
Received March 27, 2020, accepted April 16, 2020, date of publication April 20, 2020, date of current version May 6, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2988977

Tradeoff Between Area Coverage and Energy
Usage of a Self-Reconfigurable Floor Cleaning
Robot Based on User Preference
M. A. VIRAJ J. MUTHUGALA , (Member, IEEE),
S. M. BHAGYA P. SAMARAKOON , (Student Member, IEEE), AND MOHAN RAJESH ELARA
Engineering Product Development Pillar, Singapore University of Technology and Design, Singapore 487372

Corresponding author: M. A. Viraj J. Muthugala (viraj_jagathpriya@sutd.edu.sg)

This research is supported by the National Robotics Programme under its Robotics Enabling Capabilities and Technologies/Robot Domain
Specific Project No. RGAST1907 and administered by the Agency for Science, Technology and Research.

ABSTRACT Floor cleaning robots have been developed to cope with the issues arisen with conventional
cleaning methods that involve extensive human labor. hTetro is a self-reconfigurable floor cleaning robot
that has been introduced to improve area coverage. Polyomino tiling theory is utilized by hTetro to plan
area coverage. Energy usage and area coverage are distinct for different tiling arrangements, and they are
often conflicting entities. Therefore, hTetro needs to maintain the tradeoff between area coverage and energy
usage to improve its performance. This paper proposes a novel method to determine the tradeoff between
area coverage and energy usage of a tiling theory-based self-reconfigurable floor cleaning robot per user
preference. A linguistic option such as ‘‘High coverage’’ that represents user preference has uncertainty since
fuzzy linguistic terms do not possess definitive meaning. Moreover, the meaning of such user preference
depends on the present status of the robot. Thereby, a novel fuzzy inference system is proposed to determine
the tradeoff between area coverage and energy usage by interpreting the meaning of user preference while
accounting for the present status of the robot. A Weighted Sum Model (WSM) based Multiple-criteria
decision-making (MCDM) method is adapted per user preference interpreted by the fuzzy inference system.
The behavior of the proposed system has been evaluated considering heterogeneous test cases. The behavior
of the test cases confirms the applicability of the proposed concept for adapting the tradeoff between area
coverage and energy usage of a self-reconfigurable floor cleaning robot based on user preference.

INDEX TERMS Self-reconfigurable robot, cleaning robot, energy usage, area coverage, fuzzy linguistic
information, user preference, human-friendly robotics.

I. INTRODUCTION
Constructions are intensively carried out in every part of
the world to cater to the demands of the growing popula-
tion [1]. These buildings and structures are usually cleaned by
human labor to maintain the aesthetic appearance and living
conditions. Cleaning is a monotonous activity that involves
intensive human labor where productivity, cost, and safety
are foremost worries. In addition to that, human labor is
scarce and expensive due to socio-economic complexities [2].
Therefore, the attention of the robotic researchers has drifted
toward the development of robots that can autonomously
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handle diverse cleaning activities, including floor clean-
ing [3], staircase cleaning [4], facade cleaning [5], and garden
cleaning [6].

Floor cleaning is one of the critical areas that demand
the deployments of autonomous robots to carry out cleaning.
In this regard, diverse aspects of floor cleaning robots have
been studied and developed to improve the abilities of floor
cleaning robots. For example, advanced path planning and
navigation algorithms have been developed to enrich the
coverage and navigation efficiency [7], [8]. Environment per-
ceiving and sensing abilities of floor cleaning robots have also
been improved to enhance the navigation abilities [9], [10].
In addition to that, many debris detection algorithms have
been proposed for floor cleaning robots to improve cleaning
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activities [11], [12]. Enhancing cleaning efficiency through
multi-robot coordination has also been investigated [13].
Apart from these core developments, human-robot interaction
of floor cleaning has also been studied to improve the long-
term deployment of floor cleaning robots in human-populated
environments [14].

Most of the floor cleaning robots mentioned above have a
fixed morphology. However, cleaning robots with fixed mor-
phology face major challenges from the perspective of cover-
ing the cleaning area due to inaccessibility in narrow spaces
during navigation. Developing self-reconfigurable robots that
can shift the morphology to access narrow spaces is a promis-
ing solution to overcome the problem of coverage [15]. In this
regard, Prabakaran et al. [16] proposed a self-reconfigurable
floor cleaning robot named hTetro. hTetro is a Tetris inspired
modular robot that can shift its morphology to mimic one-
sided tetrominoes. Polyomino tiling theory has been utilized
in this robot to solve the coverage problem [17]. The ability
of reconfiguration to different morphologies allows hTetro to
outperform the floor cleaning robot with fixed morphologies
in the aspect of coverage.

