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ABSTRACT The working medium of the adaptive gun head jet system of fire-fighting monitor is generally
water containing a little bit of air. During the operation, the pressure pulsation of the fluid will cause the
fluctuation of the equivalent stiffness of the gas-liquid mixed fluid, so that the motion of the fluid in the jet
system has obvious nonlinear characteristics. In this paper, the nonlinear dynamic model of the jet system is
established. The analytical expressions of the nonlinear vibration response of the jet system are derived via
the multi-scale method. The main resonance and combined resonance of the jet system are determined. The
results show that the external excitation frequency is the dominant frequency of the main resonance response
of the jet system, and the combined frequency between the natural frequency of each order and the equivalent
stiffness fluctuation frequency of the fluid unit has a small effect on the main resonance, and the maximum
amplitude is 0.2592mm; the dominant frequency of the combined resonance response of the jet system is
the combined frequency between the natural frequency of each order and the equivalent stiffness fluctuation
frequency of the fluid unit, the system amplitude in combined resonance is smaller than that in the main
resonance, and the maximum amplitude is 0.002532mm; the main resonance and the combined resonance
will adversely affect the dynamic characteristics of the jet system. This research can provide a theoretical
basis for the dynamic optimization of the adaptive gun head jet system of the fire-fighting monitor.

INDEX TERMS Fire-fighting monitor, adaptive gun head, jet system, nonlinear vibration, dynamics.

I. INTRODUCTION
The nozzle opening of the adaptive gun head of the fire-
fighting monitor can be adjusted according to the inlet flow
and pressure of the jet system, so that the fire-fightingmonitor
can operate in optimal condition under various flows and
extinguish large fires quickly and efficiently [1]. The work-
ing medium of the fire-fighting monitor is generally water
containing a little bit of air. When the fire pump converts
the mechanical energy of the prime mover into the kinetic
energy of the fluid, it is likely that the air will be released
because the pressure is lower than the air apart pressure.
Meanwhile, a certain amount of air foam is often mixed at
the entrance or exit of the fire pump to enhance the effect of
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fire extinguishing. Therefore, the jet fluid of the fire monitor
is actually water containing a little bit of air, i.e. a gas-
liquid mixed fluid. During the operation, the pulsation of
both the flow and pressure of the fire pump inevitably causes
the bulk modulus and stiffness of the jet fluid to constantly
change. The stiffness of the gas-liquid mixed fluid determines
the natural frequency of the fluid transmission system and
directly affects the static and dynamic performance [2]. Since
the fluid state parameters change periodically caused by the
fluid compressibility and pressure pulsation, the jet system is
a non-autonomous system and has obvious nonlinear charac-
teristics.

The pressure pulsation of the jet system mainly comes
from the pulsation of the fire pump itself. The fluid in the
pump has two different types of pressure pulsations, namely
turbulent pulsations that ignore the compressibility of the
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fluid and pulse pulsations that ignore the viscosity of the
fluid. It is generally considered that turbulent pulsations are
random pulsations close to white noise, and pulse pulsations
include harmonic signals, which are mainly composed of
pulsations whose frequency is blade-passing frequency and
harmonics, and pulsations whose frequency is rotation fre-
quency and harmonics. The pressure pulsation of the fire
pump is not only related to the rotation of the pump blades
and shafts, but also affected by the cavitation and turbulence
of the fluid. However, even the same fire pump still has
pressure pulsations with different properties under different
working conditions. Therefore, it is difficult to predict the
pressure pulsations theoretically. With the popularization of
computer technology, especially based on the development
of computational fluid dynamics, modern intelligent fault
diagnosis, digital signal processing and fast Fourier transform
algorithm [3], [4], the multi-mode simulation and pulsation
spectrum analysis of the internal flow field of the centrifugal
pump have become a reality. Li et al. calculated the unsteady
flow characteristics of the mixed-flow pump, analyzed the
pressure pulsation characteristics of the mixed-flow pump
under near stall conditions, and revealed the stall propagation
mechanism [5]. Gao et al. analyzed the unsteady pressure
pulsation and internal flow characteristics of the centrifugal
pump, expounded the root cause of the periodic pressure
pulsation, and pointed out that the interaction between the
impeller and the volute tongue has a significant effect on
the unsteady pressure pulsation of the centrifugal pump [6].
Zhang experimentally studied the effect of blade cutting on
pump performance, especially the effect of pressure pulsa-
tion, and discussed the relationship between internal flow
and pressure pulsation by numerical calculation [7]. Through
experiments and numerical simulations, Appiah et al. verified
that the instability of internal flow field during the rotation of
the centrifugal pump impeller was the main factor causing the
pressure pulsation, and pointed out that the rotor-stator inter-
action generated the highest pressure pulsation distribution at
the volute tongue [8].

