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ABSTRACT Due to the correlation among hashing bits, the retrieval performance improvement becomes
slower when the hashing code length becomes longer. Existing methods try to regularize the projection
matrix as an orthogonal matrix to decorrelate hashing codes. However, the binarization of projected data may
completely break the orthogonality. In this paper, we propose a minimum correlation regularization (MCR)
for multimodal hashing. Rather than being imposed on projectionmatrix,MCR is imposed on a differentiable
function which approximates the binarization. On the other hand, binary labels could not precisely reflect
the distances among data. Hence, we propose a label relaxation scheme to achieve better performance.

INDEX TERMS Multimodality, hashing, binary embedding, minimum correlation regularization.

I. INTRODUCTION
Multimodal hashing which embeds data to binary codes is an
efficient tool for retrieving heterogeneous but correlated mul-
timedia data, such as image-text pairs in Facebook and video-
tag pairs in Youtube. Unlike real vectors used in traditional
retrieval methods [1]–[4], binary codes can greatly reduce
the storage requirement and computation costs of nearest
neighbors search.

Orthogonality is assumed to be a quality of good hashing
codes [5]. However, the orthogonality constraint will lead
to an NP-hard problem. Hence, there are two widely used
ways to approximate orthogonal code matrix: (1) adopting
orthogonal vectors and then thresholding them to generate
binary codes [5], [6]; (2) imposing an orthogonality regular-
ization on the objective function [7], [8]. These methods on
approximating orthogonality have a theoretical defect that the
orthogonality is corrupted by quantization.

Spectral hashing (SH) [5] and iterative quantization
(ITQ) [6] are two representative works in way (1). SH selects
eigenfunctions corresponding to several smallest eigenvalues
and thresholds eigenfunctions at zero. ITQ rotates the princi-
pal components and thresholds data projected by those princi-
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pal components at zero. Obviously, thresholding orthogonal
vectors at zero cannot generate orthogonal binary vectors.

As an representative example for way (2), deepmultimodal
hashingwith orthogonal regularization (DMHOR) [7] is illus-
trated in Fig. 1. Liong et al. [9] and Chen et al. [10] also use
this orthogonal regularization in their deep hashing model.

Deep multimodal hashing with orthogonality regulariza-
tion (DMHOR) [7] introduces an orthogonality regulariza-
tion (OR) to deep neural network (DNN). It uses Restricted
Boltzmann Machine (RBM) for image and text data. Each
layer of RBM can be represented as a nonlinear activation
function of a linear transformation of the input. The OR
is applied on the weight matrix of each layer. The authors
argue that the proposed OR can lead to an orthogonal code
matrix when data matrices are orthogonal. This assumption is
unreasonable in real application. In this paper, we will briefly
analyze the properties of this OR and demonstrate that it is
only suitable for some linear hashing models. Deep cross-
modal hashing (DCMH) [11] employs different types of DNN
for different modalities. For example, convolutional neural
network (CNN) is used for images while fully connected
neural network is used for text. The orthogonality of hashing
codes is neglected.

In this paper, we propose a hashing method named decor-
related multimodal hashing (DMH). First, a sigmoid func-
tion is applied on the linear transformations of original data
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FIGURE 1. Illustration of the difference between our regularization term and that of DMHOR. Red arrows indicate the flowchart of our
method, while the blue ones indicate the flowchart of method proposed in DMHOR. W is the projection matrix, X is data matrix, v is a bias,
B is the hashing code matrix, I is the identity matrix and f is the sigmoid function used to approximate binarization.

points to map different modalities into a common code
matrix. Then, we devise a minimum correlation regulariza-
tion (MCR) to improve the retrieval performance on long-
bit experiments. Unlike aforementioned orthogonality con-
straints or regularizations [7] that are usually applied on the
linear transformation matrices, the proposed MCR is applied
on the sigmoid function. Because the output of sigmoid
function approximates a binary code and the hashing code
matrix directly depends on the quantization of it, the pro-
pose MCR works better on decorrelating hashing codes
(Fig. 1).

We do not use the term ‘‘orthogonality’’ because the max-
imum number of mutual orthogonal vectors is equal to the
dimension of them and an orthogonal linear transformation
does not exist when the rank of a data matrix is less than that
of its code matrix. For instance, if an N × d data matrix is
encoded as an N × c code matrix where N is the number of
data and d < c, the dimension of the linear transformation
matrix W should be d × c. Because we cannot find c d-
dimensional column vectors, an orthogonalW does not exist.
In Subsection III-B, we will prove that when d + 1 < c,
the output matrix of sigmoid function cannot be orthogonal
and hence the orthogonality of code matrix cannot be even
approximated.

Besides the orthogonality regularization, a label relaxation
method is proposed for multi-labeled data sets. Labels are
generally treated as a special modality in multimodal hashing
methods. Therefore, the relaxed labels that can reflect the
distances among data will benefit the hashing process. Ji et al.
[12] proposed a deep multi-level semantic hashing method
which is similar to ours. However, their method needs to
compute the mutual distances among labels, which makes it
intractable for large dataset.

