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ABSTRACT Intradialytic hypotension is a common problem during hemodialysis treatment. Despite several
clinical variables have been authenticated for associations during dialysis session, the interaction effects
between variables has not yet been presented. Our study aimed to investigate clinical factors associated with
intradialytic hypotension by deep learning. A total of 279 participants with 780 hemodialysis sessions on an
outpatient in a hospital-facilitated hemodialysis center were enrolled in March 2018. Associations between
clinical factors and intradialytic hypotensionwere determined using linear regressionmethod and deep neural
network. A full-adjusted model indicated that intradialytic hypotension is positively associated with body
mass index (Beta= 0.17, p = 0.028), hypertension comorbidity (Beta= 0.17, p = 0.008), and ultrafiltration
amount (Beta = 0.31, p < 0.001), and is inversely associated with the ultrafiltration rate in a hemodialysis
session (Beta = −0.30, p = 0.001). The 4-factor locus obtained by the deep neural network reached the
maximum performance metrics evaluation (accuracy = 64.97± 0.94; true positive rate = 87.97 ± 2.73;
positive predictive value = 66.74± 0.98; Matthews correlation coefficient = 0.19± 0.03). The prediction
model obtained by the deep learning scheme could be a potential tool for the management of intradialytic
hypotension.

INDEX TERMS Hemodialysis, deep learning, intradialytic hypotension.

I. INTRODUCTION
Intradialytic hypotension (IDH) is not an uncommon event
that occurs during a hemodialysis (HD) procedure. The inci-
dence is reported approximately 5% to 30% during HD treat-
ment [1]–[4]. IDH is commonly defined as a decrease in the
systolic blood pressure by ≥ 20 mmHg or in mean arterial
pressure by ≥ 10 mmHg [5], [6]. The pathophysiological
mechanisms of IDH are complex. Two components have
been discussed since past few years. First, an imbalance the
between central hypovolemia and the adequacy of hemody-
namic responses. In end-stage kidney disease, patients com-
monly manifest autonomic and baroreceptor dysfunction and
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disturbed cardiac function. Second, uncompensated plasma
refilling occurs during the ultrafiltration procedure of HD.
During HD, the ultrafiltration procedure removes the fluid
from the vascular space and replaces the fluid in the intersti-
tial space (plasma refilling). The rate of ultrafiltration during
HD influences the rate of plasma refilling. When the amount
of ultrafiltration exceeds the plasma refilling amount, IDH
becomes an unavoidable event. Clinically, there are several
diseases and circumstances apt to develop IDH during an
HD procedure, namely diabetes mellitus, cardiac disease,
autonomic neuropathy, severe liver disease, antihypertensive
etc [7].

Deep learning has been proved to be excellent for solving
intricate problems and mathematical structures, and can be
applied to a wide range of sciences, such as image/speech

82382 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-9817-5102
https://orcid.org/0000-0002-2741-0072
https://orcid.org/0000-0003-0889-278X


J.-B. Chen et al.: Deep Learning for IDH Prediction in HD Patients

recognition, financial technology, computational biology and
bioinformatics [8]. Several deep learning architectures have
been categorized such as: deep neural networks (DNN), con-
volutional neural networks, recurrent neural networks, and
other emergent or hybrid architectures [9]. The deep learning
model uses training data to discover underlying patterns and
helps in constructing models, and fitting the best model for
prediction. Those models can be applied widely to bioin-
formatics, such as biomedical text recognition, biomedical
imaging, biomedical signal processing, genomics, and gene
expression [9]. Deep learning is an emerging technique for
renal study. Several literatures have revealed that deep learn-
ing has an advantage of better performance in achieving
breakthroughs in various fields [10]–[12].

Multifactor dimensionality reduction (MDR) [13] is awell-
known nonparametric and model-free approach that was
developed for interaction effect investigation in case-control
studies. MDR can be used to characterize high order interac-
tion effects on risk of multi-factor complex diseases. Many
theoretical and empirical studies demonstrated that MDR
has reasonable power to identify interaction among multi-
factors in relatively small samples [13], [14]. MDR has been
successfully applied to detect interaction effect in hyperten-
sion [15], coronary artery disease [16] and breast cancer [17].
MDRhave been improved and applied in various biomedicine
topic recently [16], [18]–[22]. The interaction analysis of
this study is inspired from MDR that pooled the multi-level
characteristics of clinical factors into high-risk and low-risk
groups to identify high-risk interaction model of rapid IDH.

