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ABSTRACT Agricultural robotics is nowadays a complex, challenging, and exciting research topic.
Some agricultural environments present harsh conditions to robotics operability. In the case of steep
slope vineyards, there are several challenges: terrain irregularities, characteristics of illumination, and
inaccuracy/unavailability of signals emitted by the Global Navigation Satellite System (GNSS). Under these
conditions, robotics navigation becomes a challenging task. To perform these tasks safely and accurately,
the extraction of reliable features or landmarks from the surrounding environment is crucial. This work
intends to solve this issue, performing accurate, cheap, and fast landmark extraction in steep slope vineyard
context. To do so, we used a single camera and an Edge Tensor Processing Unit (TPU) provided by Google’s
USB Accelerator as a small, high-performance, and low power unit suitable for image classification,
object detection, and semantic segmentation. The proposed approach performs object detection using Deep
Learning (DL)-based Neural Network (NN) models on this device to detect vine trunks. To train the
models, Transfer Learning (TL) is used on several pre-trained versions of MobileNet V1 and MobileNet
V2. A benchmark between the two models and the different pre-trained versions is performed. The models
are pre-trained in a built in-house dataset, that is publicly available containing 336 different images with
approximately 1,600 annotated vine trunks. There are considered two vineyards, one using camera images
with the conventional infrared filter and others with an infrablue filter. Results show that this configuration
allows a fast vine trunk detection, with MobileNet V2 being the most accurate retrained detector, achieving
an overall Average Precision of 52.98%. We briefly compare the proposed approach with the state-of-the-art
Tiny YOLO-V3 running on Jetson TX2, showing the outperformance of the adopted system in this work.
Additionally, it is also shown that the proposed detectors are suitable for the Localization and Mapping
problems.

INDEX TERMS Deep learning, transfer learning, convolutional neural networks, tensor processing unit.

I. INTRODUCTION
The research and development of robotic solutions for the
agriculture sector have been growing [1], [2]. The need
for automatic machines in this area is increasing since
farmers increasingly recognize its impact in agriculture [3].
Robots are now used for a variety of tasks such as planting,
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harvesting, environmental monitoring, supply of water and
nutrients, and others [4]. In this context, developing solutions
that allow robots to navigate safely in these environments is
essential. To do so, localizing the robotic platform in real-time
is required. In vineyards built in steep slope hills, the use of
the GNSS is, in most cases, unavailable due to signal block-
age and multi-reflection. Thus, several solutions redundant
to GNSS have been developed. In particular, Simultaneous
Localization and Mapping (SLAM) and Visual Odometry
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(VO) approaches are in many cases adopted [5]–[8]. In these
cases, to give the robot knowledge about the vineyard patterns
is a smart solution. The vine trunks can be used as land-
marks for the SLAM, and to build a vineyard map. There are
solutions to perform these tasks using range sensors [5], [9]
or camera systems [10], [11], based on traditional methods
such as Kalman Filters (KF), image processing, and others.
However, to the best of our knowledge, the use of DL [12] to
detect vine trunks is still nonexistent in the literature. The use
of this approach is interesting since it provides artificial intel-
ligence to the robot while being, in many cases, an accurate
solution. Convolutional Neural Networks (CNN) shown the
greatest performance in several contests in machine learning
and pattern recognition [13], [14]. This procedure, however,
assumes that the training and test data must be in the same
feature space, and have the same distribution [15]. However,
in some real-world scenarios, data collection can be challeng-
ing, as well as time expensive. So, learners that can be trained
with data easily collected from different domains are, in some
cases, required [16]. In other words, the learning procedure is
performed, transferring knowledge from a given task that was
already learned. This methodology is called TL [17].

