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ABSTRACT Open-domain textual question answering (QA), which aims to answer questions from large
data sources like Wikipedia or the web, has gained wide attention in recent years. Recent advancements
in open-domain textual QA are mainly due to the significant developments of deep learning techniques,
especially machine reading comprehension and neural-network-based information retrieval, which allows
the models to continuously refresh state-of-the-art performances. However, a comprehensive review of
existing approaches and recent trends is lacked in this field. To address this issue, we present a thorough
survey to explicitly give the task scope of open-domain textual QA, overview recent key advancements on
deep learning based open-domain textual QA, illustrate the models and acceleration methods in detail, and
introduce open-domain textual QA datasets and evaluation metrics. Finally, we summary the models, discuss
the limitations of existing works and potential future research directions.

INDEX TERMS Open-domain textual question answering, deep learning, machine reading comprehension,
information retrieval.

I. INTRODUCTION
A. BACKGROUND
Question answering (QA) systems have long been concerned
by both academia and industry [1]–[3], where the concept
of QA system can be traced back to the emergence of arti-
ficial intelligence, namely the famous Turing test [4]. Tech-
nologies with respect to QA have been constantly evolving
over almost the last 60 years in the field of Natural Lan-
guage Processing (NLP) [5]. Early works on QA mainly
relied on manually-designed syntactic rules to answer simple
answers due to constrained computing resources [6], such
as Baseball in 1961, Lunar in 1977, Janus in 1989 and
so on [5]. Around 2000, several conferences such as
TRECQA [1] and QA@CLEF [7], have greatly promoted the
development of QA. A large number of systems that utilize
information retrieval (IR) techniques were proposed at that
time. Then around 2007, with the development of knowledge
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bases (KBs), such as Freebase [8] and DBpedia [9], espe-
cially with the emergence of open-domain datasets on
WebQuestions [10] and SimpleQuestions [11], KBQA tech-
nologies evolved quickly. In 2011, IBMWatson [12] won the
Jeopardy! game show, which received a great deal of atten-
tion. Recently, due to the release of several large-scale bench-
mark datasets [13]–[15] and the fast development in deep
learning techniques, large advancements have been made
in the QA field. Especially, recent years have witnessed a
research renaissance on deep learning based open-domain
textual QA, an important QA branch that focuses on answer-
ing questions from large knowledge sources like Wikipedia
and the web.

B. MOTIVATION
Despite the flourishing research of open-domain textual QA,
there remains a lack of comprehensive survey that summa-
rizes existing approaches&datasets as well as systemically
analysis of the trends behind these successes. Although sev-
eral surveys [16]–[19] were proposed to discuss the broad
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picture of QA, none of them have focused on the specific
deep learning based open-domain textual QA branch. More-
over, there are several surveys [20]–[23] that illustrate recent
advancements in machine reading comprehension (MRC)
by introducing several classic neural MRC models. How-
ever, they only reported the approaches in close-domain
single-paragraph settings, and failed to present the latest
achievements in open-domain scenarios. So we write this
paper to summarize recent literature of deep learning based
open-domain textual QA for the researchers, practitioners,
and educators who are interested in this area.

C. TASK SCOPE
In this paper, we conduct a thorough literature review on
recent progress in open-domain textual QA. To achieve this
goal, we first category previous works based on five charac-
teristics described as below, then give an exact definition of
open-domain textual QA that explicitly constrains its scope.

1) Source: Towards different data sources, QA systems
can be classified into structured, semi-structured and
unstructured categories. One the one hand, structured
data are mainly organized in the form of knowledge
graph (KG) [9], [24], [25], while semi-structured data
are usually viewed as lists or tables [26]–[28]. On the
other hand, unstructured data are typically plain text
composed of natural language.

2) Question: The question type is defined as a
certain semantic category characterized by some com-
mon properties. The major types include factoid, list,
definition, hypothetical, causal, relationship, proce-
dural, and confirmation questions [17]. Typically,
factoid question is the question that starts with a
Wh-interrogated word (What, When, Where, etc.) and
requires an answer as fact expressed in the text [17].
The form of question can be full question [14], key
word/ phrase [15] or (item, property, answer) triple
[29].

3) Answer: Based on how the answer is produced,
QA systems can be roughly classified into extractive-
based QA and generative-based QA. Extractive-based
QA selects a span of text [13], [15], [30], a word
[31], [32] or an entity [10], [11] as the answer.
Generative-based QA may rewrite the answer if it does
not (i) include proper grammar to make it a full sen-
tence, (ii) make sense without the context of either the
query or the passage, (iii) have a high overlap with
exact portions in context [33], [34].

4) Domain: Closed-domain QA system deals with ques-
tions under a specific field [35], [36] (e.g., law,
education, and medicine), and can exploit domain-
specific knowledge frequently formalized in
ontologies. Besides, closed-domain QA usually refers
to a situation where only a limited type of question
is asked, and a small amount of context is provided.
Open-domainQA system, on the other hand, deals with
questions from a broad range of domains, and only

TABLE 1. Question-answer pairs with sample excerpts from TriviaQA [14],
which requires reasoning from multiple paragraphs.

rely on general text and knowledge base. Moreover,
systems are usually required to find answers from large
open-domain knowledge sources (e.g., Wikipedia,
web), instead of a given document [37], [38].