In the present study, we aimed to find the vulnerable
variables, namely, demographics, comorbidities, laboratory
parameters, vascular access parameters, reference values of
HD machines during an event of IDH, components of dia-
lyzers and drugs, by using deep neural network. The purpose
was an attempt to find the significance of individual variables
in the occurrence of rapid IDH. Thus, optimal measures were
expected to be applied in individual cases to prevent rapid
IDH.

II. METHODS
A. PARTICIPANTS
The patients who were undergoing HD regularly on an out-
patient basis at the Kaohsiung Chang Gung Memorial Hos-
pital in Taiwan were enrolled for the investigation. the adult
patients with IDH during the HD procedure were recruited.
IDH was defined as the decrease in the systolic blood pres-
sure by >20 mmHg during the HD procedure. The included
patients were followed-up from 1stMarch 2018 to 31stMarch
2018. All the patients were undergoing HD every week.
The protocol for the study was approved by the Commit-
tee of Human Research at Kaohsiung Chang Gung Memo-
rial Hospital (IRB no: 201800595B0) for a retrospective
review of the medical data and waived the informed con-
sent for institutional review board (IRB) regulation in the
hospital.

B. DEMOGRAPHIC DATA AND CLINICAL VARIABLES IN
HEMODIALYSIS SESSION
Data collection was performed for the demographic infor-
mation including age, gender, dry weight, BMI, etiologies
of end-stage kidney disease, comorbidities, and drug history.
The notes related to the clinical variables of the HD sessions
were collected, including HD vintage, frequency of HD per
week, duration (years) of each HD session, UF amount per
hour (L/hour) and UF rate (L/hour) during each HD ses-
sion, UF coefficient during the IDH event, blood flow rate
(mL/min), types of vascular access, components of dialyzers,
and occurrence time of IDH. The membrane materials of the
dialyzers were cellulose acetate (170G, FB210U), polysul-
fone (FXCor1000, FXCor60, PS-2.0W, PS-2.3W), polyether
sulfone (EL-21H, EL-25H), and polymethylmethacrylate
(BG2.1U). The dialysate flow was constant in all the HD
sessions (500 mL/min). The temperature of the dialysate was
37 ◦C; the calcium (Ca) concentration of the dialysate was
3.0 mEq/L and the bicarbonate concentration was 34 mEq/L.

C. LABORATORY DATA
Baseline laboratory values for the blood analysis were mea-
sured in the midweek (on Wednesday or Thursday) via a
venous port prior to the HD session, following an overnight
fasting. The parameters included hemoglobin (Hb), albu-
min, blood urea nitrogen (BUN), creatinine (Cr), Ca, phos-
phate (P), sodium (Na), potassium (K), ferritin, and intact
parathyroid hormone (iPTH) levels; the fractional removal
of urea per dialysis treatment (Kt/V); urea reduction ratio
(URR); normalized protein catabolic rate (nPCR); and car-
diothoracic ratio estimated by the chest x-ray examina-
tion. Detailed information about the measurements such as
Kt/V urea, URR, nPCR, and cardiothoracic ratio have been
described in our previous article [23].

D. STATISTICAL ANALYSES
The distribution of the continuous factors was summarized as
mean± standard deviation or median and interquartile range,
as appropriate; and the categorical factors were summarized
in terms of frequency and percentage. Linear regression anal-
yses were performed to demonstrate the interaction between
the associated factors and IDH. The full-adjusted multivariate
model considered all the associated variables as covariates.
A p-value less than 0.05 was considered as statistically sig-
nificant. A cumulative incidence risk of IDH was visualized
by using the Kaplan-Meier curve. All the statistical analyses
were performed using the Stata 11.0.

E. DATA PREPROCESSING
This study included patients who were undergoing the
hemodialysis treatment for 4 hours, which reported the occur-
rence time of IDH. We classified the patients into 2 groups;
The patients are divided into low-and high-risk group accord-
ing to their IDH occurrence time. The high-risk group is
defined as the patients with rapid IDH (occurrence time less
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than 120 minutes), while the low-risk group is defined as
the patients with IDH occurrence time greater than 120 min-
utes. The baseline characteristics of the patients were pre-
processed by using the standardization, which transferred
the values of each factor from the center of the mean- and
component-wise scale to the unit variance. Here, we used the
data of all the factors to train each classifier model and test its
performance; then, the p-value<0.2 for the factors of the full-
adjusted model were selected for a factor-interaction testing.