While computing SLAM using a Central Processing Unit
(CPU) of a given machine, it is wiser to minimize the CPU
resources consumption. For example, the landmark detection
task can be executed in a second processing unit. In the case
of trunk detection using CNNswith DL or TL, several devices
can be used, such as Graphical Processing Units (GPU),
TPUs, Vision Processing Units (VPU), and others [18]. This
configuration allocates a dedicated device for object detec-
tion, maximizing the frame rate of the robot navigation. To
do so, the CNNs can be trained and executed using several
frameworks. One of themost popular is Tensorflow [19]. This
tool allows to create, train, and execute models that can be
transferred to heterogeneous devices. Also, this framework
supports deployment in embedded and mobile devices with
Tensorflow Mobile and Tensorflow Lite. It is possible to
convert Tensorflow models to the Lite or Mobile versions
using the framework. There are also CNNs optimized for
mobile and embedded systems such as the MobileNets [20],
and SqueezeNet [21].

This work aims to perform DL-based object detection to:

• Detect high-level visual features in vineyards (vine
trunks), in a low-power and high-performance manner;

• Present a reliable visual landmark input to SLAM sys-
tems in the vineyard context.

To do so, this work proposes an accurate, cheap, and fast
trunk detection in steep slope vineyard context. To achieve
these specifications, a single camera and an Edge TPU
are used. The Edge TPU is provided by Google’s USB
Accelerator [22]. It is a small, high-performance, and low
power unit suitable for image classification, object detec-
tion, and semantic segmentation. This device provides high-
performance ML inferencing for TensorFlow Lite models.
The proposed approach performs object detection on this

device to detect vineyard trunks, using TL. This is done using
a few pre-trained versions of MobileNet V1 and MobileNet
V2. These are CNNs developed for mobile and embedded
vision applications. A benchmark between the two models
and the different pre-trained versions is performed, both in
terms of processing time and detection precision. The models
are pre-trained in a built in-house dataset. Results show that
this configuration allows accurate and fast trunk detection,
without spending the CPU resources.When compared to Tiny
YOLO-V3 [23], the architecture proposed in this work out-
performs it both in terms of inference accuracy and runtime
performance.

The rest of the paper is described as follows. In the next
section, the related work is reviewed. Section III contains the
materials used in this work. In particular, the CNN models
used and their architecture, and the description of the Edge
TPU used. Section IV contains the approach adopted in this
work, such as the data collection method, and the training
procedure adopted. Section V presents the proposed system
results using the built in-house dataset, and the respective
analysis and discussion. Finally, the work is summarized in
Section VI.

II. RELATED WORKS
At the best of our knowledge, DL has not yet been applied
to trunk detection. Even so, image classification and object
detection based on DL techniques are widely present in the
agriculture sector. Intensive and time expensive tasks are
being replaced by automatic machines, endowed with artifi-
cial intelligence. These machines are performing operations
in the agriculture context such as plant disease detection,
weed identification, seed identification, fruit detection and
counting, obstacle detection, and others [24]–[26].

