GHz. Therefore, a reconfig-
urable OAM mode can be effectively achieved by the meta-
surface through electrically controlling the capacitance of
varactor diodes.
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FIGURE 4. The electric field intensity (a1)-(d1), phase distributions
(a2)-(d2), and far-field radiation patterns of the generated OAM beams in
x-y plane with topological charge of | = —1, +1, —2 and +2 (from left to
right). In these cases, the designed metasurface works at frequency of
5.2 GHz. The observation plane is 300 mm away from metasurface.

Figure 4 shows the simulation results of the generated
OAM beams with topological charges of | = —1, +1,
—2 and +2 (from left to right) at frequency of 5.2 GHz
by electrically tuning the varactor diode. Figures 4(al)-(d1)
show the amplitude distributions of electric field in x-y plane,
which is observed in a circle with radius of 250 mm at a
distance of 300 mm (about 5 times of wavelength) from
the metasurface. These generated electric field exhibit the
characteristics of OAM beams with ring-like amplitude distri-
butions, which are caused by phase singularity at the central
region. In addition, the central dark zone grows larger when
the topological charge ! of the OAM beam increases. The
non-uniformly distributed amplitude may be attributed to the
difference in reflected amplitude between unit elements in the
designed metasurface. The features of spiral phase distribu-
tion are also obvious. As shown in Figs. 4(a2)-(d2), the phase
variation of —2m, 27, —4m and 47, respectively, happens in
a circle along the azimuthal direction, which also confirms
the characteristics of OAM beam. Figures 4(a3)-(d3) show
the corresponding far-field radiation patterns with amplitude
nulls existing at the central regions. From both the near-field
and far-field performances, it is found that the major feature
of the OAM beam is successfully obtained, and different
OAM modes can be dynamically achieved, verifying the good
performance of the mode reconfiguration.

As mentioned above, this proposed metasurface has
another advantage of frequency-adjustable characteristic.
To demonstrate, we simulate the generation of OAM beams
with topological charges of I = —1, +1, —2 and +2 at
frequency of 5.8 GHz, as shown in Fig. 5 (from left to right).
It is also observed in x-y plane within a circle with radius
of 250 mm at a distance of 300 mm (about 6 times of wave-
length) from the metasurface. It can be seen that the results
are similar to the case of 5.2 GHz, exhibiting the key features
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FIGURE 5. The electric field intensity (a1)-(d1), phase distributions
(a2)-(d2), and far-field radiation patterns of the generated OAM beams in
x-y plane with topological charge of | = -1, +1, —2 and +2 (from left to
right). In these cases, the designed metasurface works at frequency of
5.8 GHz.

of OAM beam. The top and bottom panels show ring-like
amplitude distributions with central nulls which are attributed
to phase singularity at the centers in x-y plane. The size of the
central nulls increases when the absolute value of topological
charge becomes larger. In addition, the middle panel shows
the feature of spiral phase distributions changing from O to
—2m, 2, —4m and 47 (from left to right) in a circle along
the azimuthal direction. Overall, we obtained a very good
result demonstrating the good performance of the proposed
method to generate mode-reconfigurable OAM beams with
adjustable working frequency in microwave range.

To further verify the reliability of the proposed method,
the power spectrum of these OAM beams generated by the
designed metasurface is calculated using the discrete Fourier
transform algorithm. The Fourier relationship between the
OAM spectrum P(«) and the corresponding sampling phase
¥ (@) can be expressed as [22]

+o00
¥ () = Y _P(a)exp(ilp) ©)
750 2
P(a) = - ¥ (@) exp (—jlo)de (3)
g

where ¥ (@) refers to the discrete sampling phase value in the
sampling plane, exp(-jl¢) is the harmonic related to the spiral
phase front.

We simulated the generation of OAM beams with topo-
logical charges of I = +1, —1, 42, and —2 at frequencies
of 5.2 GHz, 5.4 GHz, 5.6 GHz and 5.8 GHz and calculated
the power spectra. In these cases, the propagation distance
of OAM beams is set to be 300 mm (about 5~6 times of
wavelength), and the radius of a circular observation area
is 150mm. The chosen area is the main radiation direction
of wave propagation, so the model purity is most accurate
in this area. As shown in Figs. 6(a)-(d), the power spectra
of the generated OAM beam with topological charges of
| =—1,+1, —2, and +2 are calculated at the frequencies of
5.2GHz, 5.4 GHz, 5.6 GHz and 5.8 GHz. It can be seen that
most of the power is concentrated within the generated OAM
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FIGURE 6. Histograms of OAM spectrum weight at different frequencies
of 5.2 GHz, 5.4 GHz, 5.6 GHz and 5.8 GHz. The generated topological
charge of OAM beam from metasurface is (a) | = -1, (b) | = +1,

() I = =2, (d) | = +2, respectively.

mode, meanwhile, there is part of the power extending to the
neighboring OAM channels. It is in a good agreement with
the result of field distributions above.