F. DEEP NEURAL NETWORK MODELS
Figure 1 illustrates the progress of 8 steps in implementing
a deep learning scheme for the prediction of rapid IDH.
A grid search method was used to obtain the optimal hyper-
parameters for deep neural network (DNN) model. In step 1,
a DNNmodel was implemented in this study; we used a train-
ing set and a testing set with a k-fold cross-validation to train
and test the DNNmodel and factors selectionmodel. The data
were randomly divided into k equally-sized subsets. In step 2,
m dimension (multifactor) of input data set for the prediction
model was selected from the pool of all factors, where n
factors have Cnm possible combinations with m multifactor
interaction. In step 3, the input data set was split into a training
set and a validation set in a 8:2 ratio for the DNN prediction
model creation. In step 4, all the possible combinations of
m multifactor interaction were trained and validated, and the
best model with the validated identification accuracy was
obtained. In step 5, the best prediction model ofmmultifactor
interaction combinations was created, and then its perfor-
mance was evaluated by the testing set. Finally, the k-fold
cross-validation was repeated k times, the prediction accura-
cies were averaged, and a cross-validation consistency was
obtained. Step 6, scatter plot matrix was plotted to observe
the correlations between each factors. In step 7, receiver
operating characteristic (ROC) curve was used to determine
the best threshold in individual factor, then the continuous
data were transformed into categorical data according to best
threshold calculated by Youden index. Finally, the best multi-
factor model derived from DNN was used to analysis the
cumulative risk effect based on the multi-factor interaction
model. Details interpretation for DNN and cross-validation
are shown in Supplementary file.

III. RESULTS
A. ASSOCIATION BETWEEN RAPID IDH AND CLINICAL
FACTORS
Total 279 patients with the mean aged of 63.04 years were
enrolled and the clinical characteristics of all patients are
summarized in Table 1. Therewere 136 (48.7%)male and 143
(51.3%) female patients. The cumulative incidence risk of
IDH is summarized using a cumulative curve in Figure 2. The
IDH was more likely to occur 30 minutes after HD treatment.
Table 2 demonstrates the association between the IDH and
clinical factors. The univariate analysis indicated that IDH
is positively correlated with the hypertension comorbidity

TABLE 1. Baseline Characteristics.

(Beta =0.15, p =0.012) and serum calcium (Ca) level
(Beta =0.13, p =0.033), and is inversely correlated
with the cardiothoracic ratio (Beta = −0.13, p =0.032).
The full-adjusted multivariate model indicated that IDH
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FIGURE 1. Overall factors of the interaction framework for the prediction of intradialytic hypotension using deep learning network. The best
multi-factor combination model is determined by using deep neural networks, the validation accuracy (Val. Acc.) and test accuracy (Test Acc.) were
estimated by 5-fold cross-validation (i.e. step 1 to step 5). The factor correlation and risk of multi-factor interaction are considered in step 6 to
step 8.

is positively correlated with the body mass index (BMI)
(Beta =0.17, p =0.028), hypertension comorbidity (Beta
=0.17, p =0.008), and ultrafiltration (UF) amount (% dry
weight, Beta =0.31, p <0.001), and is inversely correlated
with the UF rate (Beta =-0.3, p =0.001).

B. PERFORMANCE COMPARISON BETWEEN PREDICTION
MODELS
Several general classifiers were implemented as the predic-
tion models, referring the scikit-learn library v0.19.1 [24] in
Python language, namely, support vector machine (SVM),
artificial neural network (ANN), random forest (RF), deci-
sion tree (DT), k-nearest neighbor (KNN), and naïve Bayes
(NB). The performance metrics of binary classification

task were estimated from the complete feature set of
each classifier by performing the 5-fold cross-validation on
the dataset. The average ROC curve and area under the
curve (AUC) score were plotted, as shown in Figure 3.
We estimated the ROC by using a sklearn.metrics package in
the scikit-learn library v0.19.1 [24]. The comparative anal-
ysis shows the DNN model could achieved better perfor-
mance (AUC = 64.90±3.11) than others models. The ROC
for DNN model (red line) is approximately 10% superior
to the second highest results achieved by the RF model
(dashed purple line). The comparative analysis showing that
DNN model could obtain superior performance and high
robustness in quantitative assessment compared to other
models.
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TABLE 2. Linear regression analysis.

FIGURE 2. Kaplan-Meier plot for cumulative incidence of IDH. Number at
risk indicates the number of patients at risk for IDH occurrence at each
time point are given. IDH, intradialytic hypotension.