To detect tomato plant diseases and pests, Fuentes et al.
[27] reported a performance comparison between several
families of detectors combining them with different CNN
models. This work focuses on identifying the infection status,
the symptom location, patterns of the leaf, type of fungus,
and color and shape of the leaf. The results are generated and
compared with and without data augmentation. Similarly, to
detect and identify apple leaf diseases Liu et al. [28] created
a novel CNN architecture based on AlexNet. The network
was trained using 13,689 images and is used to detect four
common apple diseases. The overall accuracy of the network
is 97.62%, which consists of an improvement of 10.83%
compared with AlexNet. Barré et al. [29] propose a CNN-
based plant identification system called LeafNet. This work
aims to have a system that learns features from leaf images
capable of identifying plant species using them. The method
was tested in several datasets such as LeafSnap, Flavia, and
Foliage, outperforming hand-crafted-based systems. Potena
et al. [30] used two CNNs to perform crop and weed iden-
tification. The first, a lightweight CNN, is used to segment
images in order to extract 3D pixel projections of points that
belong to green vegetation. The second, a deeper CNN, is
used to classify these pixels to classify the crop and weed.
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This configuration allows real-time crop and weed detection
on top of an unmanned ground vehicle (UGV). Also, for weed
detection, in [31] an unsupervised data labeling approach is
proposed. This work uses unmanned aerial vehicle (UAV)
images to identify inter-row weeds that constitute the train-
ing dataset for a CNN. The network is used to detect the
crop and weeds in the images. The performance obtained
is comparable to the traditional approaches with supervised
data labeling. Ashqar et al. [32] use a CNN to classify plant
seedlings. In this work, a dataset with approximately 5,000
images with 12 plant species is used. This approach achieved
an accuracy of 99.48%. To detect different apple growth
stages in orchards, Tian et al. created an improved version
of YOLO-V3 [23]. Their architecture is prepared for varia-
tions in illumination, complex backgrounds, and overlapping
apples. The dataset uses augmented images to increase the
amount of training data. Results show that accurate and real-
time performance is achieved using high resolution images.
In this context, many works use CNNs to count fruit. For
example, in [33], two CNNs are used to count both apples
and oranges. The first extracts the candidate regions of the
image, and the second implements a counting algorithm for
each region. The performance of the approach is analyzed
using both images recorded during the day and the night.
Results show that this pipeline presents well behavior using
a limited dataset size. Similarly, Deep Count [34] proposes a
fruit counting approach. In this work, a modified version of
Inception-Resnet [35] is used. The network is trained on syn-
thetic data and evaluated on real data. Fruits are counted even
under shadow, occluded by branches, and foliage, or if there
is overlap between fruits. The method presents and accuracy
of 91% on real data, and 93% on synthetic data. CNNs can
also be applied to image segmentation, and this can be used in
agriculture. For example, in [36], roots in soil are segmented
using U-Net [37]. In this case, the labeling procedure is time
expensive. All the images pixels considered to belong to a
root, have to be manually and individually annotated. Each
image annotation takes, on average, 30 minutes. So, this
work uses 50 training images and is evaluated in 867 images.
Results show that the system produces segmentations with
higher quality than the manual annotations. In [38], DL is
used to perform obstacle detection in agricultural fields. The
obstacle is standardized and it is detected with a precision of
99.9% in row crops, and 90.8% in grass mowing.

TL applications are far more rare in the agricultural sector.
Despite this, few works in this area are reported. For instance,
in [39], a CNN is pre-trained with a large and general dataset,
with approximately 1000 classes, to initialize the weights.
Then, the network is retrained in order to detect 9 diseases
on tomatoes. A dataset with 14,828 images of tomato leaves
is used. Similarly, a TL technique is also used by Mohanty
et al. [40] to detect plant diseases. Here, a public dataset
with 54,306 images is used to retrain two CNNs, in order
to identify 26 diseases. To detect plant species, Ghazi el al.
[41] use TL on pretrained popular CNN architectures. To
increase the training dataset size and reduce the chance of

overfitting, the original data was augmented with operations
such as rotation, translation, scaling, and reflection. The sys-
tem presents an accuracy of 80%. In [42], DL and TL are
used to extract land information from UAV imagery. Firstly,
a CNN is used to exclude linear features, such as roads and
bridges. Secondly, the feature extraction procedure is used
to extract the desired information using TL. TL can also
be used to segment images. For example, in [43], semantic
segmentation is applied using a TL technique to identify
different crop types. In this work, three datasets are used
to compare the classification performance using different
retraining efforts. Training data is fully and partially labeled
at the pixel level. Results show that TL, even with partially
labeled data, presents high accuracy. Douarre el at. [44],
use TL to segment soil roots in X-Ray tomography data. To
retrain the network, simulated training data is used. Results
show that soil and root are well segmented, even with shallow
contrast between them.

Despite DL being widely used in agriculture, as described
in this section, vine trunk detection using CNNs is still a
gap of the state-of-the-art. This work proposes to fill this
gap, with a low-power and high-performance DL-based trunk
detection, suitable for real-time applications in robotics.

III. MATERIALS
In order to achieve high runtime performance in robotics nav-
igation, edge inference was chosen to perform visual detec-
tion of vine trunks. Edge inference is the use of a particular
Application Specific Integrated Circuit (ASIC) accelerator
to deploy a Neural Network (NN) based on a given training
dataset. Using this approach, the extraction of landmarks for
a SLAM problem is computed using a dedicated device and
can achieve high levels of performance with low power costs.
In this work, Google’s Edge TPUwas used. A TPU is a copro-
cessor designed by Google that is usually connected to a host
CPU. In the ideal case, the TPU device implements all the
inference operations. Otherwise, the host CPU can perform
some of them, but this will slow down the process. Using this
configuration, to perform the detection,MobileNets [20] with
Single Shot MultiBox Detector (SSD) [45] were used.