Aiming at the nonlinear dynamics of non-autonomous
systems, scholars focus on applying nonlinear dynamic
theory and methods to study the nonlinear vibration law,
such as bifurcation and chaos, when random parameters
change [9], [10]. The perturbation method, including the
Krylov-Bogolubov-Mitropolsky (KBM) method, the har-
monic balance method, and the multi-scale method, is often
adopted in parametric vibration research, which can be
directly used to solve the system’s nonlinear differential equa-
tions [11], [12]. Moreover, the homotopy analysis method
based on the continuously changing topological theory,
is often used in analysis of strong nonlinear systems [13].
Liu et al. studied the nonlinear damped vibration of a fab-
ric membrane under impact loading through the KBM per-
turbation method [14]. Keleshteri and Jelovica applied the
harmonic balance method along with the direct iterative
approach to the research of the free vibration response of
functionally graded porous (FGP) cylindrical panels [15].

Wang et al. established the nonlinear free vibration model
of a cantilever beam considering the effects of gravity, and
analyzed super-harmonic resonances by the time-domain
multi-scale method and harmonic balance method [16].
Sadri et al. applied multi-scale method to analyze the primary
and secondary resonance conditions of a cantilever beamwith
intermediate lumped masses [17]. Armand et al. analyzed the
effect of fretting wear on the nonlinear dynamic behaviors
of assembly structures by the multi-scale method [18]. Hao
researched the forced responses, the main resonances, and the
superharmonic resonances of electromechanical integrated
magnetic gear (EIMG) system via the multi-scale method,
and found that when the wave frequency was close to the
natural frequency or twice/half the natural frequency of the
derived EIMG system, strong resonance occurred [19], [20].
Odibat proposed an optimal homotopy analysis approach,
which accelerated the convergence of series solutions and
was expected to be adopted in nonlinear problems in frac-
tional calculus [21]. In order to deal with the common
nonlinear problems of fluid transmission systems, scholars
have analyzed the nonlinear dynamic characteristics through
amplitude-frequency diagrams, time histories, Fourier spec-
tra, phase portraits, and Poincare maps, and studied the
instability mechanism [22], [23]. Some researchers employed
several control strategies, such as adaptive robust control
[24], [25], active disturbance rejection control [26], and mul-
tilayer neural-networks [27], to improve the control accuracy
of the transmission system, thereby reducing the impact of
vibration on the dynamic performance of the system. There
are also scholars who proposed a novel pump and valve
combined electro-hydraulic system [28] to improve the static
and dynamic performance of the transmission system via
principle innovation.

In summary, there is a periodic pressure pulsation during
the operation of the fire pump, and the pressure pulsation
directly affects the stability of the jet system. Research on
the parameter vibration of the adaptive gun head jet system
of fire-fighting monitor considering the pressure pulsation of
the fire pump, however, has not been carried out. Based on
the assumption that the fluid pressure pulsation is a harmonic
function, a dynamicmodel of the adaptive gun head jet system
of fire-fighting monitor is established, and the main reso-
nance and combined resonance response under the parameter
vibration of the jet system are determined by the multi-scale
method, which can provide a theoretical basis for dynamic
optimization design of the jet system.

II. DYNAMIC MODEL OF THE JET SYSTEM
The structure of the adaptive gun head is shown in Fig. 1.
The inlet of the gun head is on the left side and the outlet
is on the right. The adaptive mechanism consisting of the
spray core, the end cap, the core rod, and the spring is the
core component of the adaptive gun head. The end cap and
the core rod are fixedly connected to the enclosure through
the regulator. The spray core can slide in the axial direction.
The left side of the spring acts on the spray core and the right
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FIGURE 1. Structure of adaptive gun head. 1. Joint, 2. Nut, 3. Regulator,
4. Gasket, 5. Enclosure, 6. Ring, 7. Outer nozzle, 8. Inner nozzle, 9. Spray
core, 10. End cap, 11. Core rod, 12. Spring, 13. Core sleeve, 14. Seal ring.

FIGURE 2. Internal structure of the adaptive gun head of the fire-fighting
monitor.

side acts on the end cap. At the initial moment, the spring
is in a pre-compressed state. Meanwhile, the spray core is
closely attached to the inner nozzle and the nozzle opening
is zero. When the nozzle inlet flow increases, the force on the
left side of the spray core increases. When the fluid force is
greater than the spring force, the spray coremoves to the right,
and the nozzle opening increases. In contrast, when the inlet
flow decreases, the spray core moves to the left, and the
nozzle opening decreases. The adaptive mechanism enables
the adaptive gun head to automatically adjust the nozzle
opening according to the changes of inlet flow and pressure,
so that it can achieve better jet performance under various
operating conditions, and extinguish large fires quickly and
efficiently.

The internal structure of the adaptive gun head of the fire-
fighting monitor is shown in Fig. 2, and the pipe sections and
their cross-sectional dimensions are shown in Table 1.

In Fig. 2, the red line with arrows is the flow line of the
fluid. It can be known from the direction of the line that after
flowing through the section n-n, where the nozzle opening
locates, the fluid is reflected by the internal surface of the
outer nozzle and converges at the front end of the gun head
to form a jet. The regulator, installed at the fifth section of
the gun head as shown in both Fig. 2 and Table 1, can turn
the radial velocity of the fluid into the axial velocity, make
the flow line more regular, and improve the stability of the
jet. At the center of the spray core guidance surface, there
are circular holes distributed evenly along the circle. During
the operation of the fire-fighting monitor, the fluid enters the

TABLE 1. Internal structure size of the adaptive gun head of the
fire-fighting monitor.

