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ABSTRACT In general, an image obtained from a thermal camera often has a mirror reflection or shadow
reflected off the ground around an object, which is referred to as thermal reflection. Sometimes the thermal
reflections are connected to their objects in images, which makes it difficult to detect or recognize the
object only. Thermal reflections sometimes occur on the wall near an object and are detected as another
object when they are not connected to the object. Furthermore, the size of thermal reflection and pixel
value significantly vary with the medium of the reflected range and the surrounding temperature. In these
cases, the patterns and pixel values of thermal reflection and the object become similar and difficult to
distinguish. However, there are insufficient studies on removing the thermal reflection of various kinds
of objects in diverse environments. Therefore, in this paper, we propose a pruned fully convolutional
network (PFCN)-based method for removing the thermal reflection of an object using the surrounding
information when image transformation is performed only within the region of an object. When experiments
were conducted using self-collected databases (Dongguk thermal image database (DTh-DB) and Dongguk
items & vehicles database (DI&V-DB)) and open databases, the method proposed herein exhibited more
outstanding performance in removing thermal reflection when compared with the state-of-the-art methods.

INDEX TERMS Thermal image, image transform, thermal reflection removal, pruned fully convolutional
network.

I. INTRODUCTION
Typically, a long-wavelength infrared (LWIR) camera, which
is often used in surveillance systems, can measure electro-
magnetic radiation of wavelengths 8–12 µm [1]. Most of
the thermal radiation generated from an object or body is
infrared radiation, and the LWIR camera is commonly used
to measure such heat information. Hence, an LWIR camera
is also referred to as a thermal camera. A thermal camera
can make objects at close and far distances visible in dark
surroundings without using an additional illuminator. Figure
1 shows the thermal camera, a visible light camera, thermal
images and the respective visible light images. However, as
shown in Figure 2, there are thermal reflections (the areas
of dotted line) such as shadows or mirror reflections on the
ground surface near the object in the images obtained using a
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thermal camera in both indoor and outdoor environments. The
performance of object detection or recognition algorithms
is degraded due to such thermal reflections. However, very
few studies have been conducted on the removal of thermal
reflection. Therefore, we propose a novel method for the
removal of thermal reflections by conducting image trans-
formation only within the specific region of thermal images.
Recently, various image transformation algorithms have been
developed for deep-learning-based image processing tasks.
In particular, image-to-image translation methods based on
generative adversarial network (GAN) have been showing
high accuracy. Normally, an entire image is transformedwhen
transforming an object in an image. However, the accuracy
is reduced in such a method, as the background region is
also transformed in addition to the object being transformed.
Thus, a method for increasing the accuracy of transforma-
tion is proposed. In the method, transformation operation is
conducted only within the region of an object that has been
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FIGURE 1. From the left to the right, the thermal camera with captured
thermal images, and the visible light camera with captured images,
respectively. Images captured in daytime and night, respectively, from the
top to the bottom.

detected using deep learning. The surrounding information
is also considered when transforming an image only within
the region of an object. More specifically, thermal reflections
in a thermal image are removed by transforming the heat of
specific regions of the wall and surrounding floor to match
the heat of the background.

The remainder of this paper is organized as follows. Previ-
ous studies are discussed in Section II, and the contributions
of this study are explained in Section III. The details of the
proposedmethod are explained in Section IV. The experiment
results and comparison experiment are discussed in Section
V, and lastly, the conclusion of this study is provided in
Section VI.

II. RELATED WORKS
The existing deep-learning-based image transformation
methods can be divided into transforming only a specific
region of an image and transforming an entire image. There
are several GAN-based image-to-image translation methods
[2]–[9]. In study [2], authors developed a two-step unsuper-
vised learning method that transforms images between differ-
ent domains by using unlabeled images without specifying
any correspondence between them so as to avoid the cost
of acquiring labeled data. In [3], an unsupervised image-to-
image translation (UNIT) method based on GAN and vari-
ational autoencoders (VAEs) is proposed. In the paper, two
limitations of the method are explained. The first limitation is
that the transformationmodel is unimodal due to theGaussian
latent space assumption. The second limitation is that the
training could be unstable due to the saddle point search-
ing problem. In study [4], triangle GAN that can be used
for semi-supervised joint distribution matching is proposed.
The approach learns the bidirectional mappings between two
domains with a few paired sample images. In [5], a StarGAN,