A. GOOGLE EDGE TPU
Google’s Coral USB Accelerator (Fig. 1), provides an Edge
TPU machine learning accelerator coprocessor. It is con-
nected via USB to a host computer, allowing high-speed
inference. This device is compatible with Tensorflow Lite,
a lightweight version of TensorFlow designed for mobile
and embedded devices, and can perform image classification,
object detection, and semantic segmentation. To perform such
tasks, the Edge TPU uses 8-bit quantized models. So, when
training a 32-bit float model from scratch, it has to be either
quantized using either quantization aware training or post
training quantization. The first approach simulates the effect
of 8-bit values during the training process using quantization
nodes in the NN graph. The second does not modify the
NN structure and is applied after training. However, it is
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FIGURE 1. Google Coral USB Accelerator [22].

FIGURE 2. Edge TPU model compilation scheme [46].

less accurate than the first method. Alternatively, pre-trained
models that are already quantized can be used if compatible
with the Edge TPU. The device supports a range of opera-
tions and is most likely compatible with models designed for
mobile devices, using the SSD architecture. After training the
model, the Edge TPU compiler is used to assign inference
operations to the device and the host CPU, as represented in
Fig. 2. The compiled model differs from the original Tensor-
flow Lite model in the first operation of the graph. CPU pro-
cesses the operations from the first non-supported operation
of the TPU, until the end of the graph. The inference will be
as faster as higher it is the number of operations assigned to
the Edge TPU. Table 1 the MobileNet V1 compilation results
after retraining, on this work. The table shows the supported
operations performed by the model on the Edge TPU. When
an unsupported operation is found, all the following ones are
deployed by the host CPU, represented as Custom in Tab. 1.

B. SINGLE SHOT MULTIBOX DETECTOR
To perform the vine trunk detection using the Edge TPU
coprocessor, we chose the SSD [45] architecture since it is

TABLE 1. Output of the MobileNet V1 model compiler for Edge TPU.

fully compatible with the device. To perform object detection,
this architecture uses a feed-forward CNN producing a fixed-
size collection of bounding boxes and attributing a score for
each one of them. The CNN contains convolutional feature
layers to the end of the truncated base network. These layers
allow to detect objects at multiple scales, i.e., objects of
different sizes in images with different resolutions.

C. MOBILENETS
Since in this work, a coprocessor is used to perform machine
learning inference, using models suitable for mobile and
embedded devices is a logical solution. Thus, MobileNets
[20] were chosen. This set of models provide lightweight
deep NN using depthwise separable convolutions. In other
words, the model factorizes convolutions into depthwise, and
1 × 1 convolutions called pointwise convolutions. The first
applies a single filter to the input channel, and the second
applies a 1 × 1 convolution, combining the outputs of the
first. The input of a CNN is a tensor with shapeDf ×Df ×M ,
where Df represents the input channel spatial width and
height, and M is the input depth. After the convolution, a
feature map of shapeDf ×Df ×N is obtained, where N is the
output depth. In this context, MobileNets propose two hyper-
parameters that allow the user to resize the model so that
it meets the system specifications. There hyper-parameters
are: width multiplier and resolution multiplier. The width
multiplier α is used to thin the CNN uniformly at each layer.
For a given value of α ∈ (0, 1], the number of inputs channels
M becomes αM , as well as the number of output channels
N becomes αN . Width multiplier reduces the computational
cost and the number of parameters by α2. The second hyper-
parameter, resolution multiplier ρ, is also used to reduce the
computational cost. This one is applied directly to the input
image, setting its resolution. The values of ρ ∈ (0, 1] are
chosen in order to obtain typical input image resolutions.
resolution multiplier also reduces the computational cost and
the number of parameters by ρ2.