C. MULTI-FACTORS INTERACTION MODEL
BASED ON DNN MODEL
We estimated the performance in terms of accuracy
(ACC), sensitivity (e.g. true positive rate, TPR), precision

(e.g. positive predictive value, PPV), and Matthews correla-
tion coefficient (MCC), whichwere calculated as true positive
(TP), true negative (TN), false positive (FP), and false nega-
tive (FN) values. Particularly, the terms ACC, TPR andMCC
are calculated as:

ACC =
TP+ TN

TP+ FP+ TN + FN
(1)

TPR =
TP

TP+ FN
(2)

PPV =
TP

TP+ FP
(3)

MCC =
(TP× TN )−(FN × FP)

√
(TP+FN )×(TN+FP)×(TP+FP )×(TN+FN )

(4)

Table 3 summarizes the performance of multi-factor inter-
action effects based on DNN model using 5-fold cross-
validation and 100 evaluation cycles. The 4-factor locus
revealed the maximum values after the performance metrics
evaluation [ACC = 64.97 ± 0.94 (%); TPR = 87.97 ±
2.73(%); PPV= 66.74± 0.98 (%); andMCC= 0.19± 0.03].
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TABLE 3. Summary results for multi-factor interaction effect based on DNN model.

FIGURE 3. Receiver operating characteristic curves (ROC) and area under
the curve (AUC) of the classifier models for the prediction of the
occurrence of rapid IDH using 5-fold cross-validation test set. The
comparison of performance between seven classifier using AUC of all
factors. DNN, deep neural network; SVM, support vector machine; ANN,
artificial neural network; RF, random forest; DT, decision tree; KNN,
k-nearest neighbor; NB, naïve Bayes.

Although, the ACCs were only approximate to 65%, while
the TPRs were generally high (above 85%) which indicate the
multi-factor interaction model was highly sensitive in the pre-
diction of rapid IDH. The highly associated interaction risk
factors for rapid IDH including hypertension comorbidity,
UF coefficient, UF rate, and UF amount.

D. CUMULATIVE RISK EFFECT BASED ON MULTI-FACTORS
INTERACTION MODEL
The patients are divided into low-and high-risk group accord-
ing to their IDH occurrence time. The high-risk group is
defined as the patients with rapid IDH (occurrence time less
than 120 minutes), while the low-risk group is defined as the
patients with IDH occurrence time greater than 120 minutes.
The scatter plot for all factors included 4-factor interaction
model is summarized as a matrix in Figure S1. According
to the matrices, the IDH occurrence time show no clearly

correlation with each individual factor. Thus, we used the
ROC analysis to determine the best cut-off point of each
factor according to Youden index for IDH low-and high-
risk group in order to reduce the dimension complexity, and
enable us to determine the characteristic which is highly
associated with rapid IDH. The cut-off thresholds were cal-
culated and transformed the continuous data into categorical
for selected factors as shown in Table 4.

The summary of 2- to 7-factor combinations associated
with high-low risk for IDH is presents in Figure S2-S7.
In 2-factor interaction model, patients without hypotension
in both age groups obtained higher risk in rapid IDH occur-
rence. In 3-factor interaction model, the patients with lower
calcium level (< 9.55 mg/dL) and without hypertension,
female patients with higher calcium level (≥ 9.55 mg/dL)
and without hypertension, male patients with higher calcium
level (≥ 9.55mg/dL) and hypertension obtained higher risk in
rapid IDH occurrence. In 4-factor interaction model, patients
with lower UF amount (< 2.46% dry weight) and with-
out hypertension, patients with lower UF amount (< 2.46%
dry weight) and hypertension and higher UF coefficient
(≥ 87.5 mL/h/mmHg) and higher UF rate (≥ 0.66 L/hour),
patients with higher UF amount (≥ 2.46% dry weight) and
without hypertension and higher UF rate (≥ 0.66 L/hour) and
lower UF coefficient (< 87.5 mL/h/mmHg) were considered
obtained higher risk in rapid IDH occurrence.

The cumulative risk performance in 2- to 7-factor is deter-
mine using ROC analysis and the results is summarized
in Table S1 and Figure S8. The interaction model with
cumulative risk consideration showed a better result compare
to the individual risk factor estimation. The AUC showed
a rising trend from 2- to 6-factor interaction model, and
slightly reduced in 7-factor interaction model. We found the
4- to 6-factor interaction model all include four factors
(UF amount, UF rate, UF coefficient and hypertension),
while the 7-factor interaction model did not include hyper-
tension comorbidity. In summary, the interaction model in
2- to 7-factor was obtained higher AUC than individual
model.

