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ABSTRACT Three-dimensional autonomous ordinary differential equations (ODEs) are the simplest and
most important chaotic systems in nonlinear dynamics. In fact, they have been applied in many fields. In this
paper, a systematic methodology for analyzing complex behavior of the ODEs chaotic system, as one of
the ODEs chaotic systems, the improved TCS which satisfies the condition ajpaz; = 0, is proposed. It is
dissipative, chaos, symmetric, antimonotonicity and can generate multiple directional (M x N x L) scroll
attractors. Then, bifurcation diagrams, Lyapunov exponents, time series, Poincare sections, and Hausdroff
dimensions are analyzed by setting the parameters and initial value. More interestingly, antimonotonicity
(named reverse period-doubling bifurcation) and coexisting bifurcations are also reported. Finally, the results
of theoretical analyses may be verified by electric experimental.

INDEX TERMS Antimonotonicity, multidirectional coexistence attractors, ODEs chaotic system.

I. INTRODUCTION

Chaos, as one of the most important topics, has attracted
many scholars to focus on the study and analysis in this
field [1]. During the past decades, the research on chaos
has progressed starting from theoretical research [2] and
chaos control and anti-control [3]—[5], chaotic circuits [6]
effectively. Chaotic system is utilized in various areas of
nonlinear science [7]-[15], such as chaos synchroniza-
tion [7], [15], information processing [8], secure communi-
cation [9], image encryption [10], [11], [39], [40], chaotic
electronic circuits [6], [12], sonar sensors [13], [43] and
neural network [14], etc. As we all know, because of the
chaotic behavior and double scroll attractor, Chua circuit
has obtained wide-spread attention all over the world [20].
Subsequently, many literatures were found the various types
of scroll attractors are based on nonlinear function, such as
the sinusoidal [16], trigonometric [17], transformations [18],
piecewise [19], [23], saturation, sign [20]-[22], tangent,
multi-fold surface, wings forms of scroll attractors [25], and
so on [21]-[24]. However, the highly complex dynamics,
such as antimonotonicity [26]-[28] and coexisting attrac-
tors [29], [30], [35], [44], as a new research direction, are
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still in its infancy [31]-[34]. Especially, the occurrence of
two or more hidden attractors, asymptotically and attract-
ing sets have been found in nonlinear systems. Also, a lot
of work on coexisting multiple attractors has been carried
out. For example, in 2017, J. Kengne, A. et al. proposed a
chaotic oscillator derived from jerk circuit and investigated
antimonotonicity, periodic windows and crises [26]. Then,
Z. T. Njitacke and co-workers found a novel jerk cir-
cuit obtained and the complex dynamic behavior was
reported [27]. The same year, Z.T. Njitacke, and his fellows
also described similar characters in other novel jerk cir-
cuit. Then, the rich dynamic behaviors including antimono-
tonicity (i.e. concurrent creation and annihilation of periodic
orbits) [26]-[28], hidden coexisting attractors [29], basins of
various coexisting attractors [30]—[32] and multistability [33]
are analyzed. In addition, butterfly attractors are emerged
from Lorenz-like system and coexisting attractors are spot-
ted. Ling Zhou and co-workers proposed a simple fourth
order memristive Twin-T oscillator and coexisting attractors
and antimonotonicity are also detected [31]. Furthermore,
apolynomial function method for generating multiple chaotic
attractors from the Sprott B system is proposed in [35].
In [36] reported about a novel chaotic system with three
nonlinearities and an S-Box was developed for cryptographic
operations. In [37] introduced an extended Lii system and
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studied the control problem of this system. An improved BFO
was proposed, named Chaotic BFO in [38]. In [39], [40]
proposed an alternative security model and analyzed a num-
ber of encryption algorithms based on chaotic systems in
the field of medical image encryption. In [41], [42] gener-
alized chaos systems, synchronization circuits and a secure
communication scheme were proposed for the RGB digital
image and 24-bit true color image, respectively. In [43] set
up some tested experiments to evaluate the existing crypto-
graphic algorithms for sensors. In [44] proposed an improved
salp swarm-based optimizer. In [45] constructed a chaotic
system with infinitely many coexisting chaotic attractors, just
to name a few.

