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ABSTRACT This work investigates how to detect emergency vehicles such as ambulances, fire engines,
and police cars based on their siren sounds. Recognizing that car drivers may sometimes be unaware of the
siren warnings from the emergency vehicles, especially when in-vehicle audio systems are used, we propose
to develop an automatic detection system that determines whether there are siren sounds from emergency
vehicles nearby to alert other vehicles’ drivers to pay attention. A convolutional neural network (CNN)-based
ensemble model (SirenNet) with two network streams is designed to classify sounds of traffic soundscape to
siren sounds, vehicle horns, and noise, in which the first stream (WaveNet) directly processes raw waveform,
and the second one (MLNet) works with a combined feature formed by MFCC (Mel-frequency cepstral
coefficients) and log-mel spectrogram. Our experiments conducted on a diverse dataset show that the raw
data can complement the MFCC and log-mel features to achieve a promising accuracy of 98.24% in the siren
sound detection. In addition, the proposed system can work very well with variable input length. Even for
short samples of 0.25 seconds, the system still achieves a high accuracy of 96.89%. The proposed system
could be helpful for not only drivers but also autopilot systems.

INDEX TERMS Audio recognition, convolutional neural networks, emergency vehicle detection, siren
sounds.

I. INTRODUCTION
Siren is a special signal sounded by alarm systems or emer-
gency service vehicles such as fire trucks, police cars, and
ambulances. When an emergency vehicle performs its task,
the siren sound is issued to alert other drivers or pedestrians
on the road. However, private cars’ drivers may sometimes
not listen to nearby siren sounds due to the interference
of the in-car audio signal, the modern car’s soundproofing
ability, or even the distraction of drivers themselves. This
problem could lead to a delay in providing emergency ser-
vices or even traffic accidents because of inappropriate com-
munication and cooperation. Thus, this study proposes an
acoustic-based method to detect the presence of emergency
vehicles on the road. At this stage, we focus on the detection
of siren sounds from standard emergency vehicles including
ambulances and fire engines, and police cars. In view of the
fact that each country may have itself regulation on the types
and frequency band of siren sounds, we aim to develop an
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emergency vehicle detection system (EVD) that has an excel-
lent ability of generality, which can work stably under diverse
siren types/specifications and traffic conditions. For practical
applications, we roughly separate the traffic soundscape into
three sub-source of sounds, including siren sounds, vehicle
horns generated by ordinary vehicles, and noises. Since vehi-
cle horns and background noises are primary sources of the
acoustic signal in the downtown street environment, we for-
mulate the EVD problem as distinguishing siren sounds from
vehicle horns and noises.

In general, the siren sound is a sub-type of auditory danger
signals standardized by the International Organization of
Standard (ISO), and ISO 7731 [1] provides rough guide-
lines for alarm sounds. However, in reality, the regulation
and standard for siren sounds are different from country
to country; for instance, New Zealand and the USA gener-
ally adopt the similar types of wail, yelp, or phaser sirens
while England commonly uses the two-tone pneumatic horn.
In Taiwan, the frequency of fire trucks’ siren sounds
continuously changes from low-frequency 650-750Hz to
high-frequency 1450-1550Hz, while the siren sounds of
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ambulances consist of two alternating tones, the first tone is
650-750Hz and the second tone is 900-1000Hz [2].

Similarly, Japanese law [3], [6] defines a different speci-
fication for the ambulance’s siren sound, in which the sirens
repeat two tones of 960 Hz and 770 Hz, and the repetition
period is 1.3s. In Europe [7], the ambulances and fire vehicles
use two tones of 392 Hz and 660 Hz, while 466 Hz and
622 Hz are two tones used for police cars. Fig. 1. shows
the spectrograms of the three common types of siren sounds,
including aWail siren whose frequency changes continuously
(Fig. 1(a)), a Yelp siren which changes the frequency more
quickly (Fig. 1(b)), and a two-tone siren of two alternating
tones (Fig. 1(c)). Roughly speaking, Wail, Yelp, and two-
tone sirens are the most common types of siren sounds used
world-wide. In this work, we build the EVD system on the
diverse datasets formed by different types of siren sounds
and collected from various countries around the world, rather
than training the system on the data recorded in a single
country like in [4], [5], [11], so that the system can meet the
requirement of generality.

The primary method applied to this work is audio recogni-
tion based on convolutional neural networks (CNN). In terms
of data processing, we can roughly divide the techniques
used in audio recognition into two broad categories: the first
one generally applies audio feature engineering techniques
to extract useful features in time-domain and/or frequency-
domain before performing the recognition task, the second
one is to take full advantage of deep neural networks to
build an end-to-end recognition system which learns fea-
tures directly from raw waveforms rather than extracting
handcrafted features. Each approach has its advantages and
success when being applied to different works; however, for
acoustics-based EVD problem, almost all works only rely on
the first approach with the use of neural networks or shallow
learning algorithms such as support vector machine (SVM),
Gaussian mixture models (GMM), and k-nearest neighbors
(k-NN). In this work, our idea is to apply both approaches
and examine if it is possible to boost the system accuracy by
aggregating models of these two approaches; in other words,
we also examine if the features extracted by the deep neural
network itself can complement the handcrafted features in
dealing recognition task or not.