Diverse aspects of hTetro have been studied to improve
the abilities of this self-reconfigurable floor cleaning robot.
In this regard, an approach based on graph theory to realize
complete coverage path planning has been studied [18]. The
realization of energy-optimized path planing for complete
coverage has been addressed in [19]. Energy usage of hTetro,
when reconfiguring from a shape to shape and navigation,
has also been assessed in [20], [21]. Most of the existing
approaches for reconfigurable cleaning robot uses polyomi-
noes tiling theory to address the coverage problem. Polyomi-
noes tiling theory introduces different tiling theorems that
satisfy the complete coverage of the area considered for the
tiling. Nevertheless, the area considered for the tiling should
satisfy several constraints to entirely covered it by using these
tiling theorems [22]–[24].

Typical shapes of floor areas considered for the cleaning
would not be ideally matched with the spatial constraints
required for a perfect tiling. Thereby, an area could not be
covered entirely, and different tiling theorems cover the area
to a different extent. On the other hand, the energy usage of
different tiling arrangements is different from each other. The
best tiling criterion for an area should be selected by ana-
lyzing energy usage and coverage of each tiling criterion. In
this regard, the work [25] proposed a Multi-criteria Decision
Making (MCDM) to select the best tiling arrangement. In the
cited work, it assumes that the tradeoff between energy usage
and area coverage is defined as one to one. However, the
tradeoff between the area coverage and energy usage should
be decided based on user preferences instead of having a fixed
tradeoff. Moreover, the robot should allow a user to select the
required tradeoff to improve human-friendliness. For exam-
ple, a user should be allowed to select ‘‘high coverage’’.
Most of the users of these robots do not have technological
competencies, and this selection is preferred to be made lin-
guistically without knowing the exact underlying. However,

user preference selected linguistically possesses uncertainty
(fuzzy linguistic terms such as ‘‘high’’ and ‘‘low’’ do not
possess definite quantitative meaning) based on the present
status of the robot [26], [27].

Much research work has been done in the niche of inter-
pretation of fuzzy linguistic information contained in user
instructions in the form of terms such as ‘‘high’’ and ‘‘little’’
since the ability of a robot to understand such information is
crucial for enhancing human-robot interaction [27], [28]. The
proposed methods have been developed by utilizing fuzzy
logic [29] and fuzzy neural networks [30]. These methods
are capable of interpreting the fuzzy linguistic information by
adapting the perception of a robot based on environment [28]
and prior experience [30]. Nevertheless, the scopes of most
of the state of the art methods are limited to cope only of
linguistic terms related to distances [30], direction [31], speed
of movements [26], and force on a surface [32]. Methods
for interpreting fuzzy linguistic information related to aspects
such as area coverage and energy have not been examined.

Therefore, this paper proposes a novel method to infer the
tradeoff between energy usage and area coverage of a self-
reconfigurable robot based on user preference. The tradeoff
between energy usage and area coverage is inferred by a fuzzy
inference system based on user input and the present status of
the robot. Theweighting parameters of anMCDMprocess are
adapted based on the inferred tradeoff. Section II gives a brief
about hTetro. The method proposed to tradeoff between area
coverage and energy usage based on user preference is pre-
sented in Section III. Particulars on validation and behavior
analysis are discussed in Section IV. Section IV summarizes
the outcomes of the work.