FIGURE 2. Illustration of the proposed relaxation method in
multi-labeled data. On image a, both human experts and the proposed
method should label it as flower because it only contains flowers. It can
be seen that for single-labeled data, there is little difference between
human experts and the proposed method. However, when a, b, c and d
are treated as data in a multi-labeled data set, human experts label them
as ‘‘1,0’’ or ‘‘1,1’’ in traditional way, while the proposed method relaxes
labels to be real numbers according to their distances to the classes in
the feature space. The closer it is to the class, the larger the label. That is,
the generated labels can reflect the distances. As labels are treated as a
special modality in the proposed method, it could be better if they can
reflect the distances.

The rest of this paper is organized as follows. The related
works are reviewed in Section II. In Section III, we, step by
step, derive our model from a widely used unimodal hashing
method, iterative quantization (ITQ) [6]. The discussions on
parameter settings and optimization algorithms are also given
in Section III. Experimental results are reported in Section IV.
We conclude this paper in Section V
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II. RELATED WORKS
Some well-known multimodal hashing models are related to
some classical unimodal ones. Hence, in this section, uni-
modal hashing models will be firstly reviewed and then we
will discuss some representative multimodal hashing models
and their relations to unimodal ones. For a more compre-
hensive survey on unimodal hashing methods, please refer
to [13].

A. UNIMODAL HASHING
Most existing unimodal hashing models focus on image
retrieval tasks. However, they are also feasible for other types
of data as long as the data are represented in real vectors.
For images, there are lots of popular feature extraction meth-
ods [14], [15] available to represent images by real vectors.

The unimodal hashing methods can be divided into two
categories according to their dependence on data. Locality-
sensitive hashing (LSH) [16] and its kernelized version [17],
[18] are well-known data-independent unsupervised uni-
modal hashing methods. Due to randomized hashing, LSH
demands more bits per hashing table [19].

Spectral hashing (SH) [5], one of the most popular and
pioneering data-dependent unimodal hashing methods, gen-
erate hashing codes by solving a relaxed mathematical prob-
lem to avoid computing the affinity matrix that requires
calculating and storing pairwise distances of the whole data
set [20]. The authors argued that two constraints for a good
code matrix are orthogonality and balance, either of which
leads to an NP-hard problem. In the following works, bal-
ance is generally neglected and orthogonality constraint is
relaxed or neglected, too.

Anchor graph hashing (AGH) [21] substitutes the affinity
matrix in SH by constructing the a highly sparse one using
several anchor points. Discrete graph hashing (DGH) [8]
incorporates a relaxed orthogonality constraint into AGH to
improve the performance on long-bit experiments.

Methods based on linear transformations, such as principal
component analysis (PCA) [22], attract wide interests due to
their effectiveness and computation efficiency. ITQ rotates
the projection matrix obtained by PCA to minimize the
quantization loss. Isotropic hashing (IsoH) [23], harmonious
hashing (HH) [23] and ok-means [24] are derived from ITQ.
IsoH equalizes the importance of principal components. HH
puts an orthogonal constraint on an auxiliary variable for the
codematrix. ok-means rotates the data matrix to minimize the
quantization loss. ITQ, IsoH and HH depends on principal
components whose maximum number is no larger than the
minimum dimension of data matrix. Hence, they cannot gen-
erate hashing codes longer than the data dimension. Despite
of PCA, other linear transformations can be used, such as
Linear Discriminant Analysis (LDA) [25]. Unlike these pre-
computed transformation matrix, neighborhood discriminant
hashing [26] calculates the transformation matrix during the
iterative minimization procedure.

Inductivemanifold hashing [19] embeds some special sam-
ples into lower dimensional space and the embeddings of

remaining samples are calculated by a linear combination of
those special samples. The coefficients of the linear combi-
nation are the probabilities that a sample belongs to those
special samples.

All aforementioned unimodal hashing models cannot gen-
erate balanced code matrix. Spherical hashing (SpH) [27]
and global hashing system (GHS) [20] quantize the distance
between a data point and a special point. The closer half to a
special point is denoted as 1 while the further half is denoted
as 0. Therefore, a balanced matrix can be easily generated.
Their major difference is on how to find these special points.
SpH uses a heuristic algorithm while GHS treats it as a satel-
lite distribution problem of the Global Positioning System
(GPS).

Some unsupervised unimodal hashingmodels can be easily
extended to supervised models. For example, substituting
PCAbyCanonical CorrelationAnalysis (CCA) [28], the label
information can be incorporated. Besides, unsupervised and
supervised models, wealy-supervised models [29]–[31] are
also promising, since labels can signifcantly improve retrieval
accurarcy but manually labelling images is a heavy burden for
human experts.