The success in developing an acoustic-based EVD system
can pave the way for many applications. The first example
of its application is providing aid to hearing-impaired people
in driving scenarios and even in daily activities. Specifically,
in the real-world environment where the background noise is
deafening, such a siren sound detection system can alert them
for dangerous situations by converting the warning signals
to appropriate messages such as text or flashlight. Apart
from helping people who lost the hearing, the EVD system
is also useful to alert drivers without hearing-problem of
approaching emergency vehicles when they are unintention-
ally unaware of the warning signals. Besides, the automatic
detection of emergency vehicles provides more function and
a higher level of safety for driverless vehicles. Another

application of the EVD system is that we can integrate it as
a part of the intelligent transport system, for instance, inte-
grating the siren detection into smart traffic light controlling
system to give priority to direction with the presence of siren
sounds by changing the light status and adjusting passing time
accordingly.

The significant contribution of this work is that we provide
a comprehensive study on acoustic-based EVD using CNNs.
We consider vital aspects of a reliable, stable detection sys-
tem as follows: (1) In terms of experimental data collection,
we consider the diversity of the data in order to achieve the
generality of the detection system. We collect siren signals
of emergency vehicles in real-world traffic from many coun-
tries in America, Europe, and Asia instead of considering a
single country such as Taiwan [4], Italy [5], or Japan [11].
Partially, this is because of the difference in the specifica-
tion of siren sounds among countries. Also, we collect data
in various scenarios such as different traffic locations and
weather conditions, different siren types, and even overlapped
sirens. To the best of our knowledge, the collection and
consideration of an extensive siren sound dataset captured in
many countries, are first introduced in this work; especially
the large dataset is collected in real-life environments where
include different levels of noise, collection distances, and
the Doppler Effect; (2) We propose a 2-dimensional neu-
ral network (2D-CNN) model (referred to as MLNet) for
EVD based on the combination of the Mel-frequency cep-
stral coefficients (MFCC) and log-mel spectrogram features.
Our experiment results indicate that MLNet yields higher
accuracy compared to the related works, which also proves
that the aggregated features are beneficial for acoustic-based
EVD; (3) We further develop an end-to-end 1-dimensional
convolutional neural network (1D-CNN) model (referred to
as WaveNet) which automatically learns from raw waveform
the useful features for classification, our experiment results
also show the promising accuracy obtained with this model;
(4) We propose an ensemble architecture of MLNet and
WaveNet to boost the detection accuracy and to prove the
complementary relationship between the raw features and
handcrafted features in acoustic-based EVD; (5) Last but not
least, the success of this work is a good fundamental for the
applications listed above.

The rest of this paper is organized as follows. In Section II,
we introduce the works related to acoustic-based emergency
vehicle detection. Section III analyzes the methods we use for
classifying the siren sounds, vehicle horns, and noises. Then,
we present the experimental results in Section IV and provide
a conclusion in Section V.

II. RELATED WORKS
Till now, there are only a few studies on the recognition of
siren sounds, such as [4]–[15]. J. Liaw et al. proposed to rec-
ognize the ambulance siren sound in Taiwan by the Longest
Common Subsequence (LCS) [4]. Such an LCS-based system
yielded an accuracy of 85% on a small dataset. Another
system based on typical speech recognition techniques was
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FIGURE 1. Spectrograms of three examples of siren sounds: Wail (a), Yelp (b), and Two-tone siren (c).

introduced in [5], in which MFCC was used together with
multi-layer neural networks to detect the siren sounds through
the voting method. The system in [5] relatively met the
need of low-computational complexity, but it lacked analysis
on a diverse dataset, and mainly used the reproduced data.
In [6], the detection of alarm sounds was investigated using
two approaches including a multi-layer neural network sys-
tem and a sinusoidal model system, in which the former relied
on techniques borrowed from speech recognition, and the
latter exploited the structure of alarm sounds and attempted to
separate signal from the background to diminish the influence
of noise interference. The two systems were tested on a small
dataset, and both of them yielded similarly imperfect error
rates.

In [7], the authors proposed to employ part-based mod-
els (PBMs) in the spectro-temporal domain to detect siren
sounds in traffic noise. Their evaluation with self-recorded
police sirens and traffic noise collected on-line indicated the
potential of applying PBMs to siren-based EVD. The PBMs
approach demonstrated better results than hidden Markov
models (HMMs) trained on MFCC or log-mel features.
Marchegiani and Posner [8] proposed a two-stage approach
for acoustic-based EVD in smart vehicles, in which the first
stagewas to detect the presence of an abnormal sound, and the
later stage involved noise reduction and classification. The
framework in [8] borrowed the idea from image processing
as it analyzed the spectrogram of the incoming signal as an
image and employed spectrogram segmentation to isolate and
extract the target signal from background noise. It utilized the
k-NN classifier on Empirical Binary Masks (EBMs) gener-
ated after the noise-reduction step, and yielded the highest
accuracy of 83%, which is still far from a requirement for
practical applications.

On the other hand, the vehicle classification system in [9]
added siren detection as an extra function, and the detection
process also heavily relied on the analysis of acoustic signals
based on digital signal processing techniques, such as finding
the main frequency components in a given frequency band.
Since current emergency vehicles produce siren sounds with
different specifications, the configuration in [9] could not be
flexible to use in general scenarios. An alarm sound detection
system based on SVM in combination with feature selection

of handcrafted features was proposed in [10]. It obtained
an accuracy of more than 90% on evaluating the system’s
performance with a small dataset of 35 alarm sound samples
and 35 background noise samples. The work was also lacking
in evaluating the system’s stability and the time cost of the
feature engineering process on a massive dataset.