II. ROBOT PLATFORM
hTetro is a self-reconfigurable robot inspired by the tile-
matching puzzle game called ‘‘Tetris’’. It has a modular
structure with four blocks, which can mimic the one-sided
tetrominoes, as shown in Fig. 1. The seven shapes are named
as ‘‘I’’, ‘‘L’’, ‘‘J’’, ‘‘S’’, ‘‘Z’’, ‘‘O’’, and ‘‘T’’. The shapes that
are mimicked by hTetro are distinct since the pieces cannot be
flipped. Nevertheless, rotation and translation operations can
be performed on these 7 shapes. The hardware arrangement of
hTetro is depicted in Fig. 2. Each block is squared shape with
equal width and length of 25 cm. The four blocks are intercon-
nected with three hinges that allow each module to have rela-
tive motions. hTetro can mimic the one-sided tetrominoes by
shifting its morphology through rotations around the hinges.
For navigation, the robot is equipped with geared DCmotors.
Arduino Mega controller is used to handle the low-level con-
trolling functionality of the robot. For high-level controlling
and processing tasks such as mapping and localization, a
compute stick is deployed to the robot. A Lidar is used for
mapping and localization purposes. It is expected to have
cleaning units in all the modules to carry out the cleaning.
Previous work on hTetro proved that this self-reconfiguration
ability of hTetro improves the area coverage compared to a
floor cleaning robot with fixed morphology [16].
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FIGURE 1. hTetro in seven different one-sided tetrominoes. The location of hinges are annotated in circles.

FIGURE 2. Hardware arrangement of hTetro.

III. TRADEOFF BETWEEN ENERGY USAGE AND
COVERAGE BASED ON USER PREFERENCE
A. TILING THEORY
The polyominoes tiling theory is a mathematical formulation
that explains the constraints and potentials of completely
tiling a space from a set of polyominoes. Since hTetro can
mimic one-sided tetrominoes, tiling theories derived for tetro-
minoes can be used to design the coverage of a given floor
environment for cleaning. Translation and rotation operation
can be applied to the one-sided tetrominoes since hTetro can
perform rotation and translation through the navigation sys-
tem [16]. However, the flipping operation cannot be applied.
Much mathematical work has been done in this specific niche
to propose different tiling theorems [22]–[24]. Nevertheless,
these tiling theorems impose hard constrains for realizing a
perfect tiling arrangement for a given environment. For exam-
ple, a theorem proposed in [22] indicates that a rectangular
area a × b can be tilled from tetrominoes ‘‘T’’, ‘‘Z’’, and
‘‘S’’ if and only if either one side is divisible by 4 or a, b =
2(mod4) and a+ b > 16. Therefore, it would not be possible
to perfectly tile a given area from the tetrominoes in all the
situations. Regardless of this issue, previous work on hTetro
proved that the area coverage of a self-reconfigurable floor
cleaning robot could be improved through the tiling approach
with respect to a robot with a fixed morphology [17].

B. MULTIPLE-CRITERIA DECISION-MAKING (MCDM)
Typical floor areas, which have to be cleaned by hTetro, are
often occupied by objects. For example, various furniture

and equipment could be placed in floor environments. In
addition to that, floor areas have complex shapes. As a result
of these matters, floor areas expected to be cleaned by the
robot would not always be satisfied by the spatial constraint
required for the tiling theorems mentioned in section III-A.
Hence, a tiling arrangement generated for a particular floor
would not entirely cover the floor area, and there would
be uncovered spaces. A large number of different tiling
arrangements for a particular environment can be generated
by repeating the tiling pattern generation with the same set
of tile pieces or by changing the set of tile pieces used for
the tiling. Nevertheless, the coverage of tiling arrangements
generated would be different, and none of the tiling arrange-
ments would not be able to completely cover the area in
some cases. On the other hand, the energy consumed by the
robot when following different tiling arrangements would
also be different. The energy usage of the robot depends
on the tiling arrangement since the energy consumed by the
robot during a shape-shifting varies in accordance with the
present morphology and next morphology [20]. This situation
is further explained from the following example situation,
where two tiling arrangements are generated for a particular
floor area. The first tiling arrangement has 89% area coverage
with 58% energy usage while the second tiling arrangement
has 91% coverage with 80% energy usage. If only the area
coverage is considered, the second tiling arrangement is used
by the robot despite the high energy usage, which is not
desired. If only the energy usage was considered, it would
also yield to undesired situations. For example, a situation
where two tiling arrangements generated can be considered.
The first tiling arrangement has an area coverage of 83%with
an energy usage of 50%, while the second arrangement has
an area coverage of 60% with an energy usage of 48%. If
only the energy usage was considered, the robot would select
the second arrangement. The energy usage and area coverage
are conflicting criteria in selecting the most suitable tiling
arrangement for a cleaning task.