FIGURE 3. Dynamic model of the adaptive gun head jet system of the
fire-fighting monitor.

interior of the spray core through circular holes and forms a
certain hydrostatic pressure.

In order to facilitate theoretical modeling and analysis,
the dynamic model of the adaptive gun head jet system of
fire-fighting monitor makes the following assumptions:

1. Except the fluid unit and the spring, the parts such as the
spray core and the enclosure are considered to be rigid bodies
and their deformation is not considered.

2. The spray core and the fluid are only subjected to the
axial force, and the force of the fluid on the spray core is
simplified to the spring force along the axial direction.

3. The damping between the fluid unit and the solid ele-
ment is equivalent to the axial linear damping, and the damp-
ing formed by the uniformly distributed small hole on the
nozzle is equivalent to the axial linear damping.

4. Processing and installation errors of all parts are ignored.
The established dynamic model of the adaptive gun head

jet system of the fire-fighting monitor is shown in Fig. 3.
In Fig. 3, F is the pulsating excitation force caused by the

pressure fluctuation of the fire pump. m1, m2, and m3 are the
masses of the fluid unit 1, the spray core and the fluid unit
2 in the jet system, respectively. The fluid unit 1 is the fluid
contained by the inlet flow cross section, the outer surface of
the spray core, and the flow cross section n-n of the jet system,
along with the internal surface of the fire-fighting monitor
parts. The fluid unit 2 is the fluid contained by the inner
surface of the spray core and the left end surface of the end
cap. kf1 is the stiffness of fluid unit 1. kf21 is equal to kf22, the
total stiffness obtained by paralleling the two is the stiffness
of fluid unit 2. k1 is the stiffness of the mechanical spring
inside the spray core. c1 is the equivalent linear damping
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between the pipe wall and the outer wall of the monitor and
the fluid unit 1 in the jet system. c2 is equal to c3, and the total
damping obtained by paralleling the two is equivalent to the
structural damping of the orifice of the spray core.

III. DERIVATION AND SOLUTION OF VIBRATION
EQUATION OF JET SYSTEM
A. TIME-VARYING EQUIVALENT STIFFNESS OF FLUID
In the dynamic model shown in Fig. 3, the stiffness of the
fluid unit needs to be calculated equivalently. According to
the bulk modulus theory of the gas-liquid mixed fluid, let Bf
represents the bulk modulus of the gas-liquid mixed fluid,
then we can get:

Bf = −
V1p
1V

(1)

Assuming that the average area of the flow section of the
fluid unit is Sa and the axial length of the fluid domain is l,
then the volume of the fluid domain is:

V = Sal (2)

The definition of stiffness is:

kf = −
1F
1l

(3)

Combining (1), (2), and (3), the fluid equivalent stiffness
can be expressed with the fluid bulk modulus as:

kf =
BfSa
l

(4)

During the operation, the pulsation of the flow and pres-
sure of the fire pump is inevitable, so the fluid density and
equivalent stiffness constantly change. Under actual working
conditions, the fluid pressure consists of two parts: average
pressure and pulsating pressure. Assuming that the pulsat-
ing pressure varies by cosine, according to Euler’s theorem,
the time-varying pressure pulsation can be expressed as:

p = p̄+1p
(
ejωot + e-jωot

)
(5)

where p is steady pressure, 1p is the pressure pulsation
amplitude (Pa), and ωo is the pressure pulsation angular
frequency (rad/s).

Under a certain initial gas content, the fluctuation of the
equivalent fluid stiffness is consistent with the fluid pressure
and can be expressed as:

kfi = k̄fi +1kfi cosωft = k̄fi
(
1+ εejωft + εe-jωft

)
(6)

where i = 1, 2, k̄fi is the steady equivalent stiffness of the fluid
unit (N/m), 1kfi is the equivalent stiffness fluctuation of the
fluid unit (N/m), ε is a small parameter and ε = 1kfi

/
2k̄fi,

ωf is the time-varying equivalent stiffness angular frequency
of the fluid unit (rad/s).

B. PARAMETRIC VIBRATION EQUATION OF JET SYSTEM
Based on the lumped parameter method, kf2 represents par-
alleled kf21 and kf22, and the parametric vibration equation
obtained from the dynamic model of the jet system shown
in Fig. 3 is:

Mẍ+ Cẋ+ Kx = 1F−1Kx (7)

where the mass matrix is:

M =

m′1 m′2
m′3

 (8)

The damping matrix is:

C =

 c1 −c1 0
−c1 c1 + c2 −c2
0 −c2 c2 + c3

 (9)

The stiffness matrix is:

K =


kf1 −kf1 0

−kf1 kf1 +
kf2
2
+ k1 −

kf2
2

0 −
kf2
2

kf2

 (10)

Under stable operation, the equivalent stiffness of the two
fluid units and the external force on the jet system vary
by cosine. According to Euler’s formula, the time-varying
external excitation of a jet system can be expressed as:

1F =
[
F

(
ejωot + e-jωot

)
2

0 0

]T
(11)

The stiffness fluctuation matrix is:

1K = ε
(
ejωft + e-jωft

)
k̄f1 −k̄f1 0

−k̄f1 k̄f1 +
k̄f2
2

−
k̄f2
2

0 −
k̄f2
2

k̄f2


(12)

The regular mode ψ and the spectral matrix 3 of the
system are known, after the regularization of (7), we can
obtain:

η̈ + CNη̇ +3η = 1Q−1KNη (13)

where η is the regular displacement vector, CN is the regular
damping matrix, 1Q is the regular external excitation vector
and1KN is the regular equivalent stiffness fluctuation matrix
of the fluid unit.