FIGURE 2. Example of the thermal reflections. (a) A vehicle; (b) a hot
oven; (c) a glass bottle with hot water; (d) a man lying on an outdoor
floor; (e) a hand and arm; (f) a man walking in an indoor corridor.

a scalable method that can perform image-to-image transfor-
mation for multiple domains using only a single model is
proposed. The architecture of StarGAN allows simultaneous
training of multiple image data sets with different domains
within a single network. In [6], a method based on GAN that
learns from images to discover relations between images in
different domains (DiscoGAN) is proposed. The DiscoGAN
can generate highly qualified images with transferred style
without using any explicit pair labels and learns to relate
images from very different domains. In study [7], GAN in
the conditional setting is explored to design new conditional
GAN (cGAN) that learns a conditional generative model. In
[8], a coupled GAN (CoGAN) method for learning a joint
distribution of multi-domain dataset is proposed. In contrast
to the existing methods, it requires tuples of corresponding
image data in different domains in the training set. CoGAN
method learns a joint distribution without any tuple of corre-
sponding image data.

In studies [2]–[8], an entire image was transformed using a
deep learning network. In study [9], the network was trained
by using an entire image and a corresponding mask image
of objects simultaneously as inputs. They also reported that
image transformation methods in previous studies fail in
case of multiple objects and when the shape of an object
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changes. Hence, the performance of image transformation
was enhanced using the mask image. In study [10], a per-
ceptual loss network (PLN)-based method was proposed in
which image-to-image translation was performed while the
image style was transferred. However, the above image-to-
image translation methods involve transforming an entire
image; thus, the accuracy is reduced more by the background
region being transformed in addition to the region of an
object than by only the region of an object being transformed.
Hence, we propose a method for increasing the accuracy of
image transformation by transforming only the region of an
object. In this study, amethod for removing thermal reflection
in images obtained using a thermal camera was examined.
Typically, there are two problems in thermal images, namely
thermal reflection [11]–[14] and halo effect [15]–[17]. In
study [11], a method of suppressing thermal reflection is
proposed. In the method, the visible light reflection and the
reflection of heat are experimented. Additionally, various
polarizers and plates are also used, and the change in the
thermal reflection according to the angle of the plates is
graphically shown. In this way, a thermal reflection sup-
pression technique considering the angles according to the
plates of various polarizers and materials in the experiment
is proposed. However, in this method, given that the angle
varies depending on thematerial of the plates, the suppression
performance is reduced when there are nearby floors or walls
made of different materials.

In [12], a thermal reflection elimination method is pro-
posed. The method is conducted using Mask R-CNN [18]
to detect thermal reflection regions in thermal images. The
method eliminates thermal reflections based on the detected
regions of thermal reflections. The method changes the value
of pixels only in the detected regions to increase the accuracy
of the transformation. In [13], two methods are proposed
such as a method that classifies the regarded material in
order to estimate improved surface temperature values, and a
method to detect and remove thermal reflections in thermal
images. The detection method is conducted using a back-
ground subtraction algorithm. To remove a thermal reflection,
the method uses weighted moving averages. In study [14], a
novel reflection removal approach using polarization prop-
erties of the reflection in thermal images is proposed. The
method uses four input images of different polarization angles
such as 0, 45, 90, and 135 degrees for removing thermal
reflections. These studies are conducted to remove thermal
reflections without using deep learning.

Halo effect is explained in a documentation provided by
FLIR [15]. For example, the halo effect in a thermal image
is a circular region of high intensity pixels that surrounds
an object. In studies [16] and [17], methods for the detec-
tion of subjects in images with the halo effect were pro-
posed using contour-based approaches. The methods are
based on background subtraction that fuses contours obtained
from a thermal image and a visible light image. However,
these contour-based methods are not methods for removing
halo effects in images, but rather, approaches for accurately

detecting subjects in thermal images with halo effects. More-
over, other existing studies that have investigated the detec-
tion [19]–[26], identification [27], [28], and recognition
[29]–[31] of thermal images and the survey study [32] did
not consider these two problems. Therefore, we propose an
image transformation method based on the regions of thermal
reflection using deep learning.