In this work, two MobileNet versions provided by Ten-
sorFlow [19] are considered, MobileNet V1 and V2. Both
models, already trained using the COCO dataset [47], were
retrained to detect vine trunks. To analyze the impact of the
width multiplier hyper-parameter, a version of MobileNet V1
that was pre-trained with a non-default value for this param-
eter was also retrained. Table 2 indicates the models consid-
ered. The resolution multiplier is set to its default value in
all the experiments, so that the input resolution is 300 × 300.
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TABLE 2. Pretrained models to perform vine trunk detection on the Edge
TPU.

In this work, other variations of the hyper-parameters were
not tested since a TL procedure was adopted. This means
that the NNs were already trained with specific values for
the hyper-parameters, and to experiment other values with the
desired impact, they have to be trained from scratch.

IV. METHODS
In this work, TL is addressed to perform DL-based object
detection. TL main shortcoming is negative transfer, which
happens when the pre-training data contributes to negative
learning on the target application. To detect vine trunks,
several models pre-trained with the COCO dataset [47] were
retrained, and was verified that using such a vast dataset,
the target detectors retrained do not suffer from negative
transfer. In order to achieve a high-performance detector, that
visually recognizes trunks in real-time, a training procedure
over the CNNs was performed. To do so, a training dataset
was created, using our robotic platform AgRob V16 [48],
represented in Fig. 3. The dataset is publicly available at our
repository (http://vcriis01.inesctec.pt/) with
the DS_AG_39 id. It contains camera images with both an
infrared, and an infrablue filter, in two different vineyards.
After collecting the data, the trunks were manually annotated
on the images. Then, the training procedure was performed.
The main steps of this work are represented in Fig. 4, and are
detailed next.

FIGURE 3. AgRob V16 robotic platform.

A. DATA COLLECTION
To build the training dataset, two onboard cameras of our
robotic platform, AgRob V16, collected data in two different
vineyards, represented if Fig. 5. One of them is a Raspberry

FIGURE 4. High-level design of the vine trunk detection framework.
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FIGURE 5. Training data on two different vineyards, (a) and (b).

Pi camera with 640 × 480 resolution, with an infrared filter
(Fig. 5(b)). The other is a Mako G-125C camera, with a
resolution of 1292 × 964 resolution, and an infrablue filter
(Fig. 5(a)). The dataset considers 336 different images and
approximately 1,600 annotated trunks. It contains:
• Images with different resolutions.
• Two types of vine trunks, with and without foliage.
• Trunks covered by shadows.

These are challenging conditions that confer variety and
robustness to the training procedure.

B. DATA ANNOTATION
Given the training dataset, vine trunks were manually anno-
tated. For maintain consistency, on the trunks that are less
than approximately 3 meters from the robot and that belong
to the corridor where the robot is located, were manually
annotated. Figure 6 shows an example of this procedure. The
annotation procedure output is a set of bounding boxes of dif-
ferent sizes, for each image. These are represented in a .xml
file with the Pascal VOC annotation syntax, containing the

FIGURE 6. Annotation example referent to the training procedure.

label class considered, and the four corners location of each
bounding box. The annotations are also publicly available
(http://vcriis01.inesctec.pt/) with the training
images. This data is the input for the training procedure,
described below.

C. RETRAINING PROCEDURE
The training procedure aims to create an Edge TPU com-
patible model, capable of detecting the vine trunks in real-
time. To do so, Tensorflow and Tensorflow Lite were used,
as represented in Fig. 7. The first step is to serialize the
ground truth bounding boxes, so that Tensorflow can interpret
it efficiently. The data serialization is performed using the
TFRecord data type, which stores the data as a sequence
of binary strings. This constitutes the input for the CNN
retraining. This step uses the configurations present in Tab. 2,
providing the ability to recognize a trunk to the CNN. After
that, a Tensorflow model is generated, and, in order to save
themodel for posterior TL or retraining, themodel is exported
into a frozen graph. Since the Edge TPU only supports Ten-
sorFlow Lite models that are fully 8-bit quantized, the frozen
graph is then converted into such a model. Finally, in order
to assign operations to the Edge TPU device, the Tensorflow
Lite model is compiled using the procedure described in
Sec. III.