5) Methodology: As for involved methodologies, QA
systems can be categorized into IR based [39]–[41],
NLP based [31] and KB based [42] approaches [5].
IR based models mainly return the final answer as
a text snippet that is most relevant to the question.
NLP based models aim to extract candidate answer
strings from the context document and re-rank them
by semantic matching. KBQA systems build a seman-
tic representation of the query and transform it into
a full predicate calculus statement for the knowledge
graph.

Following the above categories, open-domain textual
QA can be defined as: (1) unstructured data sources on
text, (2) factoid questions or keyword/phrase as inputs,
(3) extractive-based answer, (4) open-domain, and
(5) NLP based technologies with auxiliary IR technologies.
Table. 1 shows an example of deep learning based
open-domain textual QA.

D. CONTRIBUTIONS
The purpose of this survey is to review the recent research
progress of open-domain textual QA based on deep learn-
ing. It provides the reader with a panoramic view that
allows the reader to establish a general understanding of
open-domain textual QA and know how to build a QA model
with deep learning technique. In conclusion, the main con-
tributions of this survey are as follows: (1) we conducted
a systematic review for open-domain textual QA system
based on deep learning technique; (2) we introduced the
recent models, discussed the pros and cons of each method,
summarized method used in each components of model,
and compared the models performance on each dataset;
(3) we discussed the current challenges and problems to be
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solved, and explored new trends and future directions in the
research on open domain textual QA system based on deep
learning.

E. ORGANIZATION
After making the definition clear, we further give an overview
of open-domain textual QA systems, including presenting a
brief history, explaining the motivation of using deep learn-
ing techniques, and introducing a general open-domain tex-
tual QA architecture (Section II). Next, we illustrate several
key components of open-domain textual QA including
ranking module, answer extraction, and answer selection,
summarize recent trends on acceleration techniques as
well as public datasets and metrics (Section III). Last,
we conclude the work with discussions on the limita-
tions of existing works and some future research directions
(Section IV).

II. OVERVIEW OF OPEN-DOMAIN TEXTUAL QA SYSTEMS
Before we dive into the details of this survey, we start
with an introduction to the history, the reason why deep
learning based method emerges and architecture regard-
ing to open-domain textual QA systems based on deep
learning.

A. HISTORY OF OPEN-DOMAIN TEXTUAL QA
In 1993, START became the first knowledge-based question-
answering system on the Web [43], since then answered
millions of questions from Web users all over the world.
In 1999, the 8th TREC competitions [44] began to run the
QA track. In the following year, at the 38th ACL conference,
a special discussion topic ‘‘Open-domain Question Answer-
ing’’ was opened up. Since then, open-domain QA system
has become a hot topic in the research community. With
the development of structured KBs like Freebase [8], many
works have proposed to construct QA systems with KBs,
such as WebQuestions [10] and SimpleQuestions [11]. These
approaches usually achieve high precision and nearly solve
the task on simple questions [45], but their scope is limited
to the ontology of the KBs. There are also some pipelined
QA approaches that use a large number of data resources,
including unstructured text collections and structured KBs.
The landmark approaches are ASKMSR [3], DEEPQA [12],
and YODAQA [2]. A landmark event in this filed is the
success of IBM Watson [12], who won the Jeopardy! game
show in 2011. This complicated system adopted a hybrid
scheme including technologies brought from IR, NLP, and
KB. In recent years, With the development of deep learning,
NLP based QA systems emerge, which can directly carry
out end-to-end processing of unstructured text sequences
at the semantic level through neural network model [46].
Specifically, DrQA [37] was the first neural-network-based
model for the task of open-domain textual QA. Based on this
framework, some end-to-end textual QA models have been
proposed, such as R3 [47], DS-QA [48], DocumentQA [49],
and RE3QA [38].

B. WHY DEEP LEARNING FOR OPEN-DOMAIN
TEXTUAL QA
It is beneficial to understand the motivation behind these
approaches for open-domain textual QA. Specifically, why do
we need to use deep learning techniques to build open-domain
textual QA systems? What are the advantages of neural-
network-based architectures? In this section, we would like
to answer the above questions to show the strengths of deep
learning-based QA models, which are listed as below:

1) Automatically learn complex representation: Using
neural networks to learn representations has two advan-
tages: (1) it reduces the efforts in hand-craft feature
designs. Feature engineering is a labor-intensive work,
deep learning enables automatically feature learning
from raw data in unsupervised or supervised ways [50].
(2) contrary to linear models, neural networks are capa-
ble of modeling the non-linearity in data with activation
functions such as Relu, Sigmoid, Tanh, etc. This prop-
erty makes it possible to capture complex and intricate
user item interaction patterns [50].

2) End-to-end processing: Many early years’ QA sys-
tems heavily relied on the question and answer
templates, which were mostly manually constructed
and time-consuming. Later most of the QA research
adopted a pipeline of conventional linguistically-based
NLP techniques, such as semantic parsing, part-of-
speech tagging, and coreference resolution. This could
cause the error propagation during the entire progress.
On the other hand, neural networks have the advan-
tage that multiple building blocks can be composed
into a single (gigantic) differentiable function and
trained end-to-end. Besides, models of different stages
can share learned representations and benefit from
multi-task learning [51].