Motivated by the aforementioned works, this paper focuses
on analyzing the dynamics of an improved TCS, such as sen-
sitivity to initial conditions, parameters, and multidirectional
scroll attractors (X-Y-Z coordinate axes) in the phase space.
It is also highly symmetric and multiple coexisting attrac-
tors. This improved TCS, a new perspective, discusses the
mechanism of chaos (i.e. scroll attractors, dynamic behavior,
concurrent creation and destruction of periodic orbits and
coexisting attractors).

The layout of the paper is as follows. In Section II, the
background of the translation chaotic system and motivation
of this paper are described. In Section III, the mathematical
model is depicted, and some basic information (the phase dia-
gram and time domain) are obtained. In Sec. IV, some basic
properties, such as dissipativity, equilibrium, and stability are
analyzed. In Sec. V, simulation analyses of the dynamical
system are investigated by bifurcation diagram, Lyapunov
exponents and Hausdroff dimension. Many various peri-
odic attractors, multidirectional scroll attractors, coexisting
attractors and antimonotonicity are discussed. In Sec.VI, A
voltage-controlled nonlinear memristor circuit and its finger-
prints are exhibited. Also, theoretical analyses and numerical
simulations and further verified by this circuit experiment.
Finally some concluding remarks and proposal are drawn in
Sec.V II.

Il. BACKGROUND OF TRANSATION CHAOTIC SYSTEM
Recall that the translation chaotic system (named TCS) was
proposed in 2016 [20]. as a type of canonical form satisfies
the condition aj2a2; = 0 and includes other chaotic systems
with the same condition. There are three main features that
belong to TCS, as follows: (i) this new type of chaotic system
is three-dimensional autonomous ODEs. (ii) compared with
the Chua system (aj2a2; > 0), it should be different dynamic
characteristics. Based on the mechanism of chaos, it would
generate multiple scroll attractors.

In Ref [20], the conventional TCS was proposed as
following:

X=—ax+z+@—Dfx+y+2)
y=—Bz+Bf (x+y+2) (la)
I=yy+dz—( +0)f x+y+2)
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FIGURE 1. The 2N+1-scroll attractors: (a)N=1;(b)N=3.

where x, y, z are state variables, and «, B, y, § are real
parameters. Also f{(x+y+z) is the nonlinear sign function,
which could generate 2N+-1-scroll attractors, as below:

fix+y+2)

. sign(x +y+z+1)
-i2| ]

P +sign(x +y+z—1)

1 i 2k sign ((x +y +z) + 2k)
2 &= | 2k — 1 | +sign((x +y+2) —2k)

+

(1b)

where N, an integer, is the sum of the upper bound.
When o= 2,8= 0.2,y = = —5,N = 0, the single chaotic
behavior is obtained as Fig.1(a); a=2,=0.44,y =
6= —5,N = 3, the chaotic behavior is obtained (7 scroll
attractors) as Fig.1(b). Similar 2N+ /-scroll attractors can
be obtained by changing the parameters N in the fix+y+z)
function.

However, system (1a), as one example of this type that sat-
isfies the condition aj2a;;= 0, has some insufficient, such as:
(i) the 4 parameters are not enough to reflect the complex
dynamic characteristics of this type of chaotic systems, for
example antimonotonicity, multi-stability, coexisting attrac-
tors and so on, and requires more details; (ii) nonlinear
function is the most important factor and necessary condi-
tion to influence the distribution (location and quantity) of
scroll attractors. By substituting (1b) into (1a), the multiple
directional scroll attractor cannot be generated, but only one
direction, that is x + y + z = 1; (iii) as a type of canonical
form of ODEs chaotic systems, the distribution of its scroll
should be multidirectional. For this purpose, the conventional
TCS should be further extended (i.e. improved TCS). The
motivation of this paper is to complement and improve the
characteristics of them and provide a theory for its potential
engineering research.

As we all know, there are lots of chaotic systems could
generate multiple quality and directional scroll attractors
and belong to ODEs chaotic systems, such as Chua system
(arpaz1 > 0), Jerk system, Sprott B system, et al. How-
ever, they satisfy the different dynamic characteristics and
are different from TCS. In addition, there are some chaotic
systems could generate the different attractors, like butterfly
attractors, such as Chen system (ajpaz; < 0), Lii system
(aypaz1 = 0), Lorenz system (ajzaz; > 0) and Lorenz-like
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FIGURE 2. Principle of multi-scroll attractors: (a) 2N+1; (b) 2(N+1).

systems (ajpaz; > 0), and so on. However, these chaotic
systems are three-dimensional quadratic ODEs. Obviously,
they are quite different from TCS. Furthermore, the related
research of coexisting attractors in scroll chaotic system has
not been found in other literature before.