Therefore, Multiple-criteria decision-making (MCDM)
method [33] would be used to select the most suitable tiling
arrangement that is used by the robot to clean a particular
floor area. A Weighted Sum Model (WSM) [33] is used
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in selecting the most suitable tiling arrangement among the
possible alternatives. The goal of decision making should
be maximizing the area coverage while minimizing energy
usage. Therefore, WSM score of ith possible tiling arrange-
ment for a particular case, AWSMi is defined as given in (1),
where Ei and Ci are normalized energy usage and normalized
area coverage of the ith tiling arrangement. wC ∈ [0, 1] and
wE ∈ [0, 1] are scalar constants that decided the tradeoff
between energy usage and area coverage. wC and wE are
determined by a fuzzy inference system that interprets the
user preference considering the present status of the robot
(explained in III-C). The tiling arrangement, which has the
maximum WSM score, is selected as the most suitable tiling
arrangement in a particular case.

AWSMi = wCCi − wEEi (1)

C. INTERPRETATION OF USER PREFERENCE
The goal of the system is to decide the most suitable tiling
arrangement based on two conflicting criteria, area coverage,
and energy usage. The tradeoff between these two criteria
is determined by adapting the weights, wC , and wE based
on user preference. User preference is taken as an input
through a user interface. Most of the users of hTetro are non-
expert in technology. Non-expert users prefer to interact with
robots through linguistically understandable inputs [27], [34].
Hence, user preference is taken as a selection from a set of
linguistic terms. The three preferences, ‘‘High coverage’’,
‘‘Intermediate’’, and ‘‘Low energy’’ are given for a user to
indicate his/her preference in a case. The fuzzy linguistic
terms such as ‘‘high’’ and ‘‘low’’ do not have definitive
quantitative meanings and the interpretation depends on the
present status of the robot [27]. In this case, the meaning of
these selection terms depends on the present battery level of
the robot since the energy usage and coverage as a direct
impact on it.

Fuzzy logic is a computational technique that can
be used for transforming logical statements into a non-
linear model [35], [36]. The powerful modeling ability
of this technique allows it to cope with any complex
behavior [35], [37], [38]. Fuzzy logic has a high power of
cointensive precisiation, which is essential for the formaliza-
tion of scientific concepts in human-centric fields [39]. In
addition to that, fuzzy logic has proven to be effective in cop-
ing with dilemmas that consist of imprecise and incomplete
process dynamics and data [40]–[42].

The meaning of fuzzy linguistic information contained in
a user preference cannot be mathematically modeled due
to the lack of underlying dynamics of a process. On the
other hand, the necessary behavior in this scenario can be
defined from a set of linguistic rules. Since fuzzy logic
allows computation with linguistic rules, the meaning of
user preference expressed from fuzzy linguistic information
can be modeled using fuzzy logic. Furthermore, dilemmas
that cannot be formulated mathematically such as to model
human-like complex behavior, fuzzy logic can be applied

FIGURE 3. Functional architecture of the fuzzy inference system.

FIGURE 4. Input and output membership functions of the fuzzy inference
system for interpreting user preference. (a) Input membership function
for user preference. (b) Input membership function for battery level.
(C) Output membership function for wC and wE . It should be noted that
the same sort of membership function is used for both output. Hence,
only one is shown. The fuzzy labels are defined as VL: ‘Very Low’, L: ‘Low’,
M: ‘Medium’, H: ‘High’, and VH: ‘Very High’.

for better performance [34], [43]. Especially fuzzy logic is
often used in the state of the art methods for interpreting
fuzzy linguistic information contained in user preferences
[27], [34]. Therefore, a fuzzy inference system is used to
determine the tradeoff between energy usage and area cov-
erage by interpreting user preference.

The functional architecture of the proposed fuzzy inference
system is depicted in Fig. 3. The fuzzy inference system takes
two inputs; user preference (U ) and the battery level (B) of the
robot to interpret user preference. These two inputs are fuzzi-
fied in the fuzzification layer by using the input membership
functions. The input membership function for user preference
is shown in Fig. 4(a). The input membership function for user
preference has three singleton fuzzy sets to represents the
three linguistic options available for a user to indicate user
preference. The input membership function for the battery
level has three triangular fuzzy sets, as shown in Fig. 4(b).
The corresponding degrees of membership of the fuzzified
inputs,U and B are defined as µU and µB, respectively. A set
of if-then linguistic rules that defines the anticipated behavior
of the fuzzy inference system is stored in the rule base.
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FIGURE 5. Expected variation of wC and wE with respective battery level (B) during different user
preferences (U).