In addition, there are previous studies [33]–[42] that are
conducted for image inpainting tasks which are similar to a
task conducted in this study. Image inpainting technique is
used to fill damaged, deteriorating, or missing parts of an
image. In study [33], a method for semantic image inpainting,
which generates the missing information by conditioning on
the available data is proposed. The authors claim that in their
method, inference is possible irrespective of how the missing
information is structured, while the state-of-the-art learning-
based methods require specific information about the holes in
the training phase. In [34], a spatial region-wise normaliza-
tion named region normalization (RN) to overcome the limi-
tation of image inpainting problem is proposed. Themean and
variance shifts caused by full-spatial feature normalization
(FN) limit the image inpainting network training is presented.
In [35], a method based on a deep generativemodel which can
not only synthesize novel image structures but also explic-
itly utilize surrounding image features as references during
network training to make better predictions is proposed. The
model is a feedforward, fully convolutional neural network
(FCN) which can process images with variable sizes and with
multiple holes at arbitrary locations during the test time. In
study [36], a generative image inpainting approach to com-
plete images with guidance and free-form mask is proposed.
The approach is based on gated convolutions learned from
huge number of images without additional labelling efforts.
The authors presented user sketch as an exemplar guidance
to help users to remove distracting objects quickly, modify
image layouts, edit faces, clear watermarks, and create novel
objects in images.

In [37], a learnable bidirectional attention maps (LBAM)
for image inpainting is proposed. The method used FCN to
conduct image inpainting. In [38], a fined deep generative
model-based method which designed a coherent semantic
attention layer to learn the relationship between features
of missing information in images. The method used FCN
to conduct image inpainting. In study [39], an architecture
named Shift-Net for image completion that exhibits high
speed with promising details via deep feature rearrangement
is proposed. The study presented a special shift-connection
layer to the U-Net architecture. The method uses FCN with a
shift layer. In [40], an image inpainting model named PEPSI
which overcomes the limitation of the two-stage coarse-to-
fine network using the joint learning scheme is proposed.
In study [41], a two-stage adversarial model EdgeConnect
that comprises of an edge generator followed by an image
completion network is proposed. First, the method generates
an edge information from a damaged image then combine the
obtained edge information with the damaged image as inputs
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TABLE 1. Summary of comparison between the proposed method and previous image transformation methods.

FIGURE 3. Overall flowchart of proposed method.

to second generator for desired output. In [42], a PGGAN
approach is proposed. The method includes a discriminator
network that combines a global GAN (G-GAN) architecture
with a patch GAN.

To consider the limitation of previous works, we propose
an image transformation method based on the regions of ther-
mal reflection using deep learning. The summary of a com-
parison between the proposed method and previous image
transformation methods is provided in Table 1.

III. CONTRIBUTIONS
This research is novel in the following four ways compared
with previous works:

– This study is the first of its kind to remove thermal reflec-
tion in thermal images using deep learning.

– A general image processing method can remove thermal
reflection by transforming an image only within the region
where thermal reflection was detected; however, a method
for transforming an image only within the detected region

using deep learning does not exist currently. Therefore, we
suggest a deep-learning-based method for transforming an
image only within the region where thermal reflection is
detected.

– In this study, a pruned fully convolutional network (PFCN),
in which the heat information of surrounding walls and
ground is considered, is newly proposed for transforming
an image only within the area where thermal reflection is
detected.

– The convolutional neural network (CNN) models for
removing thermal reflection developed in this study are
disclosed through [45] for an evaluation of performance
by other researchers.