B. MULTIMODAL HASHING
Multimodal hashing models can be classified into unsuper-
vised and supervised ones. Unsupervisedmultimodal hashing
tries to preserve the Euclidean data structure by binary codes.
Inter-media hashing [19] learns hashing function by linear
regression. IMH models intra-media consistency in a similar
way of SH. Like what AGH has done to SH, linear cross-
media hashing (LCMH) [32] uses the distances between
each data point and each cluster centroid to construct a
sparse affinity matrix. Collective matrix factorization hashing
(CMFH) [33] can be treated as an extension of NDH. For
each modality, CMFH consists of two terms: (1) calculating
a transformation matrix for the data matrix to match the code
matrix through minimizing quantization loss, and (2) calcu-
lating a transformation matrix for the code matrix to match
the data matrix through minimizing squared error. Latent
semantic sparse hashing [34] is an extension of CMFH and
its basic idea is similar to HH that imposes the orthogonality
constraint on an auxiliary variable. LSSH imposes the sparse
regularization on an auxiliary variable in the latent space.
Shen et al. [35] proposed a cross-view hashing method for
semi-paired data. It jointly learns a correlated representation
for eachmodality and hashing functions. It rotates the hashing
code matrix to match the correlated representation matrices.
Hence, it can be seen as an extension of ok-means.

By incorporating label information, supervised hashing
can achieve higher accuracy. Cross-modality similarity-
sensitive hashing (CMSSH) [36] treats hashing as a binary
classification problem. Cross-view hashing (CVH) [37]
assumes the hashing codes be a linear embedding of the orig-
inal data points. It substitutes the code matrix by this embed-
ding. The objective function is a weighted summation of that
of spectral hashing (SH) [5] on each modality. Multilatent
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binary embedding (MLBE) [38] treats hashing codes as the
binary latent factors in the proposed probabilistic model and
maps data points from multiple modalities to a common
Hamming space. Semantics-preserving hashing (SePH) [39]
learns the hashing codes by minimizing the KL-divergence
of the probability distribution in Hamming space from that in
semantic space. CMSSH, MLBE and SePH need to compute
the affinities of all data points, which makes it intractable for
large data set. Semantic correlationmaximization (SCM) [40]
circumvents this by learning only one bit each time and the
explicit computation of affinity matrix is avoided through
several mathematical manipulations. Multimodal discrimina-
tive binary embedding (MDBE) models [41] hashing as a
minimization problem. There are twomain terms in its formu-
lation. One term indicates different modalities and the labels
can be embedded to the same latent space, while the other one
indicates the embedded modalities can be further embedded
as the labels. l2-norm is used to regularize the linear embed-
ding matrix. Intra- and Inter-Modality Similarity Preserving
Hashing (IISPH) [42] measure the similarity among data
within the same modality and across different modalities.
SCM, MDBE and IISPH discard the uncorrelation property
of the code matrix or embedding matrix, which makes their
performance improve slowly as code length increases.

Most hashing methods relax the binary constraint,
Xu et al. [43] proposes a discrete optimization algorithm to
directly learn hashing codes without relaxing the binary con-
straint. Collective reconstructive embeddings [44], [45] use
modality-specific similarity metrics for different modalities.
Besides, the above mentioned shallow models. Deep neural
networks (DNN) are extensively studied in cross-modal hash-
ing. Among theDNN-basedmethods, the adversarial learning
based models [46]–[48] have achieve appealing results.

III. METHODOLOGY
Terms ‘‘view’’ and ‘‘modality’’ are discriminated in some
literatures [41]. Multiple views of data refers to different type
of features of one modality, e.g. SIFT [49] and GIST [50]
features for images. However, we use these two words inter-
changeably since our method can be used in either situations
as long as the data are represented by real matrices.

First, Let us define the used notations. Suppose that Xi is
the i-th view matrix of the data and Xi

=
[
xi1, . . . , x

i
n
]>

,
where xim ∈ Rdi , n is the number of data points and i =
1, . . . , g. A binary code corresponding to the m-th data is
defined by a row vector bm = {0, 1}c, where c is the code
length and the code matrix B =

[
b>1 , . . . ,b

>
n
]>

. hi
(
Xi ),

the hashing function for the i-th view matrix, embeds Xi into
a binary code matrix.

A. PROBLEM FORMULATION
ITQ is a successful hashing method for single view data. The
formulation of ITQ is

argmin
B,R

E = ‖B− XWR‖2F , (1)

where X ∈ Rn×d is the data matrix, W ∈ Rd×c is obtained
by principal component analysis (PCA) and R ∈ Rc×c is an
orthogonal matrix. An intuitive multi-view extension of ITQ
can be

argmin
B,Ri

E =
∑
i

αi

∥∥∥B− XiWiRi
∥∥∥2
F
, (2)

where αi is a positive real constant. As the maximum number
of principal components pre-computed by PCA on the ith
view matrix is di, Eq. (2) cannot be used when c > di.
We remove Ri from Eq. (2). Then, we simultaneously cal-
culate Wi

∈ Rdi×c and B during the optimization process.
This method can be modeled as

argmin
B,Wi

E =
∑
i

αi

∥∥∥B− XiWi
∥∥∥2
F
. (3)

Because B is a binary matrix, hi(XiWi) = 1/(1+ exp(−(βi ∗
XiWi

+1vi))) is applied to transform the values of βi∗XiWi
+

1vi into interval (0, 1), where 1 is a n-dimensional column
vector whose elements are equal to 1. βi is a constant and vi

is a bias vector. Hence, Eq. (3) can be modified as following.

argmin
B,Wi,vi

E =
∑
i

αi

∥∥∥∥∥B− 1

1+ exp
(
−(βiXiWi + 1vi)

)∥∥∥∥∥
2

F

.

