
Received March 10, 2020, accepted March 30, 2020, date of publication April 20, 2020, date of current version May 11, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2989106

A Catalogue of Agile Smells for
Agility Assessment
ULISSES TELEMACO 1, TOACY OLIVEIRA1, PAULO ALENCAR2, AND DON COWAN2
1System Engineering and Computing Science Program, Federal University of Rio de Janeiro, Rio de Janeiro 21941-914, Brazil
2David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Corresponding author: Ulisses Telemaco (ulisses.telemaco@owse.com.br)

This work was supported by the Advanced High Performance Computing Center (NACAD/COPPE) at the Federal University of
Rio de Janeiro (UFRJ) and the Natural Sciences and Engineering Research Council of Canada (NSERC).

ABSTRACT Background: The Manifesto for Agile Development has already inspired many software
development methods such as Scrum, XP, and Crystal Reports. However, being ‘‘agile’’ is not trivial and
only a few companies are capable of mastering so-called agile practices. Failure to apply the agile approach
properly can do more harm than good and may jeopardize the benefits of an agile method. Thus, evaluating
an organization’s ability to apply agile practices using an agility assessment tool is critical. Aims: In this
paper, we extend the metaphor of code smell and introduce the term agile smell to denote the issues and
practices that may impair the adoption of the agile approach. The focus of the paper is defining and validating
a catalogue of agile smells that can support agility assessment. Method: A literature review and a survey
were conducted to identify and confirm the characterization of agile smells. Once identified, the agile smells
were organized in a structured catalogue. Results: The literature review found 2376 references published
between 2001 and 2018. We selected 55 papers for full consideration and identified 20 agile smells. The
survey consulted 20 participants to determine the relevance of the selected agile smells.Conclusion:Wehave
identified a set of 20 agile smells that were ranked according to their relevance. For each smell, we proposed
at least one strategy to identify the smell’s presence in real projects. The catalogue can be used by companies
to support the assessment of their agility ability.

INDEX TERMS Agility assessment, agile development, agile smell.

I. INTRODUCTION
The adoption of agile methods by the software develop-
ment industry has increased significantly in recent years.
Almost all software companies claim they are ‘‘agile’’ at
some level and they are using agile practices in their soft-
ware processes [1]. Being agile has become a critical factor
for the Software Industry. Among the expected benefits of
being agile are the acceleration of software delivery through
the ability to manage requirement changes and productivity
increments [2].

However, the proper adoption of an agile method (or agile
practices) is not straightforward and the misuse of agile
practices should not be ignored since it may jeopardize the
benefits that an agile method should bring to the organization.
It is quite common to find organizations new to agile software
development techniques, adopt a few agile practices, adapt
them in the way they prefer and convince themselves they

The associate editor coordinating the review of this manuscript and

approving it for publication was Resul Das .

are doing agile software development until they eventually
realize there are no or few improvements in their software
processes [3]. Ambler [4] revealed numerous project failures
associated with agile development. In the 2018 IT Project
Success Rates SurveyTM, 36% of the participants reported that
they had experienced challenges in an agile project, and 3%
of the participants reported complete failure [5].

Thus, an Agility Assessment (AA) tool is a critical
approach to assist projects, organizations and even individu-
als in understanding their agility skills and identifying poten-
tial problems that should be resolved to improve the adoption
of agile methods [6].

The problem we have observed is the lack of an objective
criteria for conducting an agility assessment. Despite the
substantial amount of content about agile development in
both academic forums and industry, there are few contri-
butions that focus on providing elements to support agility
assessment. The Manifesto for Agile Development [7], for
example, proposed a set of values and principles that have
inspired many agile methods. However, using these values

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 79239

https://orcid.org/0000-0002-7258-2623
https://orcid.org/0000-0002-6113-4649


U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

and principles as a base to assess the agility of a given
organization or project is quite difficult. It is challenging
and subjective to assess whether an organization or project
is properly applying values such as the requirement to focus
on ‘‘individuals and interactions over processes and tools’’.
Agile methods such as Scrum [8], XP [9], Crystal Family
Methods [10] and Open Up [11] or other studies that con-
solidated the body of knowledge around agile development
do not provide objective requirements for assessing the adop-
tion of agile practices. The so-called agile values, principles,
practices and characteristics are typically described: (a) in a
generic way; (b) to be used as reference for projects or orga-
nizations that aim adopting agile, or (c) to inspire discussions
among the team in retrospective meetings.

Agility assessment approaches need objective criteria oth-
erwise the assessment may be threatened by biases imposed
by the person(s) conducting the assessment. This paper tries
to fill this gap by proposing a set of practices focused on
agility assessment.We borrowed the term code smell [12] and
extended it to agility assessment. A code smell denotes an
indication that may correspond to a deeper problem in the
software source code or architecture. The term was popu-
larized by Fowler and Beck in [12]. The authors used this
metaphor and proposed a catalogue of code smells that can
be used to guide the identification of potential problems that
could be fixed through the application of refactoring tech-
niques. We are using the term agile smell to denote a practice
that may impair the proper adoption of agile development.

This paper aims at identifying a set of agile smells and
organizing them in a structured format. We are also propos-
ing, for each agile smell, at least one strategy that guides
the identification of the occurrence of that agile smell in an
agile project. The methodology of this study is divided into
three phases: (a) an elicitation phase that includes a literature
review; (b) a confirmation phase that includes a survey with
practitioners; and (c) a cataloging phase that attempts to
organize the agile smells in a structured format.

This study tries to answer the following research questions:

RQ1: What are the practices that impair the proper
adoption of agile development and can be used
to support the agility assessment of organizations,
projects, iterations and agile teams?

RQ2: How can we identify the occurrence of such prac-
tices?

The aim of RQ1 is to identify a set of items that we are
naming agile smells, which are: practices that may jeopardize
the adoption of agile development and that can also be used
to support organizations and agile teams to assess how they
are using agile practices. To answer RQ1, we are proposing
a catalogue of agile smells that were identified through a
literature review and confirmed by a survey. The aim of
RQ2 is to propose strategies to identify the occurrences of
agile smells. An identification strategy is important to make

agility assessment less subjective and less compromised by
evaluator bias. These strategies will aid and guide practi-
tioners to quickly spot the occurrence of agile smells in an
agile project. We sought to answer RQ2 by proposing at least
one identification strategy for each agile smell. By answering
these two questions, we expect to provide a baseline to sup-
port agility assessment at organizational and project levels.

An early version of this study was introduced in [13],
which presented a preliminary version of the catalogue and
a small set of agile smells. We have improved on the study
in [13] by:

• broadening the literature review;
• expanding the number of participants in the survey;
• consolidating the set of agile smells;
• adding more information into the catalogue; and
• adding the catalogue use guideline.

The remainder of this paper is organized using the fol-
lowing structure: Section II presents the background for this
research. Section III describes the study methodology. Sec-
tions IV andV describe, respectively, the literature review and
the survey conducted to identify and confirm the agile smells.
Section VI describes the catalogue design and presents a sub-
set of the resulting catalogue. The catalogue use guideline is
introduced in Section VII. Section VIII discusses the related
work and Section IX presents the results and the threats to the
validity of this study. Section X concludes the paper.

II. BACKGROUND
In this section, concepts that include Agile Development,
Agility Assessment and Code Smells are discussed to provide
background material for the reader.

A. AGILE DEVELOPMENT
In 2001, as a response to a community that demanded more
flexible processes, a group of 11 practitioners and consultants
in software development