The rule base of the proposed fuzzy inference system is given
in Table 1. The input space and output space are mapped
by this rule base in the inferencing stage to synthesize the
required behavior. The firing strength of ith rule, αi can be
obtained as in (2) considering minimum and maximum oper-
ators as the t-norm and t-conorm operators respectively [44].

αi = min(µUi (U ), µBi (B)) (2)

The fuzzy inference system has two outputs for wC and
wE . The same sort of membership function is used for these
two outputs. The corresponding outputmembership functions
are shown in Fig. 4(c). The activation degree of ith output
fuzzy set,µw′Xi

can be obtained as in (3) consideringMamdani
implication [44]. Moreover, the corresponding fuzzy conse-
quents are clipped by the respective firing strength of a rule.
In here, it should be notated that wX is either wC or wE .
The fuzzy consequents of all the rules are accumulated to a
single resultant fuzzy set, µw′X (wX ) as given in (4) for each
output, where n is the number of rules. The aggregated fuzzy
consequents are defuzzified in the defuzzification layer to
obtain the corresponding quantitative meanings. The center
of the area method is used for the defuzzification of the two
outputs. Thus, the defuzzified output could be obtained as in
(5).

µw′Xi
(wX ) = min{αi, µwXi (wX )} (3)

µw′X
(wX ) = max{µw′X1

(wX ), µw′X2
(wX ), . . . , µw′Xn

(wX )}

for X = {E,C} (4)

w∗X =

∫
wXµw′X (wX )dwX∫
µw′X

(wX )dwX
for X = {E,C} (5)

The weights of theWSM are adapted based on the defuzzi-
fied outputs. The expected variations of wC and wE (i.e., the
weights of theWSM) in accordance with the battery level and
user preferences are plotted in Fig. 5. The tradeoff between
the area coverage and energy usage is dependent on these
weights of the WSM.

D. OVERALL OPERATION
The overall operation of the robot is given in Algorithm 1.
The robot should be initialized with a metric map of the

TABLE 1. Rule base of the fuzzy inference system.

Algorithm 1 Operation Sequence
input : Metric Map, User Preference
output: Coverage Plan
Initialization;
Create occupancy grid map;
Generate N number of distinct tiling arrangement;
U = User Preference;
B = Check present battery level();
[wE , wC ] = Infer user preference(U , B);
while i← N do

Ci = Area coverage(ith tiling set);
Ei = Energy usage(ith tiling set);
AWSMi = wCCi − wEEi;

end
Coverage Plan = argmax(AWSMi )th tiling set;
Execute cleaning (Coverage Plan);

environment that has been created from the lidar. The user
preference that indicates the tradeoff between area coverage
and energy usage is also taken as an input. After the ini-
tialization of the cleaning process, the robot generates the
occupancy grid map of the environment, considering the size
of one block as a grid cell. Then, N number of tiling arrange-
ments for covering the generated occupancy grid map is
generated based on tiling theory and backtracking algorithms
by the robot considering 7 one-sided tetrominoes. The robot
checks the present battery level of the robot before evaluating
the meaning of the user preference. The constants, we and
wc, which decide the tradeoff between energy usage and area
coverage, are retrieved by feeding the user preference and
present battery level to the fuzzy inference system. The robot
calculates the energy usage (E) and area coverage (C) of
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FIGURE 6. The tiling arrangements generated by the robot. The color code has following meaning; black:
areas occupied by objects, blue: areas to be tilled by the robot, and white: uncovered areas.

the ith tiling arrangement. Energy usage of the robot for a
tiling arrangement is calculated based on the energy model of
hTetro given in [20]. The corresponding WSM score is then
calculated. This calculation is repeated for i = 1 to i = N .
The tiling set, which has the highest WSM score, is finally
selected as the coverage plan for the particular scenario. Then,
the robot starts the execution of the cleaning based on the
selected coverage plan. It should be noted that all the steps
from the initialization to the execution of the cleaning are
internal processes of the robot.