(4)

B. MINIMUM CORRELATION REGULARIZATION
The orthogonality condition for good codes [5] is approxi-
mated by an orthogonal W in ITQ. However, when c > di,
an orthogonalWi does not exist. In this case, Wang et al. [7]
introduces the following regularization to decorrelate code
matrix:

R =
∥∥∥Wi>Wi

− I
∥∥∥2
F
. (5)

First, let us discuss some interesting properties of Eq. (5).
Proposition 1:When c ≤ di, theWi that minimizes Eq. (5)

is an orthogonal matrix.
It is easy to prove Proposition 1 by the definition of

orthogonal matrix.
Proposition 2: Let the Wi that minimizes Eq. (5) consists

of column vectorswi
p where p = 1, . . . , c. The angle between

any pair of column vectors is equal to each other. Proof:
Let V = Wi>Wi and let Vpq be the element in the pth row
and qth column of V. Vpq is the inner product of wi

p and wi
q.

When ‖wi
p‖

2
F = 1, the diagonal elements of R will be 0 and

the angle betweenwi
p andw

i
q will be arccos(w

i
p
>wi

q). Eq. (11)
can be written as:

R =
∑
p,q

wi
p
>
wi
q, p 6= q. (6)

According to the inequality of arithmetic and geometric
means, it can be deduced that∑

p,qw
i
p
>wi

q

c2 − c
≥

∏
p,q

c2−c
√
wi
p
>wi

q. (7)
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FIGURE 3. Illustration of Proposition 2 and Proposition 3. If Wi ∈ R2×3,
its column vectors will align with the centerlines of an equilateral
triangle. The affine transformation will change the relative positions
among vectors but the overall structure is kept. In the equilateral triangle,
point B is transformed to the clockwise direction of point A.

The equality holds if and only if allwi
p
>wi

q are equal. That is,
the angle between any pair of column vectors is equal when
Wi minimizes Eq. (5).
Proposition 3: IfWi minimizes Eq. (5), the affine transfor-

mation ofWi, i.e.WiR also minimizes Eq. (5) where R is an
orthogonal matrix.

Proof: As R is orthogonal, we have∥∥∥Wi>Wi
− I

∥∥∥2
F
=

∥∥∥R> (Wi>Wi
− I

)
R
∥∥∥2
F
. (8)

Eq. (8) can be rewritten as∥∥∥Wi>Wi
− I

∥∥∥2
F
=

∥∥∥R>Wi>WiR− I
∥∥∥2
F
. (9)

Here, R>R = I is used in the deduction. Hence, WiR also
minimizes Eq. (5).

In Fig. 3, we illustrate Proposition 2 and Proposi-
tion 3 in 2-dimensional case. Following the flowchart of
ITQ, one can find c d-dimensional vectors distributed like
those in Fig. 3 and then transform them by R to minimize
Eq. (2). However, the complexity of theoretically finding such
vectors increases dramatically in high dimensional spaces.
Wang et al. [7] use Eq. (5) as a regularization and argue
that Eq. (5) will lead to an orthogonal code matrix when the
data matrices are orthogonal. It is easy to find an example
demonstrating Eq. (5) can only be used in some linearmodels.
For simplicity, let us consider the following model,

argmin
B,W

E = ‖B− f (XW)‖2F , (10)

where X is an orthogonal data matrix and f (·) is a lin-
ear or nonlinear function. Please note Eq. (10) is not a uni-
modal hashing model, because the binary constraint is not
imposed to B. Let us suppose the dimensions of B and X are
equal. According to Proposition 1, Eq. (5) will lead to an
orthogonal W. If f (XW) = XW, then B = XW is also an
orthogonal matrix. However, if f (·) is a sign function which
is nonlinear, we can get a binary code matrix B = sign(XW)
and Eq. (10) becomes a nonlinear unimodal hashing model.
Obviously, an orthogonalW cannot ensure an orthogonal B.