Among them, CN is:

CN =

 cN11 cN12 cN13
cN21 cN22 cN23
cN31 cN32 cN33

 (14)

1 Q can be expressed as:

1Q = F

(
ejωft + e-jωft

)
2

[
ψ1,1 ψ1,2 ψ1,3

]T (15)
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And 1 KN is:

1KN = ε
(
ejωft + e-jωft

)1kN11 1kN12 1kN13
1kN21 1kN22 1kN23
1kN31 1kN32 1kN33


(16)

C. APPROXIMATE ANALYTICAL SOLUTION OF THE MAIN
RESONANCE OF JET SYSTEM
Based on the multi-scale method, the quadratic approximate
solution and small parameter are introduced:

ηi = ηi0 (T0,T1)+ εηi1 (T0,T1)+ · · ·
cNij = εc′Nij
F = εF ′

(17)

where T0 = t , T1 = εt , and values of i and j are 1, 2, and 3,
respectively.

Substituting the above equations into (13), we can get the
zero power equation of ε:

∂2η10

∂T 2
0

+ ω2
n1η10 = 0

∂2η20

∂T 2
0

+ ω2
n2η20 = 0

∂2η30

∂T 2
0

+ ω2
n3η30 = 0

(18)

And the first power equation of ε is:

∂2η11

∂T 2
0

+ ω2
n1η11

= −2
∂2η10

∂T0∂T1
+
F ′ejωot

2
ψ1,1

−

(
c′N11

∂η10

∂T0
+ c′N12

∂η20

∂T0
+ c′N13

∂η30

∂T0

)
−ejωft (1kN11η10 +1kN12η20 +1kN13η30)+ cc
∂2η21

∂T 2
0

+ ω2
n2η21

= −2
∂2η20

∂T0∂T1
+
F ′ejωot

2
ψ1,2

−

(
c′N21

∂η10

∂T0
+ c′N22

∂η20

∂T0
+ c′N23

∂η30

∂T0

)
−ejωft (1kN21η10 +1kN22η20 +1kN23η30)+ cc
∂2η31

∂T 2
0

+ ω2
n3η31

= −2
∂2η30

∂T0∂T1
+
F ′ejωot

2
ψ1,3

−

(
c′N31

∂η10

∂T0
+ c′N32

∂η20

∂T0
+ c′N33

∂η30

∂T0

)
−ejωft (1kN31η10 +1kN32η20 +1kN33η30)+ cc

(19)

where, cc is the complex conjugate.
Let the solution of (18) be:

ηi0 = AiejωniT0 + cc (20)

where, i = 1, 2, and 3.

The following equation can be obtained by substituting
(20) into (19):

∂2η11

∂T 2
0

+ ω2
n1η11

= −jωn1

(
2
dA1
dT1
+ c′N11A1

)
ejωn1T0 +

F ′ejωot

2
ψ1,1

−
(
c′N12jωn2A2ejωn2T0 + c′N13jωn3A3ejωn3T0

)
−

(
1kN11A1ej(ωn1+ωf)T0 +1kN12A2ej(ωn2+ωf)T0+
1kN13A3ej(ωn3+ωf)T0

)
+ cc

∂2η21

∂T 2
0

+ ω2
n2η21

= −jωn2

(
2
dA2
dT1
+ c′N22A2

)
ejωn2T0 +

F ′ejωot

2
ψ1,2

−
(
c′N21jωn1A1ejωn1T0 + c′N23jωn3A3ejωn3T0

)
−

(
1kN21A1ej(ωn1+ωf)T0 +1kN22A2ej(ωn2+ωf)T0+
1kN23A3ej(ωn3+ωf)T0

)
+ cc

∂2η31

∂T 2
0

+ ω2
n3η31

= −jωn3

(
2
dA3
dT1
+ c′N33A3

)
ejωn3T0 +

F ′ejωot

2
ψ1,3

−
(
c′N31jωn1A1ejωn1T0 + c′N32jωn2A2ejωn2T0

)
−

(
1kN31A1ej(ωn1+ωf)T0 +1kN32A2ej(ωn2+ωf)T0+
1kN33A3ej(ωn3+ωf)T0

)
+ cc

(21)

When the external excitation frequency of is close to the
first natural frequency of the jet system, the main resonance
of the jet system will occur. After introducing the tuning
parameter σ , ωo can be expressed as:

ωo = ωn1 + εσ (22)

After substituting (22) into (21), we need to eliminate the
secular term, so:

−jωn1

(
2 dA1
dT1
+ c′N11A1

)
+ F ′ψ1,1

ejσT1

2
= 0

−jωn2

(
2
dA2
dT1
+ c′N22A2

)
= 0

−jωn3

(
2
dA3
dT1
+ c′N33A3

)
= 0

(23)

Equation (23) can be solved by method of variation of
constant, and the solution is:

A1 = C1e−
c′N11
2 T1 +

F ′ψ1,1

j2ωn1
(
2jσ + c′N11

)ejσT1
A2 = C2e

−

c′N22
2

T1

A3 = C3e−
c′N33
2 T1

(24)

where Ci (i = 1, 2, 3) is a constant determined by the initial
conditions of the jet system.
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The first formula in (23) can be simplified by combining
trigonometric function, complex number, and Euler’s for-
mula:

A1 = C1e−
c′N11
2 T1 −

F ′ψ1,1

2ωn1

√(
c′N11

)2
+ 4σ 2

ej(θ+σT1) (25)

where θ = arctan
(
c′N11
2σ

)
.

The term Cie−
c′Nii
2 T1 in (24) will gradually approach zero

over time, so the steady zero-order approximate analytical
solution of the jet system can be obtained by substituting (24)
into (20):
η10 = −

F ′ψ1,1

ωn1

√(
c′N11

)2
+ 4σ 2

cos (θ + (ωn1 + εσ ) t)

η20 = 0
η30 = 0

(26)

The steady first-order approximate analytical solution of
the jet system can be obtained by substituting (24) and (25)
into (21):

η11 = −21kN11A1


cos (ωn1 − ωf) t
ωf (2ωn1 − ωf)

−
cos (ωn1 + ωf) t
ωf (2ωn1 + ωf)


η21 =

F ′oψ1,2cos (ωot)

ω2
n2 − ω

2
o

− 2


1kN21A1


cos (ωn1 + ωf) t

ω2
n2 − (ωn1 + ωf)

2

+
cos (ωn1 − ωf) t

ω2
n2 − (ωn1 − ωf)

2


−
c′N21ωn1A1sinωn1t

ω2
n2 − ω

2
n1


η31 =

F ′oψ1,3cos (ωot)

ω2
n3 − ω

2
o

− 2


1kN31A1


cos (ωn1 + ωf) t

ω2
n3 − (ωn1 + ωf)

2

+
cos (ωn1 − ωf) t

ω2
n3 − (ωn1 − ωf)

2


−
c′N31ωn1A1sinωn1t

ω2
n3 − ω

2
n1



(27)

Then the steady response of the main resonance of the jet
system in rectangular coordinates is:

x = ψ
(
η0 + εη1

)
(28)

When the external excitation frequency approaches
the second and third natural frequencies of the jet system
respectively, the main resonance response can be obtained
referring to the above solution process.

From the above results, it can be known that the main
resonance response of the jet system includes multiple fre-
quency components, including the first natural frequency,
the second natural frequency, the third natural frequency,

the fluid equivalent stiffness fluctuation frequency, and the
combination frequency of the natural frequency and the stiff-
ness fluctuation frequency.

D. APPROXIMATE ANALYTICAL SOLUTION OF THE
COMBINED RESONANCE OF JET SYSTEM
Similar to the derivation of the main resonance, the multi-
scale method is also used to derive the combined resonance
response of the jet system. The quadratic approximate solu-
tion and small parameter are introduced, then:{

ηi = ηi0 (T0,T1)+ εηi1 (T0,T1)+ · · ·
cNij = εc′Nij

(29)

where, Tn = εnt and values of i and j are 1, 2, and 3,
respectively.
Substituting (29) into (13), we can get the zero power

equation of ε:

∂2η10

∂T 2
0

+ ω2
n1η10 =

Fψ1,1

2
ejωot + cc

∂2η20

∂T 2
0

+ ω2
n2η20 =

Fψ1,2

2
ejωot + cc

∂2η30

∂T 2
0

+ ω2
n3η30 =

Fψ1,3

2
ejωot + cc

(30)

where cc is the complex conjugate.
And the first power equation of ε is:

∂2η11

∂T 2
0

+ ω2
n1η11

= −2
∂2η10

∂T0∂T1
−ejωft (1kN11η10 +1kN12η20 +1kN13η30)

−

(
c′N11

∂η10

∂T0
+ c′N12

∂η20

∂T0
+ c′N13

∂η30

∂T0

)
+ cc

∂2η21

∂T 2
0

+ ω2
n2η21

= −2
∂2η20

∂T0∂T1
−ejωft (1kN21η10 +1kN22η20 +1kN23η30)

−

(
c′N21

∂η10

∂T0
+ c′N22

∂η20

∂T0
+ c′N23

∂η30

∂T0

)
+ cc

∂2η31

∂T 2
0

+ ω2
n3η31

= −2
∂2η30

∂T0∂T1
−ejωft (1kN31η10 +1kN32η20 +1kN33η30)

−

(
c′N31

∂η10

∂T0
+ c′N32

∂η20

∂T0
+ c′N33

∂η30

∂T0

)
+ cc

(31)

Let the solution of (30) be:

ηi0 = BiejωniT0 + DiejωoT0 + cc (32)

where, Di =
Fψ1,i

2
(
ω2
ni−ω

2
o
) and i = 1, 2, and 3.
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The following equation can be obtained by substituting
(32) into (31):