IV. RESULTS AND DISCUSSION
A. VALIDATION PROCEDURE
A4mX3mfloor area with randomly placed objects has been
considered to validate the behavior of the proposed concept.
A pre-created map of the environment was fed to the robot.
The floor area is yielding to a grid of 16× 12. The total floor
area was 12 m2, and 1 m2 out of this area was occupied with
objects. Many tiling arrangements to cover the floor area can
be generated for a given floor. For the sake of simplicity of
explanation and analysis, the number of tiling arrangements
internally generated by the robot was kept to six (N = 6).
The generated six tiling arrangements are shown in Fig. 6.
Five heterogeneous cases with different user preferences and
statuses of the robot were considered for the analysis of
determining the tradeoff between area coverage and energy
usage by the proposed method. These cases were created by
intentionally configuring the battery level of the robot and
user preferences.

B. RESULTS AND ANALYSIS
The normalized area coverage and energy usage calculated
for the generated six tiling arrangements are given in Table 2.
The values for the area coverage (Ci) was normalized by
considering the maximum area coverage obtained from the

TABLE 2. Area coverage and energy usage of the generated tiling
arrangements.

arrangement 3 (actual area coverage of the tiling arrangement
3 was 98%). Similarly, energy usage (Ei) was normalized
by considering tiling arrangement 5, which had the highest
energy usage.

Two user preferences during different battery status of the
robot have been considered to evaluate the effects on the
tradeoff between area coverage and energy usage in accor-
dance with user preferences. Altogether 5 heterogeneous
cases were gathered for the analysis. The user preference (U )
and the battery level (B) for the considered 5 cases are given
in Table 3. The weights of the WSM (i.e., wC and wE ) deter-
mined by the fuzzy inference systems for the corresponding
cases are also given in Table 3. The WSM scores (AWSMi )
obtained for the six different tiling arrangements for the five
test cases are given in Table 4. The tiling arrangement, which
has the maximumWSM score, is selected as the most suitable
tiling arrangement for a particular case. The WSM score of
the tiling arrangement selected for each case is annotated by
a bounding box.

In case 1, the user preference was ‘‘High coverage’’. The
battery level of the robot was 90%. The fuzzy inference
system interpreted the meaning of ‘‘High coverage’’ as a
0.839 to 0.161 tradeoff between area coverage and energy
usage (i.e., wC = 0.839 and wE = 0.161) by accounting
the present battery level of the robot. Moreover, it prioritized
the area coverage as preferred by the user. Therefore, the
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TABLE 3. Variation of wC and wE in the considered cases.

TABLE 4. Variation of AWSM
i in generated tiling arrangements for the

considered cases.

tiling arrangement 3 (i.e., i = 3) got the highest WSM score
(AWSM3 = 70.215) and hence, the tiling arrangement 3, which
has a normalized area coverage of 100% and a normalized
energy usage of 85%, was selected as the most suitable tiling
arrangement in this case. In case 2, the battery level of the
robot and the user preference were considered as 55% and
‘High coverage’, respectively. As a result of this lower battery
level, the WSM had a lower ratio between the area coverage
and the energy usage than case 1 (wC and wE were 0.752
and 0.248 respectively). Moreover, biased toward the area
coverage was lowered compared to case 1 due to the reduced
battery level. Nevertheless, the tiling arrangement 3 was
selected as the most suitable arrangement in this case since
the MCDM method still has a biased toward the coverage.
Therefore, the behavior of cases 1 and 2 validates the robot’s
ability to comply with user preference in cases where there
are no concerns over the present battery level of the robot.

In case 3, the user preference was kept the same as case 1
and 2. However, the battery level was considered as 20%. The
bias toward the coverage was reduced by the fuzzy inference
system by accounting for the low battery level of the robot.
Hence, the tiling arrangement 6, which had a low energy
usage with adequate area coverage, got the highest WSM
score yielding to got it to be selected as the most suitable
tiling arrangement in case 3. This case validates that the robot
is capable of interpreting the user preference by accounting
the present status of the robot to adapt its interpretation of
user preferences.