IV. PROPOSED METHOD
A. OVERALL PROCEDURE OF PROPOSED METHOD
In this section, the method proposed in this paper is explained
in detail. In the proposed method, only specific region of an
image is transformed using PFCN architecture, which is the
improved version of existing FCN [46]. Figure 3 shows the
flowchart of the proposed method. Moreover, a method for
obtaining output images to be transformed by PFCN is further
explained in section IV. B, whereas a method for removing
thermal reflection using the output images obtained by PFCN
is further explained in section IV.D. The thermal camera used
in this study can obtain an image at the speed of 30 frames
per second (fps) [47]. It can measure the temperature from -
40 ◦C to+80 ◦C tomake objects visible in both light and dark
environments. The database (an image has the depth of 14 bits
and the size of 640× 480 pixels [12]) obtained using the ther-
mal camera was used in the experiment. A mask region CNN
(Mask R-CNN) was used to detect the approximate region
(input region image in Figure 3) of thermal reflection in input
images, and the detailed explanation is provided in [12].
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FIGURE 4. Two types of proposed FCN architectures. (a) FCN_V1; (b) FCN_V2.

B. REGION-BASED IMAGE TRANSFORMATION USING
PRUNED FULLY CONVOLUTIONAL NETWORK
In this section, the proposed PFCN is explained in detail.
While previous studies focused on transforming the entire

original image, the proposed method increases the accuracy
by conducting image transformation only within the region of
the object in an image. A typical FCN architecture is used in
this study as shown in Figure 4(a) or (b). The original image I
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FIGURE 5. Example of extracted feature maps by using FCN_V2.

FIGURE 6. Example of the post processing and the final output image.

and input region image R of the object are used as inputs to
generate the output image O. R is the image attempting to be
transformed, and I is the image providing information on the
surroundings.

For example, when removing a shadow of an object in
the visible light image, the pixel intensity within the region
is transformed to be similar to the pixel intensity of nearby
ground or walls. Accordingly, I is used as an input to FCN
to extract the information on the surroundings. Two differ-
ent structures were experimented for the proposed method.
The idea of the first structure (Figure 4(a)) is to generate O
by extracting the features of I and R and combining them.
The idea of the second structure (Figure 4(b)) is to update
the convolution layers with the information extracted from
I when transforming R to O. The concatenate layer is used
when combining feature maps. Feature maps extracted from
Figure 4(a) and (b) are indicated by light blue boxes and light
orange boxes, respectively, whereas concatenate and convolu-
tion operations are indicated by red arrow and black arrows,
respectively. L2–L34 in Figure 4(a) and L2–L59 in Figure
4(b) represent layer numbers in Tables 6 and 7 in Appendix.
The details of the two structures used in the proposed method

FIGURE 7. Example of removing thermal reflection. From the left to the
right, original images, mask images, and final output images are
presented. (a) A hot oven on a floor; (b) a man in a soccer field.

(FCN version 1 (FCN_V1) and FCN version 2 (FCN_V2))
are shown in Tables 6 and 7. The thermal images used in this
study are one-channel gray scale images, not three-channel
color images. In this study, a color mapping function [48]
is used to map gray scale thermal images to color thermal
images for accurately representing the information of the
heat and surrounding temperature of the objects in images.
In Tables 6 and 7 in Appendix, all the convolution layers are
followed by the rectified linear unit (ReLU). In Table 6, (1×1)
padding is used for conv2d_13, and (0 × 0) padding is used
for the convolution layers. Furthermore, the filter size, stride,
and padding are (1× 1), (3× 3), and (0× 0), respectively, in
Table 7.

In this study, the PFCN with enhanced performance is
proposed instead of using FCN_V1 and FCN_V2 in Tables 6
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FIGURE 8. Example images of experimental database. (a) A visible light image and its corresponding thermal image captured in a
bright outdoor environment; (b) a visible light image and its corresponding thermal image captured in a dark outdoor environment;
(c) a visible light image and its corresponding thermal image captured in a bright indoor environment; (d) a visible light image and
its corresponding thermal image captured in a dark indoor environment; (e–h) thermal images captured in an indoor environment;
(i–l) thermal images captured in an outdoor environment.