∂2η11

∂T 2
0

+ ω2
n1η11

= −2jωn1
dB1
dT1

ejωn1T0

−

 c
′

N11

(
jωn1B1ejωn1T0 + jωoD1ejωoT0

)
+

c′N12
(
jωn2B2ejωn2T0 + jωoD2ejωoT0

)
+

c′N13
(
jωn3B3ejωn3T0 + jωoD3ejωoT0

)


−

1kN11
(
B1ej(ωn1+ωf)T0 + D1ej(ωo+ωf)T0

)
+1kN12

(
B2ej(ωn2+ωf)T0 + D2ej(ωo+ωf)T0

)
+1kN13

(
B3ej(ωn3+ωf)T0 + D3ej(ωo+ωf)T0

)
+ cc

∂2η21

∂T 2
0

+ ω2
n2η21

= −2jωn2
dB2
dT1

ejωn2T0

−

 c
′

N21

(
jωn1B1ejωn1T0 + jωoD1ejωoT0

)
+

c′N22
(
jωn2B2ejωn2T0 + jωoD2ejωoT0

)
+

c′N23
(
jωn3B3ejωn3T0 + jωoD3ejωoT0

)


−

1kN21
(
B1ej(ωn1+ωf)T0 + D1ej(ωo+ωf)T0

)
+1kN22

(
B2ej(ωn2+ωf)T0 + D2ej(ωo+ωf)T0

)
+1kN23

(
B3ej(ωn3+ωf)T0 + D3ej(ωo+ωf)T0

)
+ cc

∂2η31

∂T 2
0

+ ω2
n3η31

= −2jωn3
dB3
dT1

ejωn3T0

−

 c
′

N31

(
jωn1B1ejωn1T0 + jωoD1ejωoT0

)
+

c′N32
(
jωn2B2ejωn2T0 + jωoD2ejωoT0

)
+

c′N33
(
jωn3B3ejωn3T0 + jωoD3ejωoT0

)


−

1kN31
(
B1ej(ωn1+ωf)T0 + D1ej(ωo+ωf)T0

)
+1kN32

(
B2ej(ωn2+ωf)T0 + D2ej(ωo+ωf)T0

)
+1kN33

(
B3ej(ωn3+ωf)T0 + D3ej(ωo+ωf)T0

)
+ cc

(33)

According to (33), except that when the external excitation
frequency is close to the natural frequencies of the jet sys-
tem, the main resonance of the jet system will occur. When
the external excitation frequency is close to the combined
frequency between the natural frequency of each order and
the equivalent stiffness fluctuation frequency of the fluid unit,
the combined resonance of the jet system will also occur. The
emergence of the main resonance and combined resonance
makes the vibration of the jet system more complex and
diverse.

When the external excitation frequency of is close to the
first natural frequency of the jet systemωn1 and the equivalent
stiffness fluctuation frequency of the fluid ωf, after introduc-
ing the tuning parameter σ , ωo can be expressed as:

ωo = ωn1 + ωf + εσ (34)

TABLE 2. Parameters of adaptive gun head jet system of the fire-fighting
monitor.

After substituting (34) into (33), we need to eliminate the
secular term, so:

jωn1

(
2
dB1
dT1
+ c′N11B1

)
+ (1kN11D1 +1kN12D2 +1kN13D3) ejσT1 = 0

jωn2

(
2
dB2
dT1
+ c′N22B2

)
= 0

jωn3

(
2
dB3
dT1
+ c′N33B3

)
= 0

(35)

Equation (35) can be solved by method of variation of
constant, and the solution is:
B1=E1e−

c′N11
2 T1+

(1kN11D1+1kN12D2+1kN13D3)

ωn1

√
4σ 2+(c′N11)

2
ej(θ+σT1)

B2 = E2e−
c′N22
2 T1

B3 = E3e−
c′N33
2 T1

(36)

where Ei (i = 1, 2, 3) is a constant determined by the initial
conditions of the jet system, and θ = arctan(

c′N11
2σ ).

The steady zero-order approximate analytical solution of
the jet system can be obtained by substituting (36) into (32):

η10 = 2
(1kN11D1 +1kN12D2 +1kN13D3)

ωn1

√
4σ 2 +

(
c′N11

)2
cos (θ + (ωn1 + εσ ) t)+ 2D1 cosωot

η20 = 2D2 cosωot
η30 = 2D3 cosωot

(37)
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The steady first-order approximate analytical solution of
the jet system can be obtained by substituting (36) into (33):

η11

=−2



1kN11B1


cos (ωn1−ωf) t
ωf (2ωn1−ωf)

−
cos (ωn1+ωf) t
ωf (2ωn1+ωf)


+
(1kN11D1+1kN12D2+1kN13D3) cos (ωo+ωf) t(

ω2
n1−(ωo+ωf)

2)
−
ωo
(
c′N11D1+c′N12D2+c′N13D3

)
sinωot(

ω2
n1−ω

2
o
)


η21

= −2



1kN21B1


cos (ωn1 + ωf) t

ω2
n2 − (ωn1 + ωf)