There are several works based on microcontrollers
[11]–[13] and hardware design [14], [15] for siren sound
detection. In [11], the ambulance’s siren sound could be
detected by employing two times Fast Fourier Transform
(FFT) on a dsPIC microcontroller. Although this detection
method could work even under the Doppler Effect, it was
computationally expensive. Averagely, it needed 8 seconds
to make a single prediction. Meucci et al. [12] developed
another microcontroller-based system that employed the fre-
quency content and the periodic repetition characteristics of
siren sound to implement a pitch detection algorithm suited
for EVD. The system was designed and optimized only for
two-tone siren of 392 Hz and 660 Hz, and the authors did
not evaluate its performance on other siren types or two-
tone siren with other parameters yet. A simple algorithm
to detect siren sound using the linear prediction model for
hearing-impaired drivers was presented in [13], in which
the Durbin’s recursive algorithm made predictions if the
coefficients maintained within a preselected tolerance for
a preselected time. Although we can quickly implement
this algorithm on Texas Instrument TMS DSPs, it was con-
cluded to be not foolproof and may result in false detection.
R. Dobre et al. [14], [15] proposed low-computational meth-
ods for siren detection based on analog electronics circuits.
The authors used SPICE to simulate the initial design [14]
and its improved version [15] of the circuit block used for
siren detection. The circuits were tested with a siren signal
using the SPICE simulator and showed success in detection.
However, it lacked the tests on a larger dataset and the evalu-
ation on the real printed circuit board (PCB).

In summary, the prior works on acoustic-based EVD and
alarm sound recognition have both advantages and disad-
vantages. Their limitations include: (1) the limitation of
experimental data, in which the authors only recorded a
small number of recordings, used simulated data, or col-
lected data in a single country only, this could lead to a
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low level of generality for acoustic-based EVD problem;
(2) the use of shallow learning algorithms or microcontroller-
based approaches results in imperfect performances and the
stability of the systems was not thoroughly evaluated yet;
(3) modeling audio data only using handcrafted time-domain
and/or frequency-domain features, and no work directly
employing raw data for recognition; (4) without reporting the
efficiency of systems according to different audio durations
and the processing time. Recognizing this, we summed up
and improved the above limitations by conducting compre-
hensive experiments on a larger dataset formed by the integra-
tion of our self-collected data and available standard datasets
(UrbanSound8K [16] and ESC50 [17]). Moreover, inspired
by the recent success of neural networks in audio recognition,
we propose using convolutional neural networks to handle
this task. Primarily, we propose to directly use raw data of
audio clips to train the networks.

III. ACOUSTIC-BASED EVD USING CNN
A. CNN FOR AUDIO RECOGNITION
CNN has recently been employed for audio recogni-
tion problems successfully, such as in music tagging,
environmental/urban sound classification [ESC] [18]–[21],
and automatic speech recognition (ASR) [22], [23].
Boddapati et al. [18] explored the use of two well-known
image recognition networks, Alexnet and GoogLeNet, for
classifying environmental sounds. Those networks trained on
audio’s image-based representations, including spectrogram
and MFCC, yielded classification accuracies up to 90%.
Works of Salamon Bello [19] and Piczak [20] also showed
the possibility of CNN-based ESC. Training with log-mel
spectrogram input, models in [19], and [20] attained similar
accuracies around 80%. In this work, we focus on using
CNN for acoustic-based EVD problems, which employs the
approach applied in image classification together with the
idea of training CNN with raw audio waveforms.

CNN is partially similar to conventional deep neural net-
works, but it uses additional layers, namely convolutional
layers and pooling layers, instead of only using a series of
fully-connected layers. A CNN in classification task contains
two major components: feature learning and classification.
In the first component, a series of convolutional layers learn
appropriate representation or useful features from the input;
thus, we can consider this part as the feature extraction stage.
In the later part, fully-connected layers play the role of a
classifier, which processes the extracted features and assigns
the probability to each class for making the prediction.

Generally, during the training phase, a CNN of L lay-
ers approximates the relationship between all input-output
pairs (x, y) of the training dataset. The approximation can
be described by Eq. (1), in which the operation of the
l th (l = 1, 2, . . . ,L) convolutional layer is expressed by
Eq. (2), where W(l) is a set of kernels used for extracting
useful features from the input, and ⊗ indicates the convo-
lutional operation. For the stacked fully connected layers

customarily added at the end of a CNN model, they can be
described by Eq. (3), whereW(l) is the weight matrix. In both
convolutional layer and fully connected layer, b(l) and f (l)

are respectively the bias vector and the activation function
of in the lth layer. At the input layer (l = 0): a(0) = x.
Lastly, placing at the end of the model is an output layer that
has the number of neurons equal to the number of classes.
The optimization problem of the CNN is to minimize the
value of loss function computed from the difference between
predicted output ŷ and ground-truth y. Accurately, during
the training process, the parameters of CNN are updated and
optimized according to the back-propagated prediction error
to reach the appropriate minima of the loss function.

y ≈ ŷ = g(L)(g(L−1)(. . . (g(2)(g(1)(x))))) (1)

a(l) , g(l)(a(l−1)) = f (l)(W(l)
⊗ a(l−1) + b(l)) (2)

a(l) , g(l)(a(l−1)) = f (l)(W(l)a(l−1) + b(l)) (3)

Intuitively, there are two approaches to organizing audio
input for CNN models. Firstly, since CNN originally works
with image data, we can organize the audio data by 2D arrays
to feed into the 2D-CNN model. With this consideration,
we represent audio data by its spectrogram, a representation
of the audio frequency spectrum over time, or by MFCC
features extracted from sub-frames of an audio file. The sec-
ond approach is in the case we employ 1-dimensional CNN,
in which we should organize the input as 1D arrays. Thus,
we can directly feed raw data of the audio signal to the
1D-CNN model, or we can extract handcrafted features from
the audio signal and represent them as a 1D arrays before
feeding them to the model. In this work, we propose to use
raw data of audio waveform as the input of the 1D-CNN
model rather than organizing handcrafted features in the 1D
format.