Inspired by this example, we propose the following regu-
larization ∥∥∥∥ f >(X,2)f (X,2)

n
− I

∥∥∥∥2
F
, (11)

where f (X,2) is the nonlinear embedding function and 2
is the parameter set of f . In our proposed hashing model,
i.e., Eq. (4),

f (Xi,Wi, vi, βi) =
1

1+ exp
(
−(βiXiWi + 1vi)

) . (12)

Proposition 4: Minimizing Eq. (11) cannot lead to an
orthogonal f (Xi,2) when di+1 < c. Proof: According
to the definitions, we have rank(Xi) ≤ di, rank(Wi) ≤ di and
rank(1vi) ≤ 1. Hence, rank(XiWi) ≤ di and rank(XiWi

+

1vi) ≤ di + 1.
According toTheorem 4.2 in [51], rank(f (XiWi

+1vi)) ≤
di + 1, and hence

rank(f >(XiWi
+ 1vi)f (XiWi

+ 1vi)) ≤ di + 1. (13)

Because di+1 < c, f >(XiWi
+1vi)f (XiWi

+1vi) cannot be
equal to I in any cases. Hence, Minimizing Eq. (11) cannot
lead to an orthogonal f .
From Proposition 4, we can see that an orthogonal f cannot
be acquired when di + 1 < c. In this case, f cannot even
approximate an orthogonal matrix. Minimizing f will only
minimize the correlation among the column vectors of f .
Fig. 3 illustrates this situation.
It is inessential to name Eq. (11) as ‘‘minimum correlation

regularization’’ (MCR) or ‘‘maximum uncorrelation regular-
ization’’. Since Eq. (11) will be added into our hashing model
which is formulated as a minimization problem, we use the
former one to keep literal consistency.

C. DECORRELATED MULTIMODAL HASHING
In our implementation, we found that subtracting identity
matrix is somewhat redundant, so MCR can be simplified as:∥∥∥∥ f >(X,2)f (X,2)

n

∥∥∥∥2
F
. (14)

It is unnecessary to worry about the diagonal elements of f >f
will be zeros during the proposed minimization procedure,
because as long as all variables are randomly initialized, it is
nearly impossible for gradient descent algorithm to reach a
solution that all variables are zero.

Adding MCR to Eq. (4) leads to the following model.

argmin
B,Wi,vi

E =
∑
i

αi

(∥∥∥B− Ci
∥∥∥2
F
+ γi

∥∥∥Ci>Ci
∥∥∥2
F

)
, (15)

where γi is a positive real constant, and

Ai
= exp

(
−(βiXiWi

+ 1vi)
)
, (16)

Ci
=

1
1+ Ai . (17)
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D. OPTIMIZATION
Eq. (15) is minimized by iterative minimization. Take the
partial derivative with respect to B, resulting in

∂E
∂B
= 2

∑
i

αiB− 2
∑
i

αiCi. (18)

Setting Eq. (18) as 0, we can derive that

B =
∑

i αiC
i∑

i αi
. (19)

B is rounded in each iteration to ensure B ∈ {0, 1}n×c.
R Take the partial derivative with respect to vi, resulting in

∂E
∂vi
= 2αi1>

(
Ci
− B+

γi

n
CiCi>Ci

)
◦

(
Ai
◦ Ci2

)
. (20)

In Eq. (20), ‘‘◦’’ means element-wise multiplication. The
division and square are also element-wise. The partial deriva-
tive with respect toWi is

∂E
∂Wi = 2αiβiXi>

(
Ci
− B+

γi

n
CiCi>Ci

)
◦

(
Ai
◦ Ci2

)
.

The prototype of the proposed training method is shown in
Algorithm 1. In Subsection III-F, the parameter settings and
details for efficient implementation are discussed.

Algorithm 1 the Prototype of the Proposed Training Method

Require: αi, βi, 4t , Xi

1: while E not converged do
2: Update B using Eq. (18).
3: vi← vi −4t · ∂E/∂vi

4: Wi
←Wi

−4t · ∂E/∂Wi

5: end while
Ensure: B,Wi, vi

E. LABEL RELAXATION
As discussed in Section I, relaxing a few labels to real num-
bers can benefit on learning hashing codes on multi-labeled
data sets. Let us denote label matrix as L which is the g-
th modality and without losing generality, the last r rows
are extracted from L to generate a new matrix LR and the
remaining n − r rows of L form matrix LT . LR is used for
relaxation. The relaxed LR is denoted as L̃R.

Let us define Aipq = exp(ρ(xip, x
i
q)), where xip is the p-th

row of Xi and ρ is Euclidean distance. Let us define

Hpq =
1

g− 1

g∑
i

Aipq/
n∑
r

Apr , (21)

where Hpq is used to build matrix H. Aipq reflects the data
structure of i-th modality. Hpq integrates the data structure
of all modalities by averaging normalized Aipg. To make L̃R
reflects the data structure, the following objective function
can be used:

argmin
L̃R

O = trace

([
L̃T
LR

]> [
HTT HTR
HRT HRR

] [
LT
L̃R

])
, (22)

where H is partitioned into four blocks according the dimen-
sions of L̃R and LT . On the other hand, the original labels LR
also contain useful information. Hence, ‖L̃R−LR‖2F is added
to the above objective function:

argmin
L̃R

O = trace

([
L̃T
LR

]> [
HTT HTR
HRT HRR

] [
LT
L̃R

])
+‖L̃R − LR‖2F . (23)

Gradient descent algorithm is used to minimize Eq. (23). The
gradient of Eq. (23) with respect to L̃R is

∂O

∂L̃R
= 2HRTLT + 2HRRL̃R + 2(L̃R − LR). (24)

After getting L̃R, let L =
[
LT
T̃R

]
.