FIGURE 9. Example of training loss curves of PFCN.

and A.2 in Appendix as they are. The PFCN is a model with a
reduced number of channels and parameters of the FCNbased
on the pruning (network surgery) [49] technique. The detailed
explanation is provided in section IV.C. For a model obtained
by training the FCN, a complete black image can be output as
shown in Figure 5. This is due to the black area of the input

FIGURE 10. Example of training methods using paired and unpaired
datasets.

region image in Figure 5. For example, when the input region
image is input to the FCN structure, there are completely
black feature maps among the feature maps extracted from
the first convolution layer. Therefore, in the proposedmethod,
the trained FCN model is pruned using the pruning function.
Using the pruning function, the parameters that extract black
feature maps as shown in Figure 5 are removed from the
proposed structure. After fine-tuning the pruned architecture,
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the expected final output image can be obtained using the
structure as shown in Figure 6. The structure of the PFCN
is shown in Tables 8 and 9 in Appendix.

C. DIFFERENCES BETWEEN FCN AND PFCN
The PFCN architectures proposed in this study and the exist-
ing FCN architectures have the following 3 differences.

PFCN architectures have a smaller number of channels
than FCN architectures.

PFCN architectures have a smaller number of parameters
than FCN architectures.

PFCN architectures are optimized versions of FCN archi-
tectures. The optimization operation is conducted by remov-
ing low effective parameters using a pruning.

V. POST PROCESSING
Moreover, a masking operation is performed using the output
image obtained by the PFCN at the post-processing step.
When performing the masking operation, the thermal reflec-
tion region of the output image in Figure 6 is processed with
the input image in Figure 5 as in Equation (1) to obtain the
final output image in Figure 6.

Imgfinal output = Imginput ◦ Imgmask + Imgoutput (1)

In Equation (1), Imginput , Imgmask , Imgoutput , and Imgfinaloutput
are the input image, mask image, output image generated
by the PFCN, and final output image, respectively. More
specifically, the input image in Figure 5 is Imginput , the output
image obtained by the PFCN in Figure 6 is Imgoutput , and
the final output image is Imgfinal output . The pixel values of
Imgmask are either 0 or 1 as shown in Figure 7, whereas the
pixel values of the region of interest (ROI) in Imgmask are
0 and those of the background are 1 as shown in Figure 7.
Moreover, the operator (◦) is the Hadamard product (element-
wise multiplication) [50], whereas the operator (+) is matrix
addition.

VI. EXPERIMENTAL RESULTS
A. DESCRIPTION OF EXPERIMENTAL SETUP AND
DATABASES
The database [12] used in this study consists of thermal
images of objects at close and far distances in both dark
and bright environments. The database was collected in both
indoor and outdoor environments. Furthermore, the database
also includes visible light images. The details of the database
are shown in Tables 3 and 4, and Figures 8–11 in our previous
work [12]. Figure 8 shows the examples of the images in
the database. The experiment was conducted as a two-fold
cross validation. Specifically, half of the data were used for
training, whereas the remaining data were used for testing.
Then, the training data and testing data were switched, and the
experiment was repeated. The results obtained accordingly
were then used to determine the average testing accuracy.

The training and testing of the algorithm proposed in
this study were conducted with a desktop computer. The
desktop computer is equipped with an NVIDIA graphics

TABLE 2. Comparison of accuracies of the proposed methods with those
of the state-of-the-art methods.

TABLE 3. Comparison of accuracies of the proposed method with those
of the state-of-the-art methods with the open database.

card (NVIDIA GeForce GTX TITAN X [51]), Intel CPU
(core i7-6700 CPU @ 3.40GHz (8 CPUs)), and RAM
(32 GB). The method proposed in this paper was imple-
mented using Python-based Keras application programming
interface (API) with TensorFlow backend engine [52] and
OpenCV library [53].

B. TRAINING OF PFCN MODELS
When training the proposed models, the image size, batch-
size, training epoch, loss, learning rate, and optimizer are set
to 224 × 224 × 1, 1, 1000, MSE (mean squared error [54]),
0.0001, and adaptive moment estimation methods (Adam)
[55], respectively. MSE loss is calculated between the pixel
of ground-truth image and that of restored image by PFCN
as shown in Equation (2). The larger MSE loss becomes, the
larger penalty is assigned to the updated weights of PFCN
whereas the smaller MSE loss becomes, the larger reward
is given to the updated weights, which confirms the training
convergence of PFCN.