B. SirenNet: THE PROPOSED CNN-BASED ENSEMBLE
MODEL FOR ACOUSTIC-BASED EVD
With an assumption that the features directly learned from
raw waveforms and handcrafted features like MFCCs and
log-mel spectrogrammay contain different patterns and infor-
mation of a given sound, we explore the complementary
relationship between these kinds of features by building a
CNN-based ensemble model based on these two feature
inputs and assessing the proposed model’s performance in
classifying siren sounds, vehicle horns, and noises. Such an
ensemblemodel is called SirenNet, as presented in Fig. 2. The
proposed architecture consists of two parts: a 2D-CNN stream
and a 1D-CNN stream, which are referred to as MLNet and
WaveNet, respectively. TheWaveNet works directly with raw
waveform, while the MLNet is trained with aggregated fea-
tures formed by image-based features (MFCC, and log-mel
spectrogram). Then, the prediction results (softmax values)
derived from MLNet and WaveNet are combined using the
averaging method to make the final predictions.

As a necessity for building the network, the length of the
input samples must be equal. However, since the collected
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FIGURE 2. The framework of the CNN-based ensemble model (SirenNet) for acoustic-based EVD. SR is the sampling rate.

data have various lengths, we have to split the original audio
signal to fixed-length samples before feeding them to the
network, as shown in Fig. 2. During the training phase, using
a sliding window of size L seconds and stride of (L − s/2),
we split the original raw waveform into segments of L sec-
onds and use them as the fixed-length inputs. At each training
epoch, we select different segments of the same recording,
but the segments have the same label. This process naturally
increases the number of training samples so that it also plays
the role of sample-level data augmentation. We test the net-
work using the majority voting approach, in which we also
split a test sample to various fixed-length segments and then
input them to the network and perform majority voting of the
predictions corresponding to all input segments to obtain the
final prediction result.

Finding a suitable length for the input samples is also a vital
factor in training the acoustic-based EVD system because the
input duration directly affects the network’s computational
demand and prediction performance. If the input has too
small length, it may not contain sufficient information for
classification, resulting in low classification accuracy. On the
other hand, if the input length is overly long, it results in
a high dimensionality of the input, leading to the higher
computational cost for training the model. Thus, this work
also investigates the suitable audio length for acoustic-based
EVD problems, which partially contributes to building an
efficient EVD system.

1) IMAGE RECOGNITION APPROACH WITH 2D-CNN
(MLNet) AND AGGREGATED FEATURES
We take the advantages of CNN in image recognition for
acoustic-based EVD by employing 2D-CNN to classify audio
signals based on their 2D representations consisting of the
log-mel spectrogram (log-mel feature) and the MFCC. Many
auditory features have been introduced for audio recogni-
tion applications [24]. However, we only consider those two
well-known features instead of diving into many handcrafted

features. MFCC feature takes into account the nonlinear fre-
quency resolution, which can simulate the hearing character-
istics of human ears, while the spectrogram shows the change
in frequency components of an audio signal over time. Thus,
these two auditory features may provide useful representation
for siren recognition. Also, it has been proven by several stud-
ies that feature aggregation can help to improve the accuracy
in audio recognition, such as in ESC [25], ASR [26]–[28],
and breath-based person identification [29]. Inspired by the
success of those works, we explore the efficiency of feature
combinations in this work. We combine log-mel features and
MFCCs of an audio signal into a single feature map before
feeding into the 2D-CNN network, as shown in Fig. 2(a). The
combination of the two features is conducted linearly.

We use Librosa [30], a python library for audio signal pro-
cessing, to extractMFCCs and log-mel features. For each data
sample, we select fixed-length segments of L seconds. Then,
the corresponding MFCCs and log-mel features of those
segments are computed. Each data segment is divided into
50% overlapping frames of 23 ms, resulting in 65 frames for
a segment of 1.5 seconds and a sampling rate of 22.05 kHz.
Next, 40 MFCCs and 64 log-mel features are extracted from
each frame. Accordingly, we can represent MFCCs and log-
mel features as matrixes of sizes 40×65×1 and 64×65×1
corresponding to frequency×time×channel, so that the com-
bined feature is a 104×65×1matrix. The proposedMLNet is
presented in Table 6 and Table 8, and we discuss detail about
the design of this model in Section IV.

2) THE END-TO-END SYSTEM WITH 1D-CNN (WaveNet)
Alternatively, we propose to build an end-to-end model
(WaveNet) for acoustic-based EVD. The advantage of this
model is that it can automatically learn from the raw
audio signal discriminative representations, bringing about a
promising performance of the EVD system. EnvNet in [31]
partially inspires the design of the proposed WaveNet, and
Table 8 presents the architecture of WaveNet, indicating that
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this model has two parts consisting of raw feature extrac-
tion with a series of 1-dimensional convolutional layers (1D
Conv-layers), and the remaining part is for classification. For
the 1D Conv-layers in the former part,W(l) in Eq. (2) is a set
of 1D kernels employed for transforming rawwaveforms into
useful features, which are also the input of the network’s later
part. Conceptually, the first 1D Conv-layer is responsible for
catching the global view of the raw waveform and extract the
local features, while the remaining 1D Conv-layers play the
role of getting a more in-depth view of the data to find the
useful discriminative features for the classification task.