IV. DISCUSSION
Present study demonstrated that DNN model could use as
a potential tool in clinical practice for the prediction of
rapid IDH. We examined the associations between several
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TABLE 4. The cut-off thresholds and dichotomous performance in rapid IDH prediction using ROC analysis.

clinical variables and IDH by 7 prediction models with AUCs
approximately 65%. Although the AUCs did not reach a
perfect standard, the clinical variables determined from the
deep learning model were reasonable, as per the experiences
in the clinical practice. We found that rapid IDH commonly
occurred within the first 120 minutes after HD initiation.
We hypothesized that the intravascular refilling would not be
adequate when UF is applied during the dialysis during the
HD sessions. However, we could not determine the definitive
cause of this time-effect of the occurrence of IDH because
of incomplete evaluation of the individual cardiopulmonary
function. Nevertheless, this time-effect of IDH cannot be
refuted based on the common clinical experiences. We also
found that leading factors associated with the occurrence of
IDH during the HD were the UF amount (% dry weight),
UF rate, and hypertension comorbidity. The full-adjusted
model revealed positive correlations between the occurrence
of IDH during the HD sessions and the BMI, UF amount, and
hypertension comorbidity. Accordingly, these results were
compatible with the clinical experiences [25]–[29]. Several
reports indicated the variability of blood volume in the HD
sessionswas related to IDH events [30]–[34]. However, use of
blood volume monitoring-guided UF in the HD sessions did
not reduce the rate of IDH events in one randomized crossover
study [29]. We also cannot give the definitive reason for the
correlation of the hypertension comorbidity. The supposed
causes may include the use of antihypertensive during the
pre-dialysis period, cardiac dysfunction related to the hyper-
tension and potential undefined hypertension-related circum-
stances, etc [35], [36]. Nevertheless, this finding indicates the
importance of being aware of the hypertension comorbidity
during IDH management. The UF rate during the IDH event
was inversely correlated with IDH. Rapid UF rate during
the HD session is apt to elicit an inadequate intravascular
refilling [29]. Therefore, an optimal setting in UF rate during
the HD session should be anticipated to avoid the occurrence
of IDH during the HD session. The full-adjusted model anal-
yses revealed a positive correlation between the BMI levels
and IDH during the HD sessions. However, the individual
effects of leading factors disappeared during the multi-factor
interaction analyses. To delineate BMI association with IDH,
we suggest a large dataset analyses in the future.

This study considered 25 factors from the clinical data,
which included the medical records and laboratory measure-
ments. All the factors were tested and their multi-factor inter-
action were analyzed simultaneously using the DNN model.
To our knowledge, the prediction of the occurrence of IDH
as the outcome of the HD treatments has not been previously
used as a tuning factor in the computational models. The
best model to analyze the multi-factor interaction was trained
and validated by using the cross-validation approach. The
multifactor interaction model achieved better accuracies than
all-factor association model in IDH occurrence. The 4-factor
interaction model reported the highest performance in pre-
dicting the occurrence of IDH during HD. The 4-factor to
6-factor interaction models included the hypertension,
UF coefficient, UF rate, and UF amount as the factors for
predicting IDH during HD, which is consistent with the
full-adjusted multivariate regression analysis. Hence, the out-
comes of the multi-factor interaction model may poten-
tially contribute in the prediction of the occurrence of IDH
during HD.

There are limitations of using the deep learning model
in the present study. First, the included clinical variables
could not cover the whole etiology of the occurrence of IDH
during the HD sessions, such as, severe medical diseases
that produce immediate hemodynamic changes when HD is
initiated, medicine uptake history, real time awareness of
the occurrence IDH by the nursing staff, and other subtle
conditions not identified by the deep learning model. Second,
the fundamental limitation arises from the nature of the deep
networks, in which the neural network includes only the
clinical variables proposed by the medical staff. It is possible
that several unknown variables might have been missed, and
therefore, not included in the algorithm used in the present
study. Meanwhile, it is noteworthy that understanding what
kind of deep neural network to be used for the prediction of
a clinical condition is still not an area of active research. We
present the first study using a deep learning scheme to predict
the occurrence of IDH during the HD sessions. However,
the accuracy rate could not achieve a satisfactory status.
Hence, this algorithm cannot be used as a replacement to the
comprehensive medical care during HD session. The valida-
tion of this algorithm requires further analyses involving a
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larger dataset, which may need a consensus from the experts
on more confounding factors.

V. CONCLUSION
The present study demonstrated that a deep learning scheme
is a potential tool to determine the clinical factors associ-
ated with the occurrence of IDH during an HD session. The
main goal of the future investigation may be to develop a
satisfactory deep learning performance model based on the
analyses of a larger dataset. To our knowledge, this is the first
attempt of applying a DNNmodel including clinical variables
to predict the occurrence of IDH during an HD session. In the
future, we expect this model to achieve precision in predict-
ing IDH by including more clinical samples and factors for
analyses.
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