The PFCN obtained after pruning the trained FCN was
fine-tuned again with 100 epochs. Figure 9 shows the
training loss of each method as the number of epochs
increases. As the number of epochs increased, the train-
ing loss of both methods converged. In general, for
a cycle-consistent adversarial network (CycleGAN)-based
method [44], unpaired reference data are used for train-
ing, whereas in the proposed method, ground-truth data
for input are used. Training was performed using the
paired dataset of the input and ground-truth as shown in
Figure 10.
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Figure 11. Examples of results of thermal reflection removal. (a) Original images; (b) ground-truth images;
(c) SegNet-based removal method; (d) CycleGAN; (e) PLN; (f) Mask R-CNN + CycleGAN; (g) Mask R-CNN-based
removal method; (h) FCN_V1; (i) FCN_V2; (j) the proposed method (PFCN_V1); (k) the proposed method (PFCN_V2).
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Figure 11. (Continued.) Examples of results of thermal reflection removal. (a) Original images; (b) ground-truth images;
(c) SegNet-based removal method; (d) CycleGAN; (e) PLN; (f) Mask R-CNN + CycleGAN; (g) Mask R-CNN-based removal
method; (h) FCN_V1; (i) FCN_V2; (j) the proposed method (PFCN_V1); (k) the proposed method (PFCN_V2).

C. TESTING
1) TESTING RESULTS OF THERMAL REFLECTION REMOVAL
In this section, the comparison results of the proposed
method and the state-of-the-art methods are provided. For
the comparison, the accuracies of seven types of methods

i.e., CycleGAN [44], PLN [10], Mask R-CNN + PLN [12],
SegNet [43]-based removal method [12], Mask R-CNN [18]-
based removal method [12], FCN_V1 [46], and FCN_V2
[46] are compared with the accuracy of the method proposed
in this study. Based on the original parameters provided by
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Figure 12. Example images of the open database.

authors, the optimal parameters of these seven types of meth-
ods were obtained by the further procedure of fine-tuning
with the training dataset of our experimental data.

For fair comparisons, same training and testing data were
used for both the previous methods and our method. For
measuring the accuracy, the similarities between the ground-
truth image (GT(i, j)) in which thermal reflection was man-
ually removed and the image (Out(i, j)) in which thermal
reflection was automatically removed by the algorithm were
compared. Three kinds of metrics as in Equations (2)–(4)
and the structural similarity index (SSIM) [56] were used to
measure the accuracy.

MSE =

(√
M∑
j=1

N∑
i=1
(GT (i, j)− Out (i, j))2

)2

MN
(2)

SNR = 10log10




M∑
j=1

N∑
i=1
(GT(i,j))2

MN


MSE


(3)

PSNR = 10log10

(
2552

MSE

)
(4)

whereM andN represent the image width and height, respec-
tively. SNR and PSNR are the signal-to-noise ratio [57] and
the peak-signal-to-noise ratio [58], respectively. Equation (5)
expresses the mathematical formula of SSIM.

SSIM =
(2µrµo + S1)(2σro + S2)

(µ2
r+µ

2
o + S1)(σ 2

r +σ
2
o + S2)

(5)

µo and σo represent the mean and standard deviation of the
pixel values of a ground-truth image, respectively, µr and σr

represent the mean and standard deviation of the pixel values
of the restored image, respectively, and σro is the covariance
of the two images. S1 and S2 are positive constants set so that
the denominator does not become zero.

Table 2 shows the comparison of the measured accuracies.
A greater value in Table 2 indicates higher accuracy. As
shown in Table 2, the accuracy of removing thermal reflection
was the highest for all the methods proposed in this study.