For the classification part, our idea is to use the optimized
MLNet as the classification part of WaveNet because we
regard and process the features extracted by 1D Conv-layers
as time-frequency representation such as log-mel spectro-
gram. In doing so, we set the number of filters of each 1D
Conv-layer to 64, which are conceptually the same as the
number of components of the log-mel spectrogram. More
specifically, in our assumption, each filter is associated with
a frequency characteristic. We process the output of the last
1D Conv-layer with a non-overlapping max-pooling layer of
size 220, which is approximately equivalent to 10mswhen the
sampling rate is 22.05 kHz, resulting in an output matrix of
size 64×150×1 corresponding to frequency×time×channel
if the input segment is 1.5 seconds. From this point forward,
WaveNet works similarly to MLNet trained with MFCC
and/or log-mel features. We provide the configuration of
WaveNet in section IV.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL DATA
Our experimental dataset contains three sound classes of
the siren, vehicle horn, and noise. In collecting the dataset,
we set several goals and requirements. Firstly, all data must
be real-field recordings captured in road traffic or urban
environments, rather than using simulated data. Secondly,
the dataset must meet the need for quantity and diversity in
building deep neural networks, so it should be adequately vast
and varied in terms of sound’s specification and recording
conditions. To reach those two primary goals, we turn to
four collection approaches: (1) we collect data from on-line
resources which professionally provide audio/video clips of
emergency vehicles, (2) integrating with published datasets
which contain siren sounds and others related to the urban
soundscape, (3) directly capturing data while driving in
Taiwan, (4) reproducing the sound class which is hard to
collect a large amount.

For the first approach, thanks to the availability of videos
on two Youtube channels including ‘‘TGG - Global Emer-
gency Responses’’ [32] and ‘‘[rescue911.de] - Worldwide
Emergency Responses’’ [33], which provide a large number
of videos about emergency responses recorded all over the
world, we have access to a diverse database of siren sounds
of police cars, fire engines, fire ladder cars, ambulance cars,
and police motorcycles. Notably, the channels’ owners have

TABLE 1. Summary of our experimental data.

captured videos from many areas, including in America
(the USA, Canada, Cuba), in Europe (England, Germany,
Scotland, Netherlands, Belgium), and Asia (Vietnam,
Taiwan, Hong Kong, Singapore, Korea, Japan, and China).
Besides, various siren types such as wail, yelp, and
phaser horn are all included, and they can be operated
solely or simultaneously. Also, they recorded data both inside
and outside the cars traveling at various speeds so that the
collected data also included Doppler Effect. For the second
collection approach, we integrated our collected data with
two datasets published in [16], [17], which respectively con-
tain 8732 and 2000 environmental/urban sound clips. Next,
we captured real siren, horns, and road noise in Taiwan’s
streets. Lastly, for vehicle horns, because the amount of this
class is less than its two counterparts, we augmented the data
by reproducing different recordings of horns and recording
them at different scenarios, involving various distances and
noise levels.

To organize the experimental data, we randomly stored
original recordings to 5 folds, in which each fold had a rela-
tively equal amount of audio length across all three classes.
We carefully conducted this five-fold separation to avoid
the problem of overfitting when building the system using
k-fold cross-validation. This is because the recordings for
training are entirely different from those for testing. For the
data extracted from video clips [32], [33] and our real-field
recordings, we split them into smaller non-overlapping 4-s
clips, resulting in 15,943 data samples, as shown in Table 1.
By integrating with data of [16], [17] we end up with a dataset
of 26,675 samples. Although [16], [17] contain a small data
of horns and siren sounds, they provide the diversity for
the noise class, many useful subsets of urban noise such as
drilling, engine idling, jackhammer, street music [16], natural
soundscapes, human-non-speech sounds, and exterior/urban
noises [17] are available. On the other hand, our collected
data provides a large number of horns and siren clips. From
Table 1, it is clear that our collected data complement the data
from [16], [17] to create a relatively sizeable balanced dataset.

B. EXPERIMENT SETUP
The experimental data was integrated from different sources,
resulting in different properties among data samples, such as
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various sampling rates, one or two channels, and coding in
different bit-depth. Thus, the preprocessing stage is required
to standardize our data so that it benefits the experimental
process. If an audio sample is stereophonic, we converted
it into a monophonic signal by taking the average values of
the signal amplitudes of each channel. Also, we resampled
all recordings at a specific sampling rate. The resampling,
monophonic conversion, and the extraction of spectrograms
and MFCCs were conducted using Librosa [30].

In our experiments, we utilized a desktop PC built
with 16 GB RAM, an Intel Core i7-9700K CPU (8 cores
@3.60 GHz), and NVIDIA GeForce RTX 2080 Ti GPU.
The PC was running Ubuntu 18.04.2 LTS, and we used
the TensorFlow deep learning framework to implement the
network designs. The baseline setup for feature extraction
parameters and the network hyper-parameters are listed as
follows: sampling rate is 22.05 kHz; frame length of 23ms;
the percentage of frame overlap is 50%; 50 training epochs;
the initial learning rate is 0.001; and we trained the mod-
els with Adam optimizer, a variant of Stochastic Gradient
Descent [34]. We evaluated the proposed models using the
k-fold cross-validation scheme and used the classification
accuracy as the primary evaluation metric.

We conducted several experiments and reported the results
in the next sections. We carried out an initial experiment
to find appropriate parameters for later experiments. Then,
we show the results of the proposed MLNet, WaveNet,
and SirenNet. Also, we provide an analysis of experimental
results and a comparison between this work and the prior
works.