F. IMPLEMENTATION DETAILS
αi is the weight for ith view. We set αi as 10 for the label
view and 1 for any other views. βi is used to re-scale the
view matrix. We empirically found that the proposed method
achieves the best performance when the values of the re-
scaled view matrix are in the interval [0, 255]. For instance,
in the NUS-WIDE data set [52], images are represented by
500-dimensional bag-of-visual-words SIFT feature vectors
whose values are in [0, 255], texts are represented by 1000-
dimensional index vectors whose values are 0 or 1 and labels
are 10-dimensional index vectors. Hence, we set β as 1,
255 and 255 for image view matrix, text view matrix and
label view matrix, respectively. To improve computation effi-
ciency, βi is multiplied with Xi before the iteration starts. All
data matrices are zero-centered, except for the label matrix.

We set the maximum iteration times as K . 4t linearly
decreases from ks to ke by K iterations, i.e., in the k-th
iteration, 4t = ks − (ks − ke)k/K .
For large data set, the first term in Eq. (15) is too large,

which makes γi and 4t difficult to be determined. We nor-
malize the gradients so that we can fix γi and 4t settings
for all our experiments. The efficient version of the proposed
method is given in Algorithm 2.

Algorithm 2 the Proposed Training Method

Require: αi, βi, 4t , Xi, k , ks, ke, K
1: while E not converged and k < K do
2: 4t = ks − (ks − ke)k/K
3: Update B using Eq. (18).
4: vi← vi −4t · ∂E/∂vi

‖∂E/∂vi‖F

5: Wi
←Wi

−4t · ∂E/∂Wi

‖∂E/∂Wi‖F
6: k ← k + 1
7: end while

Ensure: B,Wi, vi

IV. EXPERIMENTAL RESULTS
In this section, we evaluate the retrieval performance and
computational efficiency of the proposed method. First,
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TABLE 1. MAP results on Wiki, MIRFlickr and NUS-WIDE data sets.

FIGURE 4. F1-score on Wiki, MIRFlickr and NUS-WIDE data sets. The ‘‘image-query-text’’ (Image-Text) and ‘‘text-query-image’’
(Text-Image) results are shown in the first row and second row, respectively.

we introduce the data sets, evaluationmetrics and comparison
methods. Then, two types of experiments -Hamming ranking
and hash lookup were conducted. Finally, we analyze the
convergence and computational efficiency.

A. DATA SETS
Wiki1 contains 2,866 image and text pairs. Each image

is represented by a 4,096-dimensional feature extracted by
the Caffe implementation of AlexNet [53] as [41] did and
each text is represented by a 10-dimension topics’ vector
generated by latent Dirichlet allocation (LDA) model. Each
pair uniquely belongs to one of the 10 categories. Ground-
truth neighbors for a test entry is defined as those in the same
category.

1http://www.svcl.ucsd.edu/projects/crossmodal/

MIRFlickr [54] contains 25,000 entries each of which
consists of 1 image, several textual tags and labels. Following
literature [39], we only keep those textural tags appearing at
least 20 times and remove entries which have no label. Hence,
20,015 entries are left. For each entry, the image is repre-
sented by a 512-dimensional feature extracted by Resnet-
18 [55] and the text is represented by a 500-dimensional
feature vector derived from PCA on index vectors of the
textural tags. 5% entries are randomly selected for testing and
the remaining entries are used as training set. Ground-truth
semantic neighbors for a test entry, i.e, a query, are defined as
those sharing at least one label.

NUS-WIDE [52] is comprised of 269,648 images and
over 5,000 textural tags collected from Flickr. Ground-truth
of 81 concepts is provided for the entire data set. Follow-
ing literatures [33], [39], [40], we select 10 most common
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concepts for labels and thus 186,577 entries are left. For
each entry, the image is represented as a 512-dimensional
feature extracted by Resnet-18 and text is represented as an
index vector of the most frequent 1,000 tags. 1% entries are
randomly selected for testing and the remaining are used for
training. Ground-truth semantic neighbors for a test entry are
defined as those sharing at least one label.

For image feature extraction neural networks, AlexNet
and Resnet-18, the weights pretrained on ImageNet [56] are
used. Fine-tuning is done onWiki, MIRlickr and NUS-WIDE
datasets. For fune-tuning, we resize the images to 244× 244,
use Adam Optimizer [57] with default settings and run the
training process for 10 epoches with batch size 32.