3) Data-driven paradigm: Deep learning is essentially
a science based on statistics, one intrinsic property of
deep learning is that it follows a data-driven paradigm.
That is, neural networks can learn statistical distri-
butions of features from massive data, and the per-
formance of the model could be constantly improved
as more data are used [52]. This is important for
open-domain textual QA as it usually involves wide
range of domains and large text corpus.

C. DEEP LEARNING BASED TECHNICAL ARCHITECTURE
OF OPEN-DOMAIN TEXTUAL QA SYSTEMS
As shown in TABLE. 1, given a question, the QA system
needs to retrieve several relevant documents, read and gather
information across multiple text snippets, then extract the
answer from raw text. Notably, not all given paragraphs
contain the correct answer, and the exact location of the
ground-truth answer is unknown. Such setting is usually
referred to as distant supervision, which brings difficul-
ties in designing supervised training signals. In summary,
open-domain textual QA poses great challenges as it requires
to: 1) filter out irrelevant noise context, 2) reason across
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FIGURE 1. The technical architecture of deep learning based open-domain textual QA systems. The paragraph index&ranking module first
retrieves several related documents and then selects a few top-ranked paragraphs relative to the question, from which the extractive reading
comprehension module extracts multiple candidate answers. Finally, the system picks the most promising prediction as the answer. Besides,
to boost the processing speed while ensuring accuracy, several acceleration techniques are adopted.

multiple evidence snippets, and 3) train with distantly-
supervised objectives.

In recent years, with the rapid development of deep learn-
ing technologies, significant technical advancements have
been made in the field of open-domain textual QA. Specif-
ically, Chen et al. proposed the DrQA system [37], which
splits the task into two subtasks: paragraph retrieval and
answer extraction. The paragraph retrieval module selects and
ranks the candidate paragraphs according to the relevance
between paragraph and question, while the answer extrac-
tion module predicts the start and end positions of candi-
date answers in the context. Later, Clark and Gardner [49]
proposed a shared-normalization mechanism to deal with
the distant-supervision problem in open-domain textual QA.
Wang et al. [47] adopted reinforcement learning to joint train
the ranker and the answer-extraction reader. Based on this
work, Wang et al. [53] further proposed evidence aggre-
gation for answer re-ranking. Recently, Hu et al. [38] pre-
sented an end-to-end open-domain textual QA architecture
to jointly perform context retrieval, reading comprehension,
and answer re-ranking.

To summarize these works, we propose a general technical
architecture of open-domain textual QA system in Fig. 1. The
architecture mainly consists of three modules including para-
graph index&ranking, candidate answer extraction, and final
answer selection. Specifically, the paragraph index&ranking
module first retrieves top-k paragraphs related to questions.
Then these paragraphs are sent into the answer extrac-
tion module to locates multiple candidate answers. Finally,
the answer selection module predicts the final answer. More-
over, in order to improve the efficiency of QA systems, some

acceleration techniques, such as jump reading [54] and skim
reading [55], can be applied in the system.

III. MODELS AND HOT TOPICS
In this section, we illustrate the individual component of
the generalized open-domain textual QA system described
in Fig. 1. Specifically, we introduce: (i) the paragraph
index&ranking module in subsection III-A, (ii) the candidate
answer extraction module in subsection III-B, (iii) the final
answer selection module in subsection III-C, and (iv) the
acceleration techniques in subsection III-D. Finally, we give a
brief introduction of recent open-domain textual QA datasets
in subsection III-E, as well as experimental evaluation and
model performance in subsection III-F.

A. PARAGRAPH INDEX AND RANKING
The first step of open-domain textual QA is to retrieve sev-
eral top-ranked paragraphs that are relevant to the question.
There are two sub-stages here: retrieving documents through
indexing, and ranking the context fragments (paragraphs)
in these documents. The paragraph-index module builds the
light-weight index for the original documents. During pro-
cessing, the index dictionary is loaded into memory, while the
original documents are stored in file-systems. This method
can effectively reduce memory overhead, as well as accel-
erates the retrieval process. The paragraph-ranking module
analyzes the relevance between query and paragraphs and
selects top-ranked paragraphs to feed into the reading com-
prehension module. In recent years, along with the devel-
opment of information retrieval and NLP, a large number
of new technologies regarding to index and ranking have
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been proposed. Here we mainly focus on the deep
learning-based approaches.

1) PARAGRAPH INDEX
Paragraph index can be classified into query-dependent
index and query-independent index. The query-dependent
index mainly includes dependence model and pseudo rele-
vance feedback(PRF) [56], [57], which considers approxi-
mation between query and document terms. However, due
to the index dependence on queries, the corresponding
ranking models are difficult to scale and generalize. The
query-independent index mainly includes TF-IDF, BM25,
and language modeling [56], [57], which contains a rel-
atively simple index feature and with low computational
complexity on matching. IBM Watson adopted a search
method to combine the query-dependent similarity score with
the query-independent score to determine the overall search
score for each passage [58]. Although those index features
are relatively efficient and scalable on processing, they are
mainly based on the terms without the contextual semantic
information.

Recently, several deep learning-based methods have been
proposed. These approaches usually embed the terms or
phrases into dense vectors and use them as indices.
Kato et al. [59] constructed a demo to compare the effi-
ciency and effectiveness of LSTM and BM25. Seo et al.
proposed Phrase-indexed Question Answering (PIQA) [60],
which employed bi-directional LSTMs and self-attention
mechanism to obtain the representation vectors for both query
and paragraph. Lee et al. leveraged BERT encoder [61] to
pre-train the retrieval module [62], unlike previous works that
retrieve candidate paragraphs, the evidence passage retrieved
from Wikipedia was seen as a latent variable.