C. INITIAL EXPERIMENT
This initial experiment was a pilot investigation on the per-
formance of the end-to-end architecture, the efficiency of
features aggregation, and suitable parameters, including input
duration and sampling rate for the acoustic-based EVD. Con-
sequently, we used the best parameters obtained from this
experiment as the standard setup for the later experiments.
Respectively, we call the WaveNet and MLNet with initial
configurations as init-WaveNet and init-MLNet. We com-
pared the accuracies of those networks according to different
input lengths, including 0.25s, 0.5s, 1s, 1.5s, 2s, and 3s,
to find the suitable one for classification. We did not consider
the longer durations such as 4s, 5s for three main reasons:
(1) in terms of real-life EVD application it is not practical to
use such a long input because it obviously leads to prolonged
response; (2) almost all samples of our experimental data
are shorter than 4s, especially data from [16], the use of
padding technique when building the model may cause the
decrease in the accuracy, which has been shown in [31]; (3) it
is computationally expensive as it took too much time when
we tried to train a WaveNet with input duration of 5s. In this
experiment, we also considered different sampling rates (SR),
in which the candidates for SR were 22,050 Hz, 16,000 Hz,
and 8,000 Hz because these values of SR were commonly
used in the field of audio recognition.

TABLE 2. The configuration of the init-WaveNet (SR = 22.05 kHz, and
L− s = 1.5s).

TABLE 3. The configuration of the init-MLNet (SR = 22.05 kHz,
L− s = 1.5s, and input is the combined feature).

For the initial configuration of WaveNet, we used two
1D Conv-layers with a filter size of 8 and stride of 1 for
the raw feature extraction part, followed by two 2D Conv-
layers with 4× 4 receptive field and stride of 2× 2, and two
fully-connected layers in the classification part. The detailed
configuration of the init-WaveNet is presented in Table 2. As
we analyzed in section III.B.2, we considered the features
extracted by 1D Conv-layers as time-frequency representa-
tion, so we reshaped and presented the output of those layers
as (frequency, time, channel). Note that the network configu-
ration and data processing technique were fixed for the whole
initial experiment regardless of the change in sampling rate
and input duration. The configuration of the init-MLNet is
shown in Table 3, in which we simplified the network with
two 2D convolutional layers and two fully-connected layers.
The output shape shown in Table 2 and Table 3 is in the
case we apply the sampling rate of 22.05 kHz, and the input
duration of 1.5 seconds.

The mean accuracies of the init-WaveNet with respect
to different input durations and sampling rates are listed
in Table 4. We performed 5-fold cross-validation in all exper-
iments, so we provide the results with the average accuracy
(%) and the standard deviation. From Table 4, we can see that
with each input length of 1s, 1.5s, 2s, and 3s, the results of
init-WaveNet for SR of 22.05 kHz are slightly higher than that
of the two remaining sampling rates. However, for the shorter
input durations of 0.25s and 0.5s, the init-WaveNet working
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TABLE 4. Mean Accuracies (in %) of the init-WaveNet according to
different sampling rates and input lengths (The values inside () are the
standard deviations among the accuracies for 5-fold cross-validation).

TABLE 5. Mean Accuracies of the init-MLNet and the init-WaveNet
according to different input lengths in case SR of 22.05 kHz.

with the SR of 22.05 kHz yielded much better performance
compared to the results of experiments on the SR of 16 kHz
and 8 kHz, by approximately 2.5% and 1.5% respectively.
Thus, we decided to choose 22.05 kHz as the default sampling
rate for the later experiments. In the following experiments,
we tested MLNet trained on MFCC and/or log-mel features
with the SR of 22.05 kHz. The experiment results are summa-
rized in Table 5.

For the input duration, as shown by statistics in Table 4
and Table 5, the accuracy generally tends to improve propor-
tionally according to the increase in the length of the input
waveform. This is true for all three values of sampling rates
and both init-WaveNet and init-MLNet. We assume that the
longer the original raw input, the more useful information
provided to the network, resulting in better performance.
However, the accuracy is at a high level when the input length
ranges from 1.5s to 3s, and there is no significant gap in accu-
racy among this range. From this point of view, we choose
the input length of 1.5s for system development due to the
following reasons: (1) it still yields comparable accuracies
compared with results of much longer input durations (2s
and 3s); (2) we assume that such a duration is sufficient for
representing the characteristics of siren sounds, especially
two-tone siren and yelp siren which normally have the cycle
of around 1s so that a sample of 1.5s can provide enough
information for classifiers.

Results in Table 5 also show the efficiency of feature
aggregation for init-MLNet; in other words, MFCC can
complement the log-mel feature in acoustic-based EVD.
Specifically, init-MLNet trained on the aggregated feature
(MFCC+log-mel) yielded much better results than that of
this model trained on a single feature, MFCC, or log-mel

feature. For example, at the input length of 1.5s, the init-
MLNet (MFCC+log-mel) reached an accuracy of 94.26%,
which is much higher than that of init-MLNet (log-mel)
and init-MLNet (MFCC), by 3.08% and 4.55%, respectively.
Last but not least, the initial experiment also presents the
potential of WaveNet. Across all input lengths, the perfor-
mance of init-WaveNet was better than that of init-MLNet
trained on MFCC or log-mel features, in which init-WaveNet
yielded higher average accuracies and smaller standard devi-
ations compared to that of init-MLNet, as shown in Table 5.
Considering the input length of 1.5s, init-WaveNet (raw data)
yields an accuracy of 93.99%, which is respectively 2.81%
and 4.28% higher than the results of MLNet (log-mel) and
MLNet (MFCC).