D. EVALUATION METRICS
In order to evaluate the CNN performance detecting vine
trunks, the PASCAL Visual Object Classes (VOC) Challenge
[49] was used. This method is used by many DL-based works
to evaluate CNN performance, offering a fair comparison
between the set of works present in the literature. To do so,
given an annotated ground truth bounding box Bg, and a
detected bounding box Bd , the IoU is firstly calculated as
follows

IoU =
m(Bg ∩ Bd )
m(Bg ∪ Bd )

(1)
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FIGURE 7. Training procedure flow.

wherem(x) denotes the area of x. This can be also understood,
analysing Fig. 8. So, IoU represents the quotient between the
area of overlap and the area of union between the ground
truth, and the detection bounding boxes. Using this definition,
three main concepts can be defined. For a given threshold
value t , let us define:
• True Positive (TP): IoU ≥ t , i.e., a correct detection.
• False Positive (FP): IoU≤ t , i.e., an incorrect detection.
• False Negative (FN): a ground truth is not detected.

It is worth noting that if more than one detection for a single
ground truth is computed, only the one with the highest IoU
is considered as TP, and all the others are FPs. This being
said, with these three qualifiers it is possible to define two
fundamental concepts. The first, precision p, is defined as the
total number ofTPs over all the detections. The second, recall
r , is the total number of TPs over all the ground truths. Using
these, is possible to plot a curve of the recall in function of
the precision, p(r). The evaluation considers that a suitable
detector is the one that maintains the precision high for an
increase in recall.With this consideration, the detector is eval-
uated computing the Average Precision (AP), interpolating
the obtained curve, and calculating the area below the curve.
Mathematically, this is expressed as follows

1∑
r=0

(rn+1 − rn)pinterp(rn+1) (2)

with

pinterp(rn+1) = max
r̃ ;̃r≥rn+1

p(̃r) (3)

where p(̃r) is the measured precision at recall r̃ .

V. RESULTS
In order to evaluate the trained NNs on top of Google’s
Edge TPU, a subset of the dataset previously described was
extracted for testing. From the total of 336 images on the
dataset, 45 images were used for the test procedure, with
approximately 180 vine trunks. These images were randomly
extracted from the dataset before training in order to be only

FIGURE 8. Interception over union representation.

used for validation. The performance of the three model
configurations is compared using all the evaluation data, and
the images of each vineyard individually. Thus, the global
performance of the detector is evaluated, as well as its isolated
performance in the images with both types of filters. Tiny
YOLO-V3 was trained and evaluated using exactly the same
training and testing data, respectively. So, a brief comparison
is performed between this model running on Jetson TX2
and the proposed system on this work. Additionally, this
Sec. shows an application of the proposed detectors to a
Localization and Mapping system.

A. DETECTION PERFORMANCE
Using the metrics described on Sec. IV, and the test set
of images, the detectors were evaluated. Figure 9 shows an
example of a detection, provided by MobileNet V1, with
α = 1.0, for both vineyards. The green bounding boxes
represent the ground truth, and the red ones, the detections.

Figures [10-12] represent the precision × recall curves
p(r), for all the considered configurations: the three retrained
models, either with the IoU threshold t equals to 0.5 and 0.65,
under the three evaluation sets. Table 3 summarizes theAP for
all the configurations.

To evaluate the runtime performance of each detector, they
were profiled using the high resolution clock from chrono
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FIGURE 9. A result example for the two different vineyards, (a) and (b).
The red boxes represent the detections, and the green ones the ground
truth.

present in the std library. This measure consists of the time
that the detector takes to return the resultant bounding boxes,
since it receives the input image. Table 4 shows the obtained
results for each detector.

To compare the proposed system with a state-of-the-art
model, Tiny YOLO-V3 was training with the built in-house
dataset and evaluated over the same 45 images using an
IoU equals to 0.5. Table 5 summarizes the results obtained
with this configuration, both in terms of AP and runtime
performance.