B. EVALUATION METRICS
Hamming ranking and hash lookup are two widely used
experiments for evaluating retrieval performance. In Ham-
ming ranking experiment, all data points in the training set
are ranked depending on their Hamming distances to a given
query. The average precision (AP) is defined as

AP =
1
N

R∑
r=1

P(r)δ(r), (25)

where N is the number of relevant instances in the retrieved
set, P(r) is the precision of the top r retrieved instances, and
δ(r) = 1 if the r-th retrieved instance is a true neighbor of
the query, and otherwise δ(r) = 0. Mean average precision
(MAP) is the mean of APs of all the queries. For the ideal case
that all retrieved instance are true neighbors of the queries,
MAP is equal to 1, while MAP is equal to 0 for the worst case
that all retrieved instance are not the true neighbors. Hence,
the closer it is to 1, the better the performance.

In hash lookup experiment, the retrieved instances are
those whose Hamming distances to a given query are not
larger than a given radius, say 2 in our experiment. The
performance are evaluated by F1-score which is defined as

F1 = 2
precision · recall
precision+ recall

. (26)

The F1-scores are averaged for all queries. Similar to MAP,
F1 also varies in [0, 1] and the closer it is to 1, the better the
performance.

C. BASELINES
The proposed method is compared with seven multimodal
hashing methods CMSSH [36], CVH [37], MDBE [41],
SCM [40], SePH [39], DMHOR [7], DJSRH [58] and
SSAH [48]. DMHOR, DJSRH and SSAH are based on deep
neural networks.

CMSSH and SePH requires too much computational cost.
Following literatures [39], [40], 10,000 entries are randomly
selected for training hashing functions and then we apply
these functions to generate hashing codes. We use the codes
provided by the authors except for MDBE and DMHOR.
We re-implement MDBE and DMHOR, and set parameters

following the authors’ suggestions. For our method, we use
the following parameter settings, ks = 0.003, ke = 0.0015
and K = 400. αi, βi and γi are set as discussed in Subsec-
tion III-F.

D. RESULTS
MAP results are shown in Table 1. In Table 1, ‘‘I2T’’ means
using images to query texts, while ‘‘T2I’’ means using texts
to query images. From Table 1, it can be observed that our
method outperforms all compared methods. As the bit length
increases, the performance of our method increases faster
than baselines, which demonstrates the effectiveness of the
proposed minimum correlation regularization. For example,
in the ‘‘Image-Text’’ experiment on MIRFlickr, the per-
formance improvement ranges from 3% to 5% as the bit
length varies from 16 to 128, compared to the best baseline,
i.e., MDBE. The MAP of DMHOR decreases as the code
length increases, which demonstrates the inefficiency of the
orthogonality proposed in [7] as discussed in Subsection III-
B.

F1-score results are shown in Fig. 4. Similar to the MAP
results, our method surpasses all baselines by a huge per-
formance improvement, especially on MIRFlickr. On MIR-
Flickr, the performance improvement ranges from 30% to
3,000%, compared to the best baseline. On NUS-WIDE, it is
5% to 200%. A reasonable explanation is that our method can
precisely preserve the inter-class structure and therefore the
lookup performance is significantly improved. Because the
ranking performance depends on the preservation of the struc-
ture of the whole data set regardless of inter-class or intra-
class structure, the performance improvement is not as signif-
icant as that of the lookup experiment. The size of MIRFlickr
is only about 1/10 of NUS-WIDE, so the simple non-linearity
introduced in our method works much better on MIRFlickr.
To achieve comparable performance improvement on NUS-
WIDE data set, more sophisticated non-linear models are
expected.

In both experiments, MDBE achieves the best performance
among all the baselines. Actually, the main part of MDBE,

‖LU− XWx‖
2
F + ‖LU− YWy‖

2
F , (27)

is equivalent to Eq. (3) which is an intuitive multimodal
extension of ITQ, where L is the label matrix, X is the image
view matrix and Y is the text view matrix. Wx , Wy and U
are variables. If we treat the label matrix as another view of
the data and introduce an auxiliary variable B, it is easy to
figure out that Eq. (27) and Eq. (3) are equivalent. By intro-
ducing non-linearity andminimum correlation regularization,
our method performsmuch better thanMDBE. An illustrative
experiment on MIRFlickr data set are shown in Fig. 5.

E. PARAMETER SETTINGS
In Fig. 6, we show the MAP and F1-score of DMH on MIR-
Flickr data set with various parameter settings. The default
setting is α = 10, β = 255 and γ = 0.001. For label
relaxation, we set r = 1 for generating relaxed label matrix

VOLUME 8, 2020 79267



D. Tian et al.: Learning Decorrelated Hashing Codes With Label Relaxation for Multimodal Retrieval

FIGURE 5. Some examples of text-query-image retrieval on MIRFlickr data set. The query text and its corresponding image are chosen
from the sport class. Top five retrieved images of different methods are shown below the dotted line. Irrelevant images are with red
bounding boxes.

LR. In each figure, only the tested parameter varies and the
other two parameters keep their default values.