2) PARAGRAPH RANKING
The traditional ranking technologies are based on manually-
designed feature [63], but in recent years, learning to rank
(L2R) approaches have become a hot-spot. L2R refers to
ranking methods based on supervised learning, it can be clas-
sified into Pointwise, Pairwise, and Listwise [64]. Pointwise
(e.g., McRank [65], Prank [66]) converts the document into
feature vectors, then gives out the relevance scores according
to the classification or regression function learned from the
training data, from which to indicate the ranking results.
Pointwise focuses on the relevance between the query and
documents, ignoring the information interaction inside the
documents. Hence Pairwise (e.g., RankNet [67], FRank [68])
estimates whether the order of document pairs is reasonable.
However, the number of relevant documents varies greatly
from different queries. Thus the generalization ability of Pair-
wise is difficult to estimate. Unlike the above two methods,
Listwise (e.g., LambdaRank [69], SoftRank [70]) trains the
optimization scoring function with a list of all search results
for each query as a training sample. Since the aim of para-
graph ranking is to filter out irrelevant paragraphs, Pointwise
seems to be adequate in most cases. However, the scores

between queries and paragraphs also can be helpful for pre-
dictions on the final answer, as we discuss in subsection III-C.
Consequently, Listwise rankingmethods are also important to
the open-domain textual QA task.

Moreover, the paragraph ranking model trained with
deep neural networks mainly includes four categories [56]:
(i) learning the ranking model through manual features, and
only using the neural network to match the query and docu-
ment; (ii) estimating relevance based on the query-document
exactly matching pattern; (iii) learning the embedded repre-
sentations of queries and documents, and evaluating them by
a simple function, such as cosine similarity or dot-product;
(iv) conducting query expansion with neural network embed-
dings, and calculating the query expectation.

Similar to (ii), Wang et al. [47] proposed Reinforced
Ranker-Reader (R3) model, which is also a kind of Pointwise
method. It consisted of: (1) a Ranker to select a paragraph
most relevant to the query, and (2) a Reader to extract the
answer from the paragraph selected by Ranker. The deep
learning-based Ranker model was trained using reinforce-
ment learning, where the accuracy of the answer extracted by
Reader determined the reward. Both the Ranker and Reader
leveraged Match-LSTM [71] model to match the query and
passages. Similar to (iii), Tan et al. [72] studied several rep-
resentation learning models and found that attentive LSTM
can be very effective on the Pairwise mode training. And
PIQA [60] employed similarity clustering to retrieve the near-
est indexed phrase vector to the query vector by asymmetric
locality-sensitive hashing (aLSH) [73] or Fassi [74].

There are also combinations of the above categories,
Htut et al. [75] combined (i) and (iii), which took the embed-
ded representations to train the ranking model, and proposed
two kinds of ranking models: InferSent ranker and Relation-
Networks ranker. The rankers leveraged the Listwise ranking
method, which were trained by minimizing the margin rank-
ing loss, so as to obtain the optimal score.

k∑
i=1

max(0, 1− f (q, ppos)+ f (q, pineg)) (1)

Here f is the scoring function, ppos is a paragraph that
contains the ground-truth answer, pneg is a negative para-
graph that does not contain the ground-truth answer, and k is
the number of negative samples. InferSent ranker leveraged
sentence-embedded representations [76] and evaluated the
semantic similarity in ranking for QA, which employed a
feed-forward neural network as the scoring function:

xclassifier =


q
p
q-p
q
⊙

p

 (2)

z = W (1)xclassifier + b(1) (3)

score = W (2)ReLU (z)+ b(2) (4)

Relation-Networks ranker focused on measuring the rel-
evance between words in the question and words in
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FIGURE 2. Differences between BERT, GPT, and ELMo. BERT uses a bi-directional Transformer. OpenAI GPT uses a left-to-right Transformer.
ELMo uses the concatenation of independently trained left-to-right and right-to-left LSTM to generate features for downstream
tasks.(Figure source: Devlin et al. [61])

the paragraph, where the word pairs were the inputs of
Relation-Networks which is formulated as follows.

RN (q, p) = fφ
(∑

i,j

gθ ([E(qi);E(pj)])
)

(5)

Here E(·) is a 300 dimensional GloVe embedding [77],
fφ and gθ are 3 layer feed-forward neural networks with
ReLU activation function. The experimental results showed
that the performance of QA part [75] even exceed reinforcing
feedback ranking model [47].

B. CANDIDATE ANSWER EXTRACTION
With the candidate paragraphs filtered from the index&
ranking module, QA systems can locate candidate answers
(the start and end positions of answer spans in the document
or paragraph) through the reading comprehension model.
With the releasing of datasets and test standards [13]–[15],
[30], many works have been proposed in the past three years,
attracting great attention from the academia and industrial.
In this subsection, we illustrate the reading extraction model
from three hierarchies: (i) word embeddings and pre-training
models for feature encoding in subsection III-B1, (ii) interac-
tion of questions and paragraphs using attention mechanism
in subsection III-B2, and (iii) feature aggregation for predict-
ing the candidate answers in subsection III-B3.