From the experimental point of view, the fabrication inac-
curacies, for example the capacitance error, may have influ-
ence on the generated OAM beams. It is because the phase
of reflected wave highly depends on the capacitance values,
especially around the resonance frequencies. To demonstrate,
we performed simulations at frequency of 5.8GHz, randomly
selecting half of the unit elements and introducing errors to
their capacitance values. When the error is 0.02pF, the mode
purities of OAM beams with [ = —1, 1, —2 and 2 are
calculated to be 0.60, 0.61, 0.63, and 0.59, in contrast, the cor-
responding mode purities of ideal cases are 0.62, 0.64, 0.68,
and 0.65, respectively. By optimizing the capacitance values
in experiment, the fabrication errors may be compensated and
the generated OAM beam can be improved.

We additionally studied the mode purities of these OAM
beams at frequency of 5.2GHz with propagation distances
of 200mm, 250mm and 300mm, as summarized in Table 2.
Due to the divergence of OAM beam, the observation area
varies to ensure most of the energy can be involved. It can
be seen that the calculated mode purities do not vary signif-
icantly with the propagation distance. In addition, the mode
purities of OAM beams with / = =1 are more stable than
that with / = 42 since the divergence is more obvious for the
latter cases.

TABLE 2. Purity as function of propagation distance at 5.2GHZ.

Distance =1 [=1 [=2 =2
200mm 0.60 0.65 0.63 0.64
250mm 0.61 0.64 074 0.76
300mm 0.62 0.60 0.61 0.62

Because different capacitance values bring changes in
both phase and amplitude of reflection, resulting in differ-
ence in reflected amplitude between unit elements in the
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FIGURE 7. Mode purity of generated OAM beams with | = +1, —1, +2 and
—2 at the frequencies ranging from 5.2 GHz to 5.8 GHz.

TABLE 3. Comparison between the proposed scheme with previous
results.

Ref.  Type fo(GHz)  Bandwidth OAM Purity  Gain(dBi)  Method
[2] Patch 5.65 Narrow -2,1 N.A. N.A. Exp.
[12] SPP 0.03 Narrow 1 N.A. 8.5 Sim.
[14]  Phase Array  9.90 Narrow 0-7 N.A. N.A. Exp.
[15]  Antenna Array  5.80 572595  +1 NA.  NA. Exp.
[16] Antenna Array  5.50 539-5.69 +1 N.A. N.A. Exp.
[18]  Patch Array 247 Narrow +1 >0.90 48 Exp.
[20]  Antenna 10 Narrow +3 N.A. 3.71 Exp.
[27]  Metasurface  5.80 Narrow 1,2,4 N.A. N.A. Exp.
[30] Reflectarray 6,10 Narrow +1 >0.62 17.7 Exp.
[33] Metasurface  8.50 Narrow +1,+2 NA. N.A. Exp.
Us Metasurface 5.50 5.20-5.80 +1,+2 >0.60 7~8 Sim.

designed metasurface, and finally leading to the mode impu-
rity. Fortunately, the calculated spectrum purities for all gen-
erated OAM modes are higher than 60% at all frequencies,
as summarized in Fig. 7. Therefore, it is demonstrated fur-
ther that proposed method could dynamically generate the
OAM beams with good purity over the frequency range of
5.2 GHz~5.8 GHz.

Table 3 summarizes different techniques to compare the
results of our proposed scheme with that of the other state-of-
the-art techniques. From the view of mode purity, our scheme
are comparable with the state-of-the-art techniques. While
considering the mode-reconfigurable and frequency-tunable
properties, our results are better than most reported cases.

IV. CONCLUSION

In conclusion, we propose a novel reflective metasurface with
varactor diodes, which can generate mode-reconfigurable and
frequency-adjustable OAM beam in microwave range by
tuning the capacitance of varactor diode. Simulation results
demonstrated that the designed reflective metasurface can
generate OAM mode of [ = —1, —2, +1 and +2 with mode
purity over 60% in the frequency ranging from 5.2 GHz to
5.8 GHz. The proposed reflective metasurface has the advan-
tages of small size, low profile, mode reconfiguration and
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frequency-adjustable characteristics, which has great impor-
tance in future wireless communications system.
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