D. RESULTS AND ANALYSIS
1) THE PROPOSED MLNet
It is essential to find a suitable number of convolutional layers
and appropriate parameters for a network to maximize its
performance. Thus, we conducted a series of experiments to
investigate the influence of different numbers of 2D convolu-
tional layers on the performance of the MLNet. As a result,
we can choose a suitable architecture for the proposedMLNet
applied to acoustic-based EVD. We consider the number of
convolutional layers up to 6 because, with this configuration,
the output of the last convolutional layer already reaches a
small size. Also, since the amount of data for training is not
large enough, the use of deeper architectures may lead to sig-
nificant overfitting. Note that the standard configuration to all
network versions is that we apply batch normalization to each
layer to speed up the computational process, and we set a
dropout of 0.5 for the fully-connected layers in order to avoid
overfitting. In all convolutional layers, we use the receptive
field of 4 × 4, and we set the stride step to 2 × 2. Table 6
shows the list of layers, memory cost, and the number of
parameters of MLNet models with 2, 3, 4, 5, 6 convolutional
layers, respectively.

Table 7 presents the experimental results of models with
respect to different numbers of convolutional layers. It can
be seen from Table 7 that MLNet working with aggregated
feature (MFCC+log-mel) yields the highest average accu-
racy of 96.42% when it is configured with four convolutional
layers, this result is higher than that of models with 2, 3, 5, and
6 convolutional layers by 2.16%, 1.73%, 1.33%, and 1.81%,
respectively. It also indicates that using deeper architectures
does not result in better performance. As a result of this
investigation, we design our proposed MLNet with four con-
volutional layers and two fully-connected layers, as presented
in Table 6. Moreover, in terms of memory cost, it requires
a small amount of memory (653 K) to train the proposed
MLNet.

2) THE PROPOSED WaveNet
Recall that the WaveNet has two parts, including a part for
raw feature extraction using 1D-CNN and the other part for
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TABLE 6. Parameters and memory cost of the MLNet with the different numbers of 2D convolutional layers.

TABLE 7. The results of the MLNet configured with different numbers of
convolutional layers. (SR=22.05 kHz, L− s = 1.5s).

TABLE 8. The configuration of the WaveNet, including MLNet used as the
classification part. (SR = 22.05 kHz, and L− s = 1.5s).

classification based on 2D-CNN, as shown in Fig. 2. Since
we process the feature extracted from raw waveforms as
time-frequency representation, we use the proposed MLNet
as a classification part of WaveNet directly. Consequently,
in this experiment, we aim to find a suitable configuration for
the feature extraction part of WaveNet, involving finding a
suitable number of 1D Conv-layers and the appropriate filter
size. We conducted experiments with the data of 1.5s length
sampled at 22.05 kHz, and the networks were configured with
1, 2, 3, and 4 1D Conv-layers in the raw feature extraction
part, respectively. Besides, the filter sizes of 4, 6, 8, 16, 32,

TABLE 9. The Accuracies of the WaveNet with different numbers of 1D
Conv-layers. (SR=22.05 kHz, L− s = 1.5s).

64, 128, and 256 were separately applied to each model.
The number of 1D Conv-layers was limited to 4 also to
avoid overfitting when training models with our moderate
dataset. At each layer, we used 64 filters and stride step of 1.
We set the pooling size of the max-pooling layer used at the
last 1D Conv-layer to 220, and hence a feature map of size
64×150×1 corresponding to time frequency×time×channel
is created.

We summarize the results of this investigation in Table 9.
A common trend fromTable 9 is that across different numbers
of 1D Conv-layers, the classification accuracies are improved
when the filter size is increased up to a specific value.
However, when the number of convolutional layers becomes
more extensive, the models tend to reach the highest accuracy
with the smaller filter sizes, and the accuracies start to drop
when the models have significantly large filter sizes, of 128,
64, 32, and 32 respectively for models with 1, 2, 3, and
4 convolutional layers.

Another vital observation is that WaveNet configured with
more 1D Conv-layers performs better than the network with
a single-convolutional layer. More specifically, in the case of
one layer, we achieve the highest accuracy of 95.35% when
the filter size is 128. For the case of two and three layers, the
accuracy reaches the highest values when the filter size is 64

75710 VOLUME 8, 2020



V.-T. Tran, W.-H. Tsai: Acoustic-Based Emergency Vehicle Detection Using CNNs

(96.51%) and 32 (95.95%), respectively. However, the deeper
model with four Conv-layers yields lower accuracies com-
pared to that of 2 and 3 Conv-layer models. This indicates
that the convolutional operations of two and three Conv-
layer models respectively with filter sizes of 64 and 32, can
adequately extract the most useful features for classification,
and when the model is deeper (four 1D Conv-layer), it starts
to overfit.

Accordingly, we decided to configure the raw feature
extraction part of the proposed WaveNet with two convolu-
tional layers and the filter size of 64, as shown in Table 8,
and the remaining part of WaveNet is the proposed MLNet.
Notably, with the same configuration of two 1D Conv-layers
and the filter size of 8, the model using MLNet for classifica-
tion yields a higher accuracy of 94.41% by 0.42% compared
to the result (93.99%) of the model with the initial config-
uration (init-WaveNet). This fact indicates that the idea of
processing features extracted by 1D-CNN as time-frequency
format and classify them by MLNet is practically efficient.