Figure 11 shows the results of removal of the thermal
reflection by the proposed method and by the state-of-the-
art methods. The ground-truth image with thermal reflection
removed manually is shown in Figure 11 (b). The results of
the proposed method are shown in Figures 11 (j) and (k),
whereas those of the SegNet-based removal [43], CycleGAN
[44], PLN [10], Mask R-CNN + CycleGAN [46], Mask R-
CNN-based removal [12], FCN_V1 [46], and FCN_V2 [46]
are shown in Figures 11 (c)–(i). As shown in Figure 11, the
accuracy of the removal of thermal reflection by the PFCN
method proposed in this study is the highest for all the cases.

2) TESTING RESULTS USING OPEN DATABASE
Additional experiments were conducted using the existing
thermal image open database to check whether the proposed
method can be applied in other types of environments. There
are several existing open thermal image databases [59]–[69].
However, there are few open databases having thermal
images with thermal reflection. Therefore, in this study, we
conducted additional experiments using an open database
(thermal soccer dataset [59]) having thermal reflection as
shown in Figure 12. The comparison results of the accuracy of
all the methods are shown in Table 3. In the experiment con-
ducted with the open database, the accuracy of the proposed
method was higher than that of the state-of-the-art methods.

Figure 13 (a)–(k) show the source input image hav-
ing thermal reflection, the ground-truth image with
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Figure 13. Examples of result images with the open database. (a) Original images; (b) ground-truth images;
(c) SegNet-based removal method; (d) CycleGAN; (e) PLN; (f) Mask R-CNN + CycleGAN; (g) Mask R-CNN-based removal
method; (h) FCN_V1; (i) FCN_V2; (j) the proposed method (PFCN_V1); (k) the proposed method (PFCN_V2).
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Figure 13. (Continued.) Examples of result images with the open database. (a) Original images; (b) ground-truth images;
(c) SegNet-based removal method; (d) CycleGAN; (e) PLN; (f) Mask R-CNN + CycleGAN; (g) Mask R-CNN-based removal
method; (h) FCN_V1; (i) FCN_V2; (j) the proposed method (PFCN_V1); (k) the proposed method (PFCN_V2).

thermal reflection manually removed, and the results of ther-
mal reflection removed by all the methods. As shown in
Figure 13 (j) and (k), images for which thermal reflection
was removed by the proposed method were most similar to
the ground-truth image.

In this research, we did not measure the accuracy of the
detection, and there is no error of false acceptance and rejec-
tion. Instead, we measured the quality of restored image by
our method by calculating the similarity between our restored
and ground-truth images based on Equations (2) ∼ (5).
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Figure 14. Example of detection results by Mask R-CNN. (a) Original images; (b) ground truth images; (c) results
obtained for PLN;(d) results obtained for our method.

TABLE 4. Comparison of processing speeds of the FCN and proposed
PFCN.

As shown in Tables 2, 3, and Figures 11 ∼ 13, the similar-
ity between our restored and ground-truth images is higher
than those between the restored image by previous methods
[10], [12], [43], [44], [46] and the ground-truth image, which
confirms the superiority of our method for thermal reflection
removal.

TABLE 5. Comparison of object detection accuracy by our method with
the previous method.

3) COMPARISONS OF PROCESSING SPEED OF THE FCN
AND PROPOSED PFCN
In the next experiment, we compared the processing speed
between FCN and the proposed PFCN for an input image.
The experiment was performed on the desktop computer
described in section V.A. As shown in Table 4, the proposed
PFCN was faster than the conventional FCN.
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TABLE 6. Description of the structure of the proposed FCN_V1.

4) COMPARISONS OF OBJECT DETECTION ACCURACY BY
OUR METHOD WITH THE PREVIOUS METHOD
Although the generated background by PLN method
seems to be more desired than that by our method,
there exist lots of errors that the pixels inside of object
are incorrectly recognized as backgrounds as shown in
Figures 11 (e) and 13 (e) compared to the ground-truth
images of Figures 11 (b) and 13 (b). Nevertheless, these
errors are much reduced in the result image by our method as
shown in Figures 11 (j), (k) and 13 (j), (k). To confirm these
observations, we performed the additional experiments of
object detection by Mask R-CNN [18] with the result images
by PLN method and our method. Accuracy was measured
based on five metrics of recall, precision, GlobalACC, F1
score, and Jaccard similarity [12]. Accuracy (ACC) is the
percentage of correctly classified pixels for each class as
shown in Equation (6). Here, #TP, #TN, #FP, and #FN
represent the number of true positive data, true negative data,
false-positive data, and false-negative data, respectively. The
positive and negative data represent the pixels of the object
and the background, respectively. TP represents the data that
are positive and correctly classified as positive data whereas