Ill. THE MODEL OF NOVEL CHAOTIC SYSTEM
Here, the improved TCS as following

d
—f —a(—f @) +rG—fO)
&

=bG—f @) @)
&

7 =px—fX))+qO0—-f M) +clz=f ()

where x, y, z are state variables; a, b, ¢, r, p, q are real
parameters and f(x), f(), f(z) are the nonlinear sign func-
tions. Firstly, it can be noticed that sign function and initial
value are key points and necessary conditions for the location
and quantity of multidirectional scroll attractors. Also, all the
state variables are real. In system (2), there are six parameters
and each of them will be considered as the main bifurcation
control parameter. The numerical simulation is carried out
with the following dimensionless parameters.

When MeR, NeR, LeR are integers, multidirectional
scrolls attractors can be obtained by the nonlinear sign func-
tion, which can be given, as follow:

() f1y) = f1(z) = f1(x) could generate 2N+-1- scroll along
one direction (x-axis or y-axis or z-axis):

N
f1 (x)=Asign(x) + A Z [sign (x + 2nA)+sign (x—2nA)]

n=1

(3a)

(2) 2(y) = fo(z) = fo(x) could generate N+I- double scroll
attractors along one direction (x-axis or y-axis or z-axis):

N
Hr(x) :AZ{sign [x+Q2n— DA+ [x — 2n— 1) A]}

n=1

(3b)

In one fixed direction, the principle of multi-scroll attrac-
tors could be described as follows, in Fig. 2.

WhenA =0.5,a=0.6,p=2,9g=1.5,r =2,
b=04,c=0.6,4 x5 x 6-scrolls can be shown in Fig. 3.
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FIGURE 3. 4 x 5x6-scroll attractors: (a) y-z; (b)x-z; (c) x-y; (d) y(t).

IV. THE BASIC CHAOS INFORMATION
It can be observed that improved TCS with equation (3)
is symmetrical about the origin Py(0,0,0) and invariant
under (x, y, z) — (-x,-),-z). Also system (2) can gener-
ate multi-equilibriums including single zero equilibrium Py
(a trivial symmetric static solution), and many symmetric
nonzero equilibriums Pi. When we fix all the parameter
values, if (x,y,z) is a solution, the (—x,—y,—z) is also a solu-
tion. Consequently, attractors in phase space is symmetric
about Py Also, to satisfy the exact symmetry of the model
equations, they must occur in pairs. This exact symmetry
may be used to explain the appearance of multiple coexisting
attractors in state space.
To evaluate the dissipativity, the mathematical expression
of exponential constrain rate is deduced as
vV ax 9y 0z 4
_8x+8y+8z_a+c 4)
When a < —c, equation (4) is negative, VV < 0, implying
that system (2) is dissipative, which means that asymptotic
motion settles onto an attractor and each volume containing
trajectory shrinks to zero at an exponential rate as ¢ —=+00.
The linearization of system (2) at zero equilibrium Py can be
obtained by the following equations:

O=a(x—fE))+ry—fo
0=>bz—f(2) ®)
O=px—f@)+qO0—-f ) +c—-fQ2)

Also the Jacobian matrix as following.

a r 0
J=[10 0 b 6)
p q c
det(M —J)=A—a)[A(A—c)=b(rp+q)]
=(A—a)[k2—ck—b(rp+q)]
M = a;
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TABLE 1. The location and Quantity of scroll attractors, equilibrium,
eigenvalues and corresponding eigenvectors.