1) FEATURE ENCODING LAYER
In this layer, the original text tokens are transformed into
vectors that can be computed by the deep neural networks
through word embeddings or manual features. Word embed-
dings can be obtained through dictionary or fine-tuning on
pre-trained language models, while manual textual features
are usually implemented by part-of-speech tagging (POS)
and named entity recognition (NER). Manual features can be
constructed by tools such as CoreNLP [78], AllenNLP [79],
and NLTK [80]. Generally, the features mentioned above will
be fused with embedding vectors.

Embedding vectors can be constructed by pre-trained lan-
guage models. Glove [77] transferred word-level informa-
tion to word vectors through the co-occurrence matrix, but

cannot distinguish the polysemous words. ELMo [81] lever-
aged a deep bi-directional language model to yield word
embeddings that can vary from different context sentences,
whichwas concatenated by two unidirectional languagemod-
els. OpenAI GPT [82] used the left-to-right transformer
decoder [83], whereas BERT [61] used the bi-directional
transformer encoder [83] to pre-train, then both of them
adjust the downstream tasks through fine-tuning methods.
Fig. 2 shows the difference between ELMo, GPT, and BERT.
Specifically, The pre-trained BERT model has been proven
as a powerful context-dependent representation and made
significant improvements on the open domain textual QA
tasks, some works based on BERT, such as RE3QA [38],
ORQA [62], and DFGN [84], have achieved state-of-the-art
results.

2) INTERACTIVE ATTENTION LAYER
The interactive attention layer constructs representations on
the original features of question or paragraph by using atten-
tion mechanisms. It can be mainly divided into two types:

(i) Interactive alignment between the question and para-
graph, namely co-attention, which allows the model to focus
on the most relevant question features with respect to para-
graph words, and breaks through the limited coding extrac-
tion ability of a single model. Wang and Jiang [71] leveraged
a textual entailment model Match-LSTM [85] to construct
the attention processing. Xiong et al. [86] used a co-attention
encoder to co-dependent representations of the question and
the document, and a dynamic pointer decoder to predict
the answer span. Seo et al. proposed a six layers model
BiDAF [87] along with a memory-less attention mecha-
nism to yield the representations of the context paragraph
at character-level, word-level and contextual-level. Gong and
Bowman [88] added a multi-hop attention mechanism to
BiDAF to solve the problem that the single-passmodel cannot
reflect on.

(ii) Self alignment inside the paragraph to generate
self-aware features, namely self-attention, which allows
non-adjacent words in the same paragraph to attend to each
other, thus alleviating the long-term dependency problem.
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For example,Wang et al. [89] proposed a self-attentionmech-
anism to refine the question-aware passage representation by
matching the passage against itself.

We can find two trends in recent works: (1) the combi-
nation of co-attention and self-attention. e.g., DCN+ [90]
improved DCN by extending the deep residual co-attention
encoder with self-attention. Yu et al. leveraged the combi-
nation of convolutions and self-attention in the embedding
and modeling encoders, and a context-query attention layer
after the embedding encoder layer [91]. (2) fusion features
at different levels, e.g., Huang et al. adopted a three-layers
fully-aware-attention mechanism to further enhance the fea-
ture representation ability of the models [92]. Wang et al.
combined co-attention and self-attention mechanism, as well
as applied a fusion function to incorporated different lev-
els of features [93]. Hu et al. proposed a re-attending
mechanism inside a multi-layer attention architecture, where
prior co-attention and self-attention were both considered to
fine-tune current attention [94].

3) AGGREGATION PREDICTION LAYER
In this layer, aggregation vectors are generated to predict
candidate answers, we mainly focus on the following parts.
• Aggregation strategies. Aggregation strategies vary
from different network frameworks. BiDAF [87] and
Multi-Perspective Matching [95] leveraged Bi-LSTM
for semantic information aggregation. FastQAExt [96]
adopted two feed-forward neural networks to generate
the probability distribution of start and end position of
the answers, then used beam-search to determine the
range of the answers.

• Iteration prediction strategies. DCN [86] consisted
of a co-attentive encoder and a dynamic pointing
decoder, which adopted a multi-round iteration mech-
anism. In each round of iteration, the decoder estimated
the start and end of the answer span. Based on the
prediction of the previous iteration, LSTM and Highway
Maxout Network are used to update the prediction of
the answer span in the next iteration. ReasoNet [97]
and Mnemonic Reader [94] used the memory network
framework to do iterative prediction. DCN+ [90] and
Reinforced Mnemonic Reader [94] iteratively predicted
the start and end position by reinforcement learning.

• Interference discarding strategies. Discarding inter-
ference items dynamically during the prediction process
can improve the accuracy performance and generaliza-
tion of models, such as DSDR [98] and SAN [99].

• Loss Function. Based on the extracted answer span,
the loss function is generally defined as the sum of the
probability distributions of the start and end positions of
gold answers [49], which can be formulated as follows.

L = −log
( esa∑n

i=1 e
si

)
− log

( egb∑n
j=1 e

gj

)
(6)

Here sj and gj are the scores for the start and end bounds
produced by the model for token j, a and b are the

start and end tokens. In the multi-paragraph reading
comprehension tasks, reading comprehension model is
employed on both negative paragraphs and positive para-
graphs, thus need to add the no-answer prediction term
in the loss function as [49], [100]:

L = −log
( (1− δ)ez + δesagb

ez +
∑n

i=1
∑n

j=1 e
sigj

)
(7)

Here δ is 1 if an answer exists and 0 otherwise, and
z presents the weight given to a ‘‘no-answer’’ possibility.