B. DISCUSSION
By analysis of Tab. 3, several conclusion can be extracted.
Both for the global set of images, and the infrared filtered
ones, MobileNet V2 is the best detector. For t = 0.5, the
difference to the other detectors is significant. With t = 0.65,
this margin tends to attenuate. On the infrablue filtered set
of images, MobileNetV1 (α = 1.0) is, not by far, the best

FIGURE 10. Interpolated AP pinterp results using all the training data and
a IoU threshold of (a) 0.5 and (b) 0.65.

detector. Despite this, the three detectors behave very sim-
ilarly on this set of images. Comparing the performance of
the detectors on the two filtered set of images, the conclusion
is that the infrablue is, in general, more challenging. Except
for MobileNet V1 (α = 0.75), the other detectors behave
better on the set with vineyard images using the conventional
infrared filter. Obviously, increasing the IoU threshold t leads
to a decrease in the average precision, as verified in all the
studied cases. Globally, MobileNet V2 is the detector that
presents the best performance, providing an AP of 52.98%
on the global set of images, 62.95% on the infrared filtered
images, and finally, 41.33% on the infrablue filtered ones,
for a width multiplier t = 0.5. Comparing these results with
the ones present in Tab. 5, it is visible that Tiny YOLO-V3
presents a lower AP than all the proposed configurations for
the same value of t , showing an overall AP of 31.32%.

In terms of inference runtime performance, Tab. 4 shows
the average inference per image for all the detectors, in mil-
liseconds. These results were generated, taking into account
all the evaluation images considered, computing the average
inference time of each detector in all of them. They show
that MobileNet V1 (α = 0.75) is the fastest detector with
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FIGURE 11. Interpolated AP pinterp results using the infrared training
images and a IoU threshold of (a) 0.5 and (b) 0.65.

20.5326 ms average inference per image, which corresponds
to 48.7030 frames per second. MobileNet V1 (α = 1.0),
is slower than the previous one, but faster than MobileNet
V2. The first achieves an average inference time of 21.1853
ms, which corresponds to 47.2025 frames per second. The
second, MobileNet V2, presents 23.8238 ms of average
inference time, and, consequently, 41.9748 frames per sec-
ond. Thus, MobileNet V1 (α = 0.75) can process 5 more
images per second than MobileNet V2. Despite this, it is
notorious that all the detectors being executed on top of
the Edge TPU present high performance, being suitable for
real-time usage. The architecture of this TPU, dedicated
explicitly to processing CNNs, revealed to process DL-based
object detectors with time performances that can be used
in any visual SLAM system. The loop frequency of SLAM
is, in most cases, not higher than 20 frames per second.
Our detectors achieved time performances that can process
more than twice this number of frames per second. Table 5
presents the average runtime performance of Tiny YOLO-V3
on top of Jetson TX2, resulting in an average inference
time per image of 54.20 milliseconds. This result corre-
sponds to a frame rate of 18.45 frames per second, which

FIGURE 12. Interpolated AP pinterp results using the infrablue training
images and a IoU threshold of (a) 0.5 and (b) 0.65.

TABLE 3. Summary of the detector performance.

leads to the conclusion that the MobileNets run more than
twice as fast over the Edge TPU than YOLO on top of the
Jetson TX2.

Globally, the main conclusions that can be taken from this
analisys are:
• MobileNet V2 is the most accurate detector, from the set
of three detectors analyzed.

• MobileNet V1 (α = 0.75) is the fastest detector, but
globally the least accurate one.

• Tiny YOLO-V3 is shows lower AP and lower runtime
performance running on top of Jetson TX2 than the
MobileNets on the Edge TPU.

These conclusions confirm the a-priori knowledge about
the detectors and their hyper-parameters. MobileNet V2 is
an improvement to the first version of the MobileNets,
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TABLE 4. Runtime performance (ms) of the different retraining configurations performed.

TABLE 5. Tiny YOLO-V3 AP and runtime performance results for an IoU equals to 0.5.