TN means data that are negative and correctly classified as
negative data. FP represents data that are negative but incor-
rectly classified as positive data, whereas FN represents data
that are positive, but incorrectly classified as negative data.

Accuracy (ACC) =
#TP+ #TN

# TP+# TN+# FP+# FN
(6)

The global accuracy (GlobalACC) is defined as the ratio
of correctly classified pixels to the total number of pixels.
The F1 score is calculated based on precision and recall
as shown in Equation (7). In this case, precision is calcu-
lated as #TP/(#TP+#FP), whereas recall is calculated as
#TP/(#TP+#FN).

F1 = 2·
precision · recall
precision+ recall

(7)

For a class, the intersection over union (IoU) is the ratio of
the correctly classified pixels to the total number of ground
truth and predicted pixels in that class. The IoU score is also
known as the Jaccard similarity, and it can be calculated with
two sets X and Y as shown in Equation (8). In this case, X is
the ground truth pixel of the object whereas Y is the detected
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TABLE 7. Description of the structure of the proposed FCN_V2.
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TABLE 8. Description of the structure of the proposed PFCN_V1.

pixel of object.

Jaccard (X,Y) =
|X ∩ Y |
|X ∪ Y|

=
TP

TP+ FP+ FN
(8)

As shown in Table 5, our restored image + Mask R-CNN
showed a higher detection accuracy compared to that by PLN
+Mask R-CNN for all five metrics. In Figure 14, the results
of PLN + Mask R-CNN and our method + Mask R-CNN
are compared. As shown in this figure, it is evident that the
detection accuracy of our method + Mask R-CNN is higher
than that of PLN +Mask R-CNN.

VII. CONCLUSIONS
In this study, variousmethods for removing thermal reflection
in thermal images of diverse objects were proposed. Specifi-
cally, the new method using PFCN, which considers the heat
information of nearby ground and walls, is proposed when
an image is transformed only within the region where ther-
mal reflection is detected. In the PFCN model, unnecessary
channels and parameters are removed from the existing FCN
structure through training, and the performance of ther-
mal reflection removal is improved despite having fewer
parameters than the FCN model. The proposed method was

compared against various state-of-the-art methods (SegNet-
based removal, CycleGAN, PLN, Mask R-CNN + Cycle-
GAN, Mask R-CNN-based removal, FCN_V1, FCN_V2),
and thus, the accuracy of removing thermal reflection using
the proposed method was proven to be higher than that of the
state-of-the-art methods when experiments were conducted
using our database and additional open databases. As shown
in [33], PLN and CycleGAN-based method which were com-
pared in our experiment were used for image inpainting, and
we can regard these methods as the classical image inpaining
algorithm. As shown in Tables 2, 3, 5, and Figures 11 ∼ 14,
our method shows the higher accuracy than these image
inpaining methods.

The reason why there remains the border around the
detected reflection is that the generated mask by our PFCN
is a little smaller than the ground-truth reflection area.
Nevertheless, it does not give much influence on the detection
accuracy of object as shown in Table 5 and Figure 14.

To solve this problem of remained border, we can adjust
the output threshold of PFCN, which produces the larger
mask and reduces the consequent border around the detected
reflections. We would research about this method in future
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TABLE 9. Description of the structure of the proposed PFCN_V2.

work. A method for transforming low-resolution thermal
images to high-resolution images will be examined in future
research. Furthermore, a method for detecting the object,

thermal reflection, and halo effect in thermal images and
removing thermal reflection and halo effect will be studied as
well.
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APPENDIX
See Table 6–9.
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