C. FINAL ANSWER SELECTION
Final answer selection mainly selects the final answer from
multiple candidate answers using feature aggregation, aggre-
gation methods can be divided into the following types.
• Evidence Aggregation. Wang et al. proposed a method
of candidate answer re-ranking, mainly based on two
types of evidence [53]: (i) replicated evidence: the can-
didate answer which appears more times in different
passages may have a higher probability to be the correct
answer. (ii) complementary evidence: aggregating mul-
tiple passages can entail multiple aspects of the question,
so as to ensure the completeness of the answer. In the
inference part, Wang et al. leveraged a classical textual
entailment model Match-LSTM [71] to infer the rele-
vance of the answer spans [53]. Moreover, Lin et al. and
Zhong et al. adopted the coarse-to-fine strategy to select
related paragraphs and aggregated evidence from them
to predict the final answer [48], [101].

• Multi-stages Aggregation. Wang et al. divided the
open-domain textual QA task into two stages [47]: can-
didate paragraph ranking and answer extraction, and
jointly optimized the expected losses of the two-stages
through reinforcement learning. Wang et al. divided
reading comprehension into candidate extraction and
answer selection, and jointly trained the two-stages pro-
cess in the end-to-end model and made improvements
on the final prediction [102]. Pang et al. and Wang et al.
divided the open-domain textual QA task into reading
extraction and answer selection. They leveraged a beam
search strategy to find the final answer with maxi-
mum probability considering both stages [103], [104].
Hu et al. proposed an end-to-end open-domain tex-
tual QA model, which contains retrieving, reading, and
reranking modules [38].

• Fusion of Knowledge Bases and Text. Recently sev-
eral works attempt to incorporate external knowledge
to improve performance on a variety of tasks, such
as [105] for natural language inference, [106] for
cloze-style QA task, and [107] for Multi-Hop QA task.
Sun et al. proposed a method to fuse multi-source infor-
mation in early stage to improve overall QA task [108].
Weissenborn et al. proposed an architecture to dynami-
cally integrate explicit background knowledge in Natu-
ral Language Understanding models [109].
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FIGURE 3. A synthetic example of LSTM-Jump model. In this example, the maximum size of jump is 5, the number of tokens read before
a jump is 2 and the number of jumps allowed is 10. The green softmax are for jumping predictions. (Figure source: Yu et al. [54])

D. ACCELERATION METHODS
Despite that current open-domain textual QA systems have
achieved significant advancements, these models become
slow and cumbersome [110] with multi-layers [111],
multi-stages [53], [102] architectures along with various
features [81], [87], [137]. Moreover, ensemble models are
employed to further improve performance, which requires a
large number of computation resources. Open-domain textual
QA systems, however, are required to be fast in paragraph
index&ranking as well as accurate in answer extraction.
Therefore, wewould like to discuss some hot topics regarding
acceleration methods in this section.

1) MODEL ACCELERATION
Due to the complex and computationally expensive deep
learning models, automated machine learning (AutoML)
technologies have aroused widespread concern on hyper-
parameter optimization and neural architecture search
methods [112]–[114]. However, there is little research about
AutoML acceleration for the open-domain textual QA sys-
tem. In order to reduce complexity under the guarantee of
quality, there are many models proposed to accelerate read-
ing processing, namely model acceleration. Hu et al. [115]
proposed a knowledge distillation method, which transferred
knowledge from an ensemble model to a single model with
little loss in performance. In addition, it is known that
LSTMs, which are widely used in the open domain textual
QA systems [110], are difficult to parallelize and scale due
to their sequential nature. Consequently some researchers
replace the recurrent structures [110] or attention layer [96]
with more efficient works, such as Transformer [83] and
SRU [111], and limit the range of co-attention [116].

2) ACTION ACCELERATIONS
There are some works boosting the sequence reading speed
while maintaining the performance, namely action accel-
eration. These approaches can dynamically employ some
actions to speed up during reading, such as jumping, skipping,
skimming, and early-stopping. We illustrate the details from
the following perspectives.

• Jump reading determines from the current word how
many words should be skipped before next reading.
For example, Yu and Liu [54] proposed LSTM-Jump,

which was build upon the basics of LSTM network
and reinforcement learning, to determine the number
of tokens or sentences to jump. As shown in Fig. 3,
the softmax gave out a distribution over the jumping
steps between 1 and the max jump size. This method
can greatly improve reading efficiency, but the decision
action can only jump forward, which may be ineffective
in complex reasoning tasks. Therefore Yu et al. [117]
proposed an approach to decide whether to skip tokens,
re-read the current sentence or stop reading the feedback
answer, and LSTM-shuttle [118] proposed a method to
either read forward or read back to increase accuracy
during speed reading.