2

+
cos (ωn1 − ωf) t

ω2
n2 − (ωn1 − ωf)

2


+ (1kN21D1 +1kN22D2 +1kN23D3)

cos (ωo + ωf) t

ω2
n2 − (ωo + ωf)

2

+
cos (ωo − ωf) t

ω2
n2 − (ωo − ωf)

2


−
ωo
(
c′N21D1 + c′N22D2 + c′N23D3

)
sinωot

ω2
n2 − ω

2
o

−
ωn1c′N21B1 sinωn1t

ω2
n2 − ω

2
n1


η31

=−2



1kN31B1


cos (ωn1 + ωf) t

ω2
n3 − (ωn1 + ωf)

2

+
cos (ωn1 − ωf) t

ω2
n3 − (ωn1 − ωf)

2


+ (1kN31D1 +1kN32D2 +1kN33D3)

cos (ωo+ωf) t

ω2
n3−(ωo + ωf)

2

+
cos (ωo−ωf) t

ω2
n3−(ωo − ωf)

2


−
ωo
(
c′N31D1+c′N32D2+c′N33D3

)
sinωot

ω2
n3−ω

2
o

−
ωn1c′N31B1 sinωn1t

ω2
n3−ω

2
n1


(38)

Then the steady response of the combined resonance of the
jet system in rectangular coordinates is:

x = ψ
(
η0 + εη1

)
(39)

When the external excitation frequency approaches the
combined frequency between the natural frequencies of
the second and third order and the equivalent stiffness fluctu-
ation frequency of the fluid unit respectively, the combined
resonance response can be obtained referring to the above
solution process.

IV. ANALYSIS OF PARAMETRIC VIBRATION RESPONSE
OF JET SYSTEM
The time-domain response of the jet system can be deter-
mined based on the time-domain theory, and the amplitude-
frequency characteristics of the jet system can be determined
by Fourier transform. The parameters of adaptive gun head
jet system of the fire-fighting monitor are shown in Table 2.

A. ANALYSIS OF THE MAIN RESONANCE RESPONSE OF
JET SYSTEM
When the external excitation frequencies are close to the
stable values of the natural angular frequency of each order of
the jet system, the time domain response and the frequency
domain response of the jet system are shown in Fig. 4 and
Fig. 5, respectively.

It can be seen from Fig. 4 that when the external excitation
frequency approaches steady values of the first, second, and
third natural frequency, the main resonance of the jet system
is strong, and the amplitudes of the fluid unit 1, the spray
core and the fluid unit 2 reach the maximum respectively,
which is closely related to the modal characteristics of the
jet system. It can be seen from Fig. 5 that when the main
resonance occurs, the external excitation frequency is the
dominant frequency. From (25) and (26), it can be known
that the main resonance response also includes the combined
frequency between the natural frequency of each order and
the equivalent stiffness fluctuation frequency of the fluid unit.
Since the external excitation frequency is smaller than the
combined frequency, the combined frequency has less effect
on the main resonance of the jet system, but it still has a
regulating effect. When the external excitation frequency is
equal to the first natural frequency, the amplitude of the main
resonance is the largest, which is 0.2592 mm.

B. ANALYSIS OF THE COMBINED RESONANCE
RESPONSE OF JET SYSTEM
When the external excitation frequency is close to the sum
of the stable values of the natural angular frequency of
each order and the equivalent stiffness fluctuation angular
frequency of the fluid unit, the time domain response and
the frequency domain response of the jet system are shown
in Fig. 6 and Fig. 7, respectively.

It can be seen from Fig. 6 that when the external excitation
frequency is close to the combined frequency, the combined
resonance occurs in the jet system and the amplitude is rela-
tively large, but the amplitude is smaller than that in the main
resonance. It can be seen from Fig. 7 that when the combined
resonance occurs in the jet system, the dominant frequency
is the combined frequency, and the natural frequency of each
order has effects of regulation. Meanwhile, it can be found
that when the external excitation frequency is the sum of the
first and second natural frequency and the fluid stiffness fluc-
tuation frequency, respectively, the displacements of the fluid
unit 1 and the spray core reach the maximum, and when the
external excitation frequency is the sum of the third natural
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FIGURE 4. Time domain response of the main resonance of jet system
when ωo ≈ ωni . (a) ωo ≈ ωn1. (b) ωo ≈ ωn2. (c) ωo ≈ ωn3.

frequency and fluid stiffness fluctuation, the displacement of
the fluid unit 1 is the largest. When the external excitation
frequency is the sum of the first natural frequency and the

FIGURE 5. Frequency domain response of the main resonance of jet
system when ωo ≈ ωni . (a) ωo ≈ ωn1. (b) ωo ≈ ωn2. (c) ωo ≈ ωn3.

fluid stiffness fluctuation frequency, the amplitude of the
combined resonance is the largest, which is 0.002532 mm.

V. EXPERIMENTAL VERIFICATION
In order to verify the accuracy of the dynamic model of the
adaptive gun head jet system of the fire-fighting monitor,
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FIGURE 6. Time domain response of the combined resonance of jet
system when ωo ≈ ωi + ωf. (a) ωo ≈ ωn1 + ωf. (b) ωo ≈ ωn2 + ωf.
(c) ωo ≈ ωn3 + ωf.

a modal test is required, which can be divided into two parts,
namely the fluid pressure pulsation modal analysis and the jet
system modal analysis.