In the left column of Fig. 6, α varies in {1, 5, 10,15,20,25}.
It can be seen that the highest MAP is usually achieved by
α = 5 or α = 10. The highest F1-score is got when α = 1.
However, when α = 1, DMH performs badly inMAP. Hence,
α = 10 is selected for our experiments to achieve a balanced
performance on these two types of experiments.

In the middle column of Fig. 6, β varies in 2{1,2,4,6,8,9} −
1. In the long-bit experiment (c > 16), the performance is
relatively robust to β. The highest F1-score is achieved when
β = 255. Hence, β = 255 is used in our experiments.

In the right column of Fig. 6, γ varies in
10{−5,−4,−3,−2,−1,0,1}. It can be seen that DMH performs
best in MAP when γ = 0.001. When γ > 0.1, F1-score
rockets up, while MAP dumps. A possible explanation is
that the regularization overly decorrelates a few columns of
the code matrix and leaves other columns highly mutually
correlated. The resulting code matrix will be similar to a
short-bit code matrix. That is why MAP and F1-scores in
all 6 experiments with different lengths of bits are rather
close in this situation. Although the global optimum of MCR
tends to generate column vectors similar to those illustrated
in Fig. 3, the gradient descent algorithm cannot guarantee

such solutions since MCR is not convex. Hence, γ = 0.001
is used in our experiments.

F. CONVERGENCE STUDY
The objective function of our method is minimized by Algo-
rithm 2. In Algorithm 2, we empirically amend the deriva-
tives of E for easy parameter tuning. The convergence prop-
erty is experimentally studied in this subsection. Fig. 7 shows
the convergence curves. It can be seen that the objective
function value decreases fast in the first 100 iterations and
then slides relatively slowly except for that of Wiki data set.
The preset iteration step is too large for Wiki data set, so the
object function value increase incrementally after reaching
the smallest value. The convergence curves of experiments on
Wiki and MIRFlickr is smooth, while those of experiments
on NUS-WIDE jitters because of more sophisticated data
structure and therefore more saddle points across which the
algorithm jumps.

G. COMPUTATION EFFICIENCY
Training and testing time on 32-bit are given in Table 2. The
training time is the mean time of 10 runs. The testing time
is the average time cost for one query. All experiments were
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FIGURE 6. MAP and F1-score of DMH on MIRFlickr data set. The first two rows are MAP and the last two rows are
F1-score.

performed on MATLAB R2015b installed on a GNU/Linux
Server with 2.30 GHz 16-core CPU and 768 GB RAM. The
three compared deep models, i.e. DMHOR [7], SSAH [48]
and DJSRH [58], were trained on a NVIDIAGeForce 1080TI
GPU. It is meaningless to compare running time of methods
implemented on different platforms. Hence, the running time
of these three deep models are not reported in Table 2. From
Table 2, it can be seen that the training time of our method is
moderate among all methods. Its testing time is close to that
of MDBE, because the encoding procedure for a new query
of these two methods are similar.

H. COMPARISON OF REGULARIZATIONS
In order to prove the efficiency of the proposed regularization,
we imposed four different types of regularization on our
method, i.e., 1) no regularization, 2) regularization proposed
in [7], 3) Eq. (11) and 4) Eq. (14). The MAP on Wiki data set

TABLE 2. Training and Testing Time on MIRFlickr and NUS-WIDE data sets
in seconds. The testing time is multiplied with 10−5.

are shown in Fig. 8. From Fig. 8, we can see that the proposed
regularization can improve the performance on experiments
of long codes (>64 bits). It is difficult to judge the effects
of the regularization proposed in [7], since the performance
improvement was not guaranteed on all experiments. The
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FIGURE 7. Convergence curves on Wiki, MIRFlickr and NUS-WIDE data sets.

FIGURE 8. MAP of different regularizations on Wiki data set.

FIGURE 9. Ablation study on Wiki data set.

performance of Eq. (11) and Eq. (14) is close. Hence, it is
preferred to use Eq. (14) due to its low computational cost.

I. ABLATION STUDY
To evaluate the effects of minimum correlation regularization
(MCR) and label relaxation (LR) on our proposed method,
we evaluated our methods on Wiki dataset in four settings:
(1) with both MCR and LR, (2) with only MCR, (3) with
only LR and (4) with neither MCR nor LR. The four settings

are denoted as ‘‘MCR+LR’’, ‘‘MCR’’, ‘‘LR’’ and ‘‘NULL’’
in Fig. 9. From Fig. 9, we can conclude that the MCR is
important for long-bit experiments. In short-bit experiments,
the MAP improved by LR and MCR are subtle. However, for
code length longer than 64 bits, the benefits from MCR and
LR become significant. LR stably improves the MAP on our
methods with or without MCR.

V. CONCLUSION
This paper proposed an effective multimodal hashing method
which is modeled as a quantization error problem and the
minimum correlation regularization is devised to improve
the retrieval performance on long codes. Experiments on
MIRFlickr and NUS-WIDE data sets show that the proposed
method surpasses the compared methods distinctively. Future
works include testing more nonlinear embedding functions
and refining optimization procedure for high computational
efficiency.
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