• Skim reading determines whether to skim one token
before reading the sentence according to the current
word or not. Unlike previous methods using reinforce-
ment learning to make action decisions, skip-rnn [119]
adjusted the RNN module to determine whether each
step input was skipped or directly copied the state of
the previous hidden layer. However, previous meth-
ods are mainly for sequence reading and classifica-
tion tasks, and the experiments are mainly for the
cloze-style QA task [31]. Then Skim-rnn [55] conducted
comparative experiments on the reading comprehen-
sion tasks. Specifically, skim-RNN was responsible for
updating the first few dimensions of the hidden state
through the small RNN, and weighted between the
computation amount and the discard rate. Moreover,
Hansen et al. [120] proposed the first speed reading
model including both jump and skip actions.

• Other speed reading applications: JUMPER [36] pro-
vided fast reading feedback for legal texts, Johansen and
Socher [121] focused on sentiment classification tasks.
Choi et al. [122] tackle long document-oriented QA
tasks for sentence selection and reading based on CNN.
Hu et al. [38] proposed an early-stopping mechanism to
efficiently terminate the encoding process of unrelated
paragraphs.

E. DATASETS
In this subsection, we introduce several datasets rela-
tive to open-domain textual QA. Owing to the release of
these datasets, the development of open-domain textual
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TABLE 2. Data statistics of datasets.

TABLE 3. Performance of some models on open-domain textual QA datasets.

QA systems has made great progress in recent years. Table. 2
shows some statistics of the following datasets.

• SQuAD-open [37] is an open-domain textual ques-
tion answering dataset based on SQuAD [13].
In SQuAD-Open, only question-answer pairs are given,
while the evidence documents come from the whole
Wikipedia articles.

• SearchQA [15] contains 140k question-answer pairs
crawled from J! Archive. It uses Google search engine
to collect the top 50 web page snippets as context frag-
ments for each question.

• TriviaQA [14] consists of 650K context-query-answer
triples, which contains three settings: web domain,
Wikipedia domain, and unfiltered domain. The ques-
tions come from 14 trivia and quiz-league web-
sites and needs cross-sentence reasoning to obtain
the ground-truth answer. The evidence documents
of TriviaQA-web and TriviaQA-Wikipedia are retro-
spectively crawled from Wikipedia or Web search.
TriviaQA-unfiltered is the open domain setting of
TriviaQA, which includes 110,495 QA pairs and
740K documents.

• Quasar-T [30] mainly consists of 43k open-domain
trivia questions and their answers obtained from var-
ious Internet sources. For each question-answer pair,
100 paragraphs have been collected to process. There
are two sub-sets according to the length of candidate
paragraphs, where the short sub-set makes up of para-
graphs with less than 10 sentences, and the long one
makes up of paragraphs with an average of 20 sentences.
This dataset is constructed by two processes: retrieving
top-100 documents and adding top-N unique documents
to the context document.

F. EVALUATION
For extractive textual QA tasks, in order to evaluate the pre-
dicted answer, we usually adopt two evaluation metrics [13],
which measure exact match and partially overlapped scores
respectively.
• Exact Match. EM measures whether the predicted
answer exactly matches the ground-truth answers. If the
exact matching occurs, then assigns 1.0, otherwise
assigns 0.0.

• F1 Score. F1 score computes the average word overlap
between predicted and ground-truth answers, which can
ensure both of precision and recall rate are optimized at
the same time, F1 score is calculated as:

F1 =
2× Precision× Recall
Precision+ Recall

(8)

We summarize the performance of current state-of-the-
art models on different open-domain textual QA datasets,
as shown in Table. 3. As we can see, MemoReader [124]
has achieved promising results on the TriviaQA-web dataset,
while DynSAN [125] is the top-tier model for SearchQA.
On the other hand, RE3QA [38] has achieved SOTA results
on the remaining three datasets, likely due to the use of
pre-trained language models such as BERT [61].

IV. DISCUSSION
In this paper, we introduce some recent approaches in
open-domain textual QA. Although these works have
established a solid foundation for deep-learning based
open-domain textual QA research, there remains ample room
for further improvement. In this section, we first summarize
the structure of some typical models, then present the chal-
lenges and limitations of recent approaches, finally outline
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FIGURE 4. Hot topics of open-domain QA and representative examples.

several promising prospective research directions, which we
believe are critical to the present state of the field.

A. SUMMARY OF MODELS
We summarize current hot topics in Figure. 4 and catego-
rize structure of some models in Table. 4 according to the
technologies illustrated in Section III. There are some works
that are designed in single-document QA settings, such as
BiDAF [87], QAnet [91], and SLQA [93], where the rank-
ing stage is not needed. On the other hand, some bunch of
works need to search and filter the paragraphs from multiple
documents in open-domain textual QA settings. So we divide
Table. 4 into two parts, the upper for MRC models and the
lower for open-domain textual QA models.

As can be seen from Table. 4, most works use IR methods
such as TF-IDF and BM25 in the ranking stage. Recently,
some works such as ORQA [62] and DFGN [84] adopt

BERT [61] to select paragraphs. In the extractive reading
stage, most works utilize Glove embeddings [77], while
recent models tend to use pre-trained language models such
as ELMo [81] or BERT [61] for text feature encoding.
As for the attention mechanism, most works adopt either
co-attention or self-attention, or combine both of them to bet-
ter exchange information between questions and documents.
For the aggregation prediction, most works adopt RNN-based
approaches (LSTM or GRU), while some recent works lever-
age BERT [61]. In the final answer selection, the multi-stage
aggregation is the main solution while few works adopt the
evidence aggregation strategy.