FIGURE 7. Frequency domain response of the combined resonance of jet
system when ωo ≈ ωni + ωf. (a) ωo ≈ ωn1 + ωf. (b) ωo ≈ ωn2 + ωf.
(c) ωo ≈ ωn3 + ωf.

A. MODAL ANALYSIS OF THE FLUID PRESSURE
PULSATION
Due to the pressure pulsation of the fluid caused by the
centrifugal pump, the bulk modulus of the fluid unit in
the jet system changes dynamically, which exacerbates the
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FIGURE 8. Curve of fluid pressure pulsation amplitude-frequency
characteristic.

FIGURE 9. Platform for dynamic experiment of the adaptive gun head jet
system of the fire-fighting monitor. (a) prototype of gun head.
(b) experimental equipment.

complexity of the dynamics of the jet system. In order to
determine the pressure pulsation frequency of the input fluid
during the experiment, the amplitude-frequency characteris-
tics of the fluid pressure signal are analyzed, and the cause of
frequency components is not discussed here. The amplitude-
frequency characteristics of the fluid pressure pulsation are
shown in Fig. 8.

It can be seen from Fig. 8 that the amplitude-frequency
characteristic curve of the fluid pressure pulsation has a peak
at 46.8 Hz, and this frequency corresponds to the shaft fre-
quency (2800 RPM) of the centrifugal pump, so the pressure
pulsation frequency of the fluid in the jet system is 46.8 Hz.
In addition, the turbulence in the jet system introduces white
noise components, leading amplitude-frequency characteris-
tic curve to be very complicated as a whole.

B. MODAL ANALYSIS OF JET SYSTEM
A platform for the dynamic experiment of the jet system was
built and the modal test was carried out by the hammering
method. The experiment platform is shown in Fig. 9.

The fast Fourier transform is used to analyze the accel-
eration signal output from the jet system in the frequency
domain. The amplitude-frequency characteristics of the
acceleration signal of the jet system under the superposition

FIGURE 10. Curve of amplitude-frequency characteristic of the adaptive
gun head jet system of the fire-fighting monitor.

TABLE 3. Comparison between experimental data and theoretical value.

of the fluid pulsation excitation and the hammer step excita-
tion are shown in Fig. 10.

It can be seen from Fig. 10 that the jet system has peaks at
19.5 Hz and 46.8 Hz. Since the excitation of the jet system at
this time is the superposition of the hammer step excitation
and the fluid pulsation excitation, and the fluid pulsation
frequency is 46.8 Hz, the experimental value of the first
natural frequency is 19.5Hz. Since the natural frequencies
of the other orders of the jet system are relatively high, and
are far from the external excitation frequency, and the high-
frequency part is chaotic under the influence of turbulence,
the natural frequencies of other orders are not analyzed for the
time being. The experimental data and theoretical value of the
first natural frequency of the jet system are shown in Table 3.

It can be seen from Table 3 that the theoretical value of
the first natural frequency of the jet system is very close to
the experimental one, and the error is small, which illustrates
the validity and accuracy of the theoretical analysis of the
dynamics of the jet system.

VI. CONCLUSIONS
Due to the pressure pulsation of the fluid, the adaptive gun
head jet system of the fire-fighting monitor is a typical
parametric vibration system. When the pulsation excitation
frequency is close to the natural frequency of the jet sys-
tem or the combined frequency between the natural frequency
and the equivalent stiffness fluctuation frequency of the fluid
unit, the main resonance or combined resonance of the jet
system will occur. Resonance will seriously deteriorate the
dynamic behaviors of the jet system, and the jet system has
the following vibration characteristics:
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1. The dominant frequency of the main resonance response
is the external excitation frequency of the jet system, and
the combined frequency has a small effect of regulation on
the main resonance of the jet system. When the external
excitation frequency is equal to the first natural frequency,
the amplitude of the main resonance is the largest, which is
0.2592 mm.

2. When the external excitation frequency is close to the
combined frequency, the amplitude is smaller than that in the
main resonance. The dominant frequency is the combined fre-
quency, and the natural frequency of each order has effects of
regulation. When the external excitation frequency is the sum
of the first and second natural frequency and the fluid stiffness
fluctuation frequency, respectively, the displacements of the
fluid unit 1 and the spray core reach the maximum. When the
external excitation frequency is the sum of the third natural
frequency and fluid stiffness fluctuation, the displacement of
the fluid unit 1 is the largest. When the external excitation
frequency is the sum of the first natural frequency and the
fluid stiffness fluctuation frequency, the amplitude of the
combined resonance is the largest, which is 0.002532 mm.

3. A platform for the dynamic experiment of the adaptive
gun head jet system of the fire-fighting monitor was built and
the modal test was carried out. The experimental value of
the first natural frequency of the jet system is very close to
the theoretical one, and the error is small, which illustrates
the validity and accuracy of the theoretical analysis of the
dynamics of the jet system.
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