In cases 4 and 5, the user preference was ‘Low energy’.
Therefore, the WSM was biased toward the energy usage by
the fuzzy inference system in case 4 (wC and wE were 0.438
and 0.562 respectively). In case 5, the bias toward energy
usage was boosted as a result of lower battery level (wC
and wE were 0.282 and 0.718 respectively). Therefore, the
tiling arrangement 6 was selected as the most suitable tiling
arrangement in case 4 and 5 since it has a very low energy
usage compared to others while having an acceptable area
coverage. This behavior confirms the ability of the robot to

adapt the tradeoff between area coverage and energy usage
in accordance with user preference while accounting for the
present battery status of the robot.

Overall, the proposed method is capable of determining
the tradeoff between area coverage of a reconfigurable floor
cleaning robot based on user preference. Most of the state
of the art methods of reconfigurable robot considers the
energy usage and area coverage as two distinct problems,
and those methods attempted to optimize only one criterion
either energy usage [20], [21] or area coverage [18], [19]. The
work [25] proposed a method to optimize both energy usage
and area coverage using a Multi-Criteria Decision Making
(MCDM) method. However, the cited work assumes that the
tradeoff between the area coverage and energy usage is one to
one. In contrast, the method proposed in this paper allows a
user to indicate his/her preference in deterring the tradeoff.
Thereby, the proposed method makes a novel contribution
to state of the art by proposing a method to determine the
tradeoff between energy usage and area coverage based on
user preference.

According to [45], most of the users of floor cleaning
robots do not have many technical competencies. Therefore,
human-friendly features are expected from the floor cleaning
robot for acceptance for long-term usage [14], [46]. The
ability of the robot to consider user preference for deter-
mining the tradeoff between energy usage and area coverage
would improve the human-friendliness of a floor cleaning
robot. Therefore, the work proposed in this paper improves
the human-friendliness of the existing reconfigurable floor
cleaning robot since the existing floor cleaning robot does not
possess this sort of ability.

Mainly, allowing to indicate user preference as a lin-
guistical selection instead of a numerical indicator is vastly
contributed to improving the human-friendliness of a floor
cleaning robot [27]. However, user preference indicated from
a linguistic term is uncertain since fuzzy linguistic terms
such as ‘high’ do not have a definite meaning. State of the
art approaches for interpreting fuzzy linguistic information
have been developed to interpret fuzzy linguistic information
related to energy usage or area coverage [27]. Therefore, the
work proposed in this paper is also contributed to improving
state of the art in coping with fuzzy linguistic information
contained in user instructions by robots.

The concept proposed in this paper has been developed
and validated using hTetro. hTetro is one of the versatile
robots in a class of reconfigurable tiling robots that have
been developed to improve the area coverage. The versatility
of hTetro is the main reason for considering hTetro for the
work presented in this paper. Nevertheless, the application of
the proposed method to other tiling robots is straightforward
since the operation of the robot. Further investigations in this
direction are proposed for future work.

V. CONCLUSIONS
Area coverage and energy usage of a reconfigurable floor
cleaning robot are often conflicting entities. A cleaning robot
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needs to maintain a proper tradeoff between area coverage
and energy usage to ascertain a superior operation. There-
fore, this paper proposes a method to determine the tradeoff
between area coverage and the energy usage of a reconfig-
urable floor cleaning robot based on user preference.

User preference expressed through linguistical options
possesses uncertainty since fuzzy linguistic terms such as
‘high’ and ‘low’ do not have a definitive meaning. The exact
meaning of fuzzy linguistic terms related to the operations of
a robot depends on the present status of the robot. Thereby,
a novel fuzzy inference system is proposed to interpret user
preference by accounting the status of the robot for deter-
mining the tradeoff between area coverage and energy usage.
A Multiple-criteria decision-making (MCDM) algorithm
built on a Weighted Sum Model (WSM) is adapted in accor-
dance with the tradeoff determined by the fuzzy inference
system to select the most suitable tiling arrangement for a
particular scenario. MCDM algorithm determines the most
suitable tiling arrangement for a particular scenario by eval-
uating different tiling arrangements for area coverage and
energy usage.

The behavior and the performance of the proposed concept
in determining the tradeoff between area coverage and energy
usage of a self-reconfigurable floor cleaning robot have been
accessed considering intentionally created test cases. Accord-
ing to the results, the proposed concept is capable of adapting
the tradeoff between area coverage and energy usage based on
user preference while accounting for the present status of the
robot. Moreover, the behavior of the test cases validates the
real-world applicability of the proposed concept.
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