FIGURE 13. (a) Disparity map constructed using a stereo camera system
and (b) vine trunk detections projected on it with the respective depth
information.

introducing new features to the original architecture. Thus,
the improvement in comparison to the first version was
expected. Also, the behavior of the MobileNets with the vari-
ation of the width multiplier hyper-parameter, was verified.
With α = 0.75, MobileNet V1 is, in general, less accurate
but faster than using a higher value for α. Additionally,
Tiny YOLO-V3, a lightweight version of YOLO-V3, showed
an overall lower performance than the proposed configura-
tions on this work, even being executed in a much high-
cost device. The optimized architecture of the Edge TPU
for CNN models suitable for embedded devices leads to
a much higher frame rate and a more effective inference
performance.

FIGURE 14. 2D vine trunk mapping using the proposed detectors.

The state-of-the-art does not currently provide any work
that detects vine trunks on images using NNs. This work
presents a solution to this problem using a device that is yet
not popular in the literature. This solution has strong and
weak points, depending on the application that uses its final
results. It can be concluded that:

• The AP results obtained were not as high as many DL
works present in the literature. However, in this work
was used a low-cost and low-power device, that uses
lightweight and 8-bit quantized models - MobileNets.
This leads to least accurate inference results but, at
the same time, inference is performed with low power
consumption, at high frame rate, with much less costs
than works that use, for example, powerful GPUs.

As referenced before, the desired application for the proposed
detector of this work is SLAM. In steep slope vineyards,
GNSS-based signals such as the Global Positioning System
(GPS) are not always available. So, redundant solutions to
GPS have to be developed. The solution proposed in this
work can be suitable for such an application. The navigation
stack where the detector will be included imposes a minimum
frame rate of 10 frames per second. This condition is ensured,
as demonstrated before. Additionally, the detections can be
used both on mapping and localization tasks, considering, for
example, a stereo camera system. Figure 13 represents the
application of the proposed detector on such a system. Using
both cameras it is possible to compute a disparity map, as
represented in Fig. 13(a), that provides depth information.
Thus, the detections on the original stereo images can be
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projected on this map. The depth of each trunk is calculated
computing the median of the depth of all points inside each
bounding box. Figure 13(b) represents the bounding boxes
projection and the depth calculation for each one. Using the
computed depths, and the implicit bearing information, it is
possible to calculate the position of each trunk on the world,
with a given standard deviation. This information can be fur-
ther used both for the mapping and localization procedures.
Figure 14 shows an example of a vineyard corridor map
build using this information and real data from the robotic
platform. The robot trajectory is represented in red. It is worth
noting that this procedure does not consider yet a procedure
to remove outliers.

VI. CONCLUSION
The SLAM problem is still an intensive research topic. The
primary step of any SLAM method is to extract reliable
features from the surrounding environment. In the context of
steep slope vineyards, the vine trunks can constitute these
features. In this work, a real-time DL-based approach to
compute the visual detection of vine trunks is proposed.
The Edge TPU provided by Google’s USB Accelerator is
used, performing TL to develop reliable trunk detectors.
Two versions of the MobileNets were retrained, taking into
consideration their hyper-parameters. The retraining process
was performed using a built in-house dataset, that is pub-
licly available. It contains 336 different images with approx-
imately 1,600 annotated trunks and images belonging to two
different vineyards. One of them presents camera images
with the conventional infrared filter, and the images with
an infrablue filter. Results show that our system achieves
real-time vine trunk detection. Compared with the state-of-
the-art model Tiny YOLO-V3 running on Jetson TX2, the
configurations proposed in this work achieve higher inference
accuracy and runtime performance. MobileNet V2 revealed
to be the most accurate model.

In future work, the vine dataset will be increased both in
size and in variability. To do so, the objectives are: to collect
data relative to different vines, to add thermal camera images
to the dataset, and to augment all the images, performing
operations such as rotation, translation, rescaling, etc. Also,
it is planned to retrain another kind of models to perform vine
trunk detection, such as VggNet, ResNet, InceptionNet, etc.
Similarly, it is intended to train NNs from scratch in order
to be able to vary the hyper-parameters. Finally, DL-based
semantic segmentation will be considered in order to extract
the exact shape of each trunk and eliminate the back-
ground pixels that are present on the bounding boxes of our
detectors.
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