M/N/ Attra | Equilibri | Eigenvalues and correspondin,
q g P g
sign(x)
L ctors um eigenvectors
f10)~ Ar=-1.2931, 1,=-0.0535 +
fi(2)~ 1 (0,0,0) 1.3338i, A3=-0.0535 -
1.3338i;£,=[0.6175, -0.5350,
£ el
0.5765]",
0/0/0
&=[-0.3269-0.1189i, -0.025 -
(-1,-1,-1), ,
2x2x | (1,11), (- 0.6263i, 0.6972]",
2 2,-2,-2),
(2’2!2) f3=[—03269+0.1189i, -
ngj\ 0.0251+0.6263i, 0.6972]"
— S 239
(-2,-3,-3), A=-1.3471, 1,=0.0735 +
4x6x (-2-3-
1/2/3 3 2),.., 1.0736i, 2;=0.0735 -
(2,3,2),
(2,3,3), 1.0736i;£,=[0.6061, -0.2264,
(2,3,4)
(-2,-2,-3), 0.7625]",
(-2,-2,-2),
S| s | (272 &=[0.3897+0.2833i, -
1212 | fafz)~ 6 D,..., 0.0209+0.3046i, -0.8214]",
fox) (2,2,1), &=[0.3897- 0.28331, -0.0209 -
(2,2,2), 0.3046, -0.8214]"
(2,2,3)

A3 = % |:cj:,/c2 +4b (rp+q)i| @)

The coefficients are all nonzero. The location and quantity
of the equilibriums are different according to M /N /L. Thus,
the attractors, equilibriums, the eigenvalues and correspond-
ing eigenvectors are shown in Table.1.

It is found that when the pairs of nonzero equilibrium
points are a hyperbolic saddle focus (or simple, saddle focus),
the relationship between the parameters are a > b > 0 &
cr>0&b < 2/cr.

V. DYNIMICS ANALYSIS

In order to investigate the rich variety of bifurcation modes.
System (2) will be simulated for a sufficiently long time, and
the transient state is cancelled. Two indicators are exploited
to define the type of scenario giving rise to chaos, namely
the bifurcation diagram and the graph of Lyapunov Expo-
nents (LEs). For LE,,, > 0, small perturbations grow expo-
nentially, and the system evolves chaotically within the folded
space of a strange attractor [26].

A. THE OCCURRENCE OF CHAOS
To investigate the sensitivity and chaos, a single parameter is
changed within a certain interval, and other five parameters
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FIGURE 4. Bifurcation diagrams: (a) ae [0,2]; (b) re[0,1]; (c) be [0,2.8];
(d) p €[0,18];(e) qe[0.8]; (f) ce[0,3].

are fixed. we can obtain bifurcation diagrams in Fig. 4. Let
M =N =L =2Casel : A =1,p =159 = 1.2,
r=1,b=1, c = 0.6 when ael0, 2], the bifurcation diagram
of x is given in Fig. 4(a). Case 2: A = 1,p = 1.5,q =
1.2,a =0.6,b = 1,c = 0.6, when re[0, 1], the bifurcation
diagram of x is given in Fig. 4(b). Case 3: A = 1,p = 1.5,
g =12,r = 1,a = 0.6,c = 0.6, when be[0, 2.8] the
bifurcation diagram of x is given in Fig. 4(c). Case 4: A = 1,
a=0.6,g=12,r=0.8,b = 1.2, c = 0.6, when pe[0, 18]
the bifurcation diagram of x is given in Fig. 4(d). Case 5:
A=1,p=15a=06,r=1,b =1,c = 0.6, when
qel0, 8] the bifurcation diagram of x is given in Fig. 3(e).
Case 6: A = 1,p = 15,q = 12,r = 1,b = 1,
a = 0.6, when ce[0, 3] the bifurcation diagram of x is given
in Fig. 4(f). We can see the improved TCS shows abundant
and sophisticated dynamical behaviors.

From the bifurcation diagrams, we can observe clearly
that system (2) has complex dynamic behaviors. And various
MxNxL multi-directional scroll attractors can be obtained
by changing the value of parameters and sign function. Two
parameters spaces will be considered in the following:

(1) aef0,2]

The bifurcation diagrams of x are depicted in Fig.4(a).
Along with increase of a, the orbits transform from chaos
to coexisting period-n to chaos and to period-1 successively.
Furthermore, two main periodic windows with period-#, and
period-1 appear in the intervals [0.96, 1] and [1.6, 2].

) ref0,1]

In Fig.4 (b), along with increase of r, the orbits trans-
form from chaos to coexisting period-14 to chaos and to

VOLUME 8, 2020
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FIGURE 5. The coexisting attractors,a=c =0.6,p=r =2,

q = 1.5, b = 0.4, and initial conditions (xq, yq. Zg) are (+0.1, £0.1, £0.1):
(a) period- n in3D; (b) scroll period- n in3D; (c); scroll period- n in Y-Z.