3) RESULTS OF THE PROPOSED ENSEMBLE MODEL
(SirenNet) AND ANALYSIS
Next, we evaluated the performance of the proposed SirenNet
(Fig. 2) to prove the complementary relationship between
the raw features and handcrafted features, including MFCC
and log-mel spectrogram. For every sample, we evaluated the
predictions of each network stream (MLNet and WaveNet).
After that, the softmax outputs from these two streams are
averaged, and the final classification was performed accord-
ing to the maximum value of the averaged softmax output.
We summarize the results of SirenNet in Table 10 and a
confusion matrix in Table 11, in which Table 10 also provides
information about the model’s loading time and inference
time. From the statistics of Table 10, it is clear that SirenNet
achieved a promising accuracy of 98.24%, which is higher
than the results ofWaveNet andMLNet by 1.75% and 1.85%,
separately. This result indicates that raw features learned
by WaveNet have the capability of complementing MFCC
and log-mel features in acoustic-based emergency vehicle
detection. Also, with such a high accuracy, the SirenNet is
auspiciously applied to real-world applications, which is one
of the significant contributions of this work. For the utiliza-
tion time, we can see that the time cost of MLNet (11 ms)
and WaveNet (14 ms) are almost comparable and acceptably
low. In the case of ensemble architecture, although the time
cost of this model (27 ms) almost doubles that of the single
networks, the inference time of SirenNet is still short enough
for real-time operation of the EVD system.

From the confusion matrix in Table 11, we can see the
detail about the rates of correct prediction and misclassifi-
cation across three sound classes. The misclassification rates
between siren sounds and vehicle horns are meager, which is
0.44%, and 0.11%, respectively. This result shows the advan-
tage of SirenNet since there is little probability of predicting
the sound of ordinary vehicles as siren sounds of emer-
gency vehicles and vice versa. Meanwhile, the significant

TABLE 10. Results of the SirenNet and comparison to single networks.

TABLE 11. Normalized confusion matrix obtained by testing the SirenNet
on the dataset of 1.5s length.

TABLE 12. Results of the proposed models on different input durations.

misclassifications were made between sirens or horns with
noise, in which 1.35% of sirens and 1.67% of horns are
predicted as noise, this may be due to the heavy noise in the
recordings of sirens and horns.

We also evaluated the efficiency of the proposed SirenNet,
WaveNet, and MLNet when they worked with data samples
shorter than 1.5s. The results of this evaluation are listed
in Table 12. Notably, the proposed models show excellent
performances, even working with short input durations of 1s,
0.5s, and 0.25s. Across those three cases of input length,
the optimized WaveNet and MLNet yielded much higher
accuracies compared to the results of networks with initial
configurations and trained with longer input length of 1.5s;
this also results in high accuracies of the ensemble model
(SirenNet). The results of SirenNet are 97.74%, 97.42%,
and 96.89% respectively for input lengths of 1s, 0.5s, and
0.25s. It is clear that even with concise recordings such as
0.25 second where the performances of single networks start
to degrade significantly, 92.20 % for WaveNet and 94.47%
for MLNet (MFCC+log-mel), the SirenNet still yields a high
accuracy of 96.98%, only 1.35% lower than the result of the
experiment on the data of six times longer (1.5s). This result
further confirms the efficiency of the proposed SirenNet.
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TABLE 13. Comparisons of the classification accuracies obtained with
other systems.

At last, we compared the results of our work with that of
several existing related works listed in the literature review
section. Some works based on microcontrollers [11]–[13]
and circuit design [14], [15] only reported the possibilities
of siren detection systems, and they did not evaluate the
system’s accuracy on an extensive dataset. Thus, we only
focused on the comparison with works based on machine
learning or deep learning approaches. Table 13 shows
the comparison between our works and prior works [4],
[7], [8] based on the mean accuracies of sound source
classification across different classifiers and features.
In terms of feature for classification, to the best of our knowl-
edge, this work is the first one investigating the use of raw
waveform for acoustic-based EVD. Equally important, the
proposedWaveNet yielded promising classification accuracy
of 96.51% which is better than the results of related works
including 83%, 86%, and 85% respectively in [4], [7], and [8].
For the use of handcrafted features (MFCC, and log-mel
spectrogram), we can see that our proposal of aggregating
MFCC and the log-mel feature is also useful, as the result of
MLNet (96.42%) is much higher than the result of [4], [7],
and [8]. Specifically, k-NN(MFCC) in [8] yielded an average
accuracy of 62.20%, while the results of HMM(MFCC) and
HMM(Spectrogram) in [7] were 80% and 74%, respectively.
Finally, the proposed ensemble model (SirenNet) achieved
the highest accuracy (98.24%) among all models.

V. CONCLUSION AND FEATURE WORK
In this work, we introduced a deep-learning model
(SirenNet) based on convolutional neural networks for siren-
sound-based emergency vehicle detection. The proposed
SirenNet is composed of two single CNN-based networks,

including an end-to-end network (the WaveNet), which
works with raw waveform input, and the MLNet trained
on well-known handcrafted features (MFCC, and log-mel
spectrogram). We conducted all experiments on an exten-
sive data set, including our collection of 17.7 hours of
recordings and 12.5 hours of recordings from Urbansound8k
and ESC-50 datasets. The use of an end-to-end archi-
tecture and the combination of MFCC and log-mel fea-
tures for acoustic-based EVD are first investigated in this
work, and those schemes brought about promising results,
in which the WaveNet and MLNet respectively yielded accu-
racies of 96.51% and 96.42%. The ensemble architecture
(SirenNet) further boosted the classification accuracy to reach
the highest value of 98.24%. Those experimental results
showed the efficiency of our proposed models and proved the
complementary relationship between features automatically
extracted from raw waveforms and handcrafted features.
Also, the SirenNet requires a short inference time of 27 ms,
which is well acceptable for real-time detection. The results
of this work lay a good foundation for future development
and applications.

Although we have achieved promising results in this work,
future work is still needed to improve the detection per-
formance and to meet the need for reliable and convenient
emergency vehicle detection systems. For example, the pri-
mary focus in our future work could be the localization of
siren sources so that the detection system could also provide
information about the direction of the emergency vehicles to
drivers.
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