B. CHALLENGES AND LIMITATIONS
We first present the challenges and limitations of
open-domain textual QA systems due to the use of deep
learning techniques. There are several common limitations
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TABLE 4. The structure of some models. The top half of the table are the MRC models, and the bottom half are the open-domain textual QA models
which contain the paragraph ranking stage.

of deep learning techniques [126], which also affect deep
learning based open-domain textual QA systems.

• Interpretability. It is well-known that the process of
deep learning likes a black-box. Due to the activation
function and backward derivation, it is hard to model
the neural network function, which makes the final the
answer unpredictable in theoretical.

• Data Hungry. As mentioned in subsection II-B,
deep learning is data-driven, which also bring some
challenges [126]. We can also find the fact in
subsection III-E, where the total samples of each
dataset are larger than 10k. It is very expensive to
build large-scale datasets on open-domain textual QA
even though annotation tools are provided. Specifically,
the public dataset released by Google [127] consists
of 307,373 training examples with single annotations;
7,830 examples with 5-way annotations for development
data; and a further 7,842 examples 5-way annotated
sequestered as test data.

• Computing Resource Reliance. In addition to
large-scale data, large-scale neural network models are
generally employed for the complex processing by
deep learning based open-domain textual QA as men-
tioned in III-D. However, it is very consumption to
train such complex models, while real time feedback
is often required by user on QA systems. In such case,
large-scale computing resource is the basic configura-
tion for training or inference.

We then present several problems from the following three
parts corresponding to Section III.

• Index & Ranking. Recent works usually adopt inter-
active attention mechanisms to improve the accuracy of
ranking. However, it is not beneficial in both efficiency
and scalability since each passage needs to be encoded
along with individual questions. Although using

BERT [61] or other self-attention pre-trainingmodel [82]
to extract text features can improve the scalability,
running these models over hundreds of paragraphs is
computationally costly since these models usually have
large size and consist of numerous layers. Moreover,
Using indexable query-agnostic phrase representation
can reduce the computationally cost while ensuring
accuracy in reading comprehension, whereas the accu-
racy is still low in open-domain textual QA [128].

• Machine ReadingComprehension.Existing extractive
reading technology has made great progress. Several
reading comprehension models even surpass human per-
formance. However, these MRC models are complex
and lack of interpretation, which makes it difficult to
evaluate the performance and analyze the generalization
ability of each neuron module. With the improvement of
performance along with the increase of model size, it is
also a problem that running these models consumes a lot
of energy [129]. Moreover, existing models are vulner-
able to adversarial attacks [130], making it difficult to
deploy them in real-world QA applications.

• Aggregation Prediction. Existing predictive reasoning
usually supposes that the answer span only appears in
the single paragraph, or the answer text is short [37].
However, in the real world, the answer span usually
appears in several paragraphs or even requires multi-hop
inference. How to aggregate evidence across multiple
mentioned text snippets to find the answer remains to
be a great challenge.

C. RECENT TRENDS
We summarize several recent trends regarding to open-
domain textual QA, which are listed as follows.

1) Complex Reasoning. As the datasets get larger, rea-
soning becomes more complex, open-domain textual
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QA task come up with a great deal of challenging sub-
tasks. For example, multi-hop QA tasks, which include
multiple evidence inference across documents [104],
[107], [131], symbolic reasoning like numeric cal-
culation, count and sort [132], and extraction-based
generation [33], [34]. Combining complex reasoning
modules such as graph-based reasoning [84], [133],
[134], numerical reasoning [135] and logical reasoning
[84], [131] with existing paragraph ranking and extrac-
tive reading comprehension models is a new trend in
open-domain textual QA.

2) Complexity Improvement. Making accurate QA
requires a deep understanding of documents and
queries. As a result, most of recently proposed mod-
els become extremely complex and large [124], [136],
resulting in low efficiency. It is nontrivial to speed up
the whole computation, especially for the RNN-based
models [83], [111]. Since AutoML [112], [113] tech-
nologies can automatically search optimal parameters
or network structures, applying them in open-domain
textual QA may be a good approach to find a
light-weighted network structure for improving the
efficiency.

3) Technology Integration. Technology integration
refers to the combination of multiple technologies
from different fields, which is a typical trend in the
recent deep learning works. For example, the semantic
paragraph ranking approaches [60], [75] may use the
technologies from the fields of information retrieval
and natural language processing. As for the answer
selection module, knowledge base QA and natural
language processing technologies are combined to
improve the overall QA performance [106], [109].
Moreover, we can find that many machine learning
technologies, such as transfer learning [61], rein-
forcement learning [47], and meta-learning [51], are
integrated into open-domain textual QA systems to
improve the performance.

V. CONCLUSION
In this paper, we provided an extensive review of the notable
works on deep learning-based open-domain textual QA.
We first explicitly gave the task scope of open-domain
textual QA and then briefly overviewed the deep learn-
ing based open-domain textual QA systems, which consist
of history of the task, reason of why deep learning are
chosen and technical architecture of open-domain textual
QA systems. Later we gave a detailed introduction on individ-
ual components inside the technical architecture, including
paragraph index and ranking, candidate answer extraction,
and final answer selection. Moreover, several acceleration
methods, open-domain textual QA datasets and evaluation
metrics are also discussed. Finally, we summarized cur-
rent models, limitations and challenges, gave some of the
recent trends and shed light on promising future research
directions.
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