Axis trajectory curve Y-Z

Axis trajectory curve X-Y

-

FIGURE 6. The chaotic attractor, and initial conditions (xq, yq. zg) are
(0.1, £0.1, £0.1): (a)~(b) ¥-Z; (c)~(d) X-Y.

period-16 to chaos successively. Furthermore, two main peri-
odic windows with period-14, and period-16 appear in the
intervals [0, 0.15] and [0.5,0.66].

Whena = ¢ = 06,p = r = 2,q = 15b =
0.4, coexisting bifurcation modes appear, and the coexisting
attractors are shown in Fig. 5 and Fig. 6.

Note that: Because that the multidirectional scroll chaotic
system is essentially different from other chaotic systems
based on the mechanism of the scroll attractors. Therefore,
it is difficult to observe of the period orbits in the phase
trajectory curve, the value of period-n is not discussed here.

LEs are LEy = 0.52, LE, = 0, LEz = —1.02, respec-
tively. Based on the obtained LEs, the Hausdroff dimension
Dy = 2.49.

Another method for observing and analyzing complex
dynamic behavior is Poincaré section, see in Fig. 7. It can
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FIGURE 7. Poincaré Mapping: (a) x+y+z=1; (b) z=0; (c) x=0; (d) y=0.

be seen that it is consists by a series of isolated points, which
means that the system is manifestly chaotic.

B. ANTIMONOTONICITY

It is well known that antimonotonicity could be observed
in many nonlinear systems. When one bifurcation control
parameter is monitored, we can found that periodic orbits
could be created and then annihilated via reverse period
doubling bifurcation scenarios [26]-[28]. This phenomenon
has been reported in many literatures, such as Duffing oscil-
lator, Chua circuit and Jerk circuit. Also, following the work
of [28], reverse period-doubling scenarios can occur when
some conditions are satisfied.

Now, TCS is experiencing this phenomenon. That means
system (2) appears to be forward and reversed period-
doubling bifurcations and the chaotic transition “stable-
critical-unstable”, as shown in Fig.3. The mechanism is that
a stable symmetric periodic orbit, which around each equilib-
rium P+ or P— of origin symmetry and named ‘‘periodic-n
window”. It could persist in some (rather small) parameter
interval. Therefore, the phenomena of reverse period dou-
bling and antimonotonicity do occur in this paper.

C. MULTIDITECTIONAL SCROLL ATTRACTOES

The bifurcation analysis shown that TCS has multiple sta-
bility, that is yielded windows of hysteretic dynamics. For
instance, a hysteretic window can be identified in the range
r € [0.15,0.5] U [0.6, 1] (see Fig.4(b)). For this range,
the long term behavior of the system depends crucially on
initial conditions (xg, yo, 20), thus giving rise to the inter-
esting and striking behavior of coexisting multiple attrac-
tors. Many multiple scroll attractors (see Fig.5 and Fig.6)
can be obtained. It ought to be mentioned that, the phe-
nomenon of multiple stability involving not only four discon-
nected coexisting attractors previously observed [28], [29]
in the Newton—Leipnik system and jerk system models but
also multiple coexisting butterfly chaotic attractors could be
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observed in new 4D chaotic system [30]. However, the related
research of coexisting attractors in scroll chaotic systems has
not been found in other literature before. And, the intriguing
situation involving the coexistence of infinitely many attrac-
tors, also called multiple stability [33], [34]. It is known that
the occurrence of multiple attractors represents an additional
form of randomness especially among multiple directional
scroll attractors; Also some obvious potential applications
including chaos-based secret communication, image encryp-
tion as well as neutral network, and so on. However, detailed
development on this direction will be our next research work.

VI. EXPERIMENTAL CIRCUIT STUDY
The aim of this section is to verify the results of theoretical
analysis. And, we choice AD844 and saturation of the output
signals (£12V). It is also important to rescale the model by a
factorof S for X, ¥, Z.

The dynamics of system (2) could be realization base on
voltage-controlled chaos circuit. It is converted back to the
state equation and improved TCS as follows:

d R R R
a1t <1 - 2f( 1)) Reo (Vz—ﬂf (V2)>

v
j—tz=§—zz V3—I§f(\’3)) ? .
Vv
d_l2=1§ vl—éf (vl)) Ié (Vz—R—Zf (Vz))
-’R_63 <V3—R—66f (Va))

®)

where vi=x,»=y,v3=2zf (v) is the nonlinear sign
function, A = 1:
(1) fi(v) could generate 2(N+-1)-scroll attractors along one
direction:
N
fi ) =sgn(v) + Y [sign (v + 2n) +sgn (v —2n)]  (92)
n=1
(2)f2(v) could generate 2N+-1-scroll attractors:

N
Y fsign[v+ @2n— DI+ [v—@2n— D]} (9b)

n=1

L) =

The block diagram is shown in Fig.8, the “Main” section
as shown in Fig.8(a), the ““sign’’ section as shown in Fig.8 (b),
which is utilized to obtain the nonlinearity needed for gen-
erating attractors in the circuit. It consists of three channels
to conduct the integration of the three state variables vy,
vy and v3, respectively. Here, all notations are defined in the
circuitry as follows: Ry ~ Rys = 20kQ2; R34 ~ R4y =
13.5k2; R)s ~ R33 = R4y¢ ~ Rsg = 13.5k2; Ry3 ~
Rys = 1kQ2; Rs9 = Rgp = 8.5k2; Rg1 ~ Rgs = 13.8k<2;
Vee= 12V, Vgg= —12V; C; ~ C3 = 33nF'; Switch are
S1 ~ Sy and Ki ~ Ky. When S ~ Sy and K> ~ Ky. and
closed in turn, f (x) = f(y) = f(z) = f(v) = f(v) could gen-
erate 2(N + 1)—scroll attractors; When S ~ Sy and K| ~
Ky are closed in turn, f(x) = f(y) = f(2) = f(v) = fo(v)
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FIGURE 8. Experimental Circuit (a) “Main” in system’s circuit: (b) “sign”
in system’s circuit.

FIGURE 9. 2 x 2 x 2 scroll attractors: (a) x-y; (b) x-z; (c) y-z.

could generate 2N + 1—scroll attractors. i.e., when S1 and K
are closed, as shown in Fig.9, 2 x 2 x 2-scroll attractors are
obtained; when $3, S3, K>, K3 are closed, as shown in Fig.10,
3 x 3 x 2-scroll attractors are obtained.
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FIGURE 10. 3 x 3 x 2 scroll attractors: (a)x-y; (b)x-z; (c)y-z.
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FIGURE 11. Memristive dynamics: (a)o — t; (b)v(t)—i(t).

Note that: simulation results are not included ““period win-
dow” for the sake of brevity, and only the trajectories of the
attractor phase are obtained.

Since 2008, the solid state fabrication of physical
nanoscale memristor (MR) has attracted immense interests
worldwide from both industry and academia to production
and manufacturing. However, they are still not popular-
ized, and many based-MRs simulators are built with simple
electronic circuits. Initial condition of the excitation volt-
ages f = 50kHz, u1(t) = Usin(2nft), U = 1V, ¢(0) = OWb,
and S and K; are closed. And the circuit enclosed shown
in Fig. 11.

VII. CONCLUSION

In summary, the dynamics of improved TCS, which is
described by a continuous ODEs chaotic system and could
generate multiple directional (M x N x L) scroll attractors with
sign function. This system with a symmetric nonlinear-
ity capable of rich and interesting varieties of nonlinear
phenomena such as period-doubling bifurcation, chaos, anti-
monotonicity and coexisting multiple attractors. By exploit-
ing classical nonlinear analysis tools such as bifurcation
diagrams, graph of LEs, Poincare sections, equilibriums and
stability, and phase space trajectories, the dynamics of this
system has been characterized with respect to its parameters.
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As a major result of this work, it is shown that improved
TCS and its circuit exhibits the unusual feature of multidi-
rectional scroll attractors (i.e. coexistence scroll attractors
depending only on initial sates). The MR emulator circuit
makes use of the off-the-shelf electronic components and may
be re-scaled over a fixed of frequencies. The scroll chaotic
system introduced in this paper represents one of the impor-
tant system/circuits reported to date and has not been found in
other literature before. It capable of exhibiting such form of
multi-stability, furthermore, antimonotonicity and coexisting
attractors in scroll chaotic system. At the same time, a very
good agreement is observed between theoretical and experi-
mental results by the circuit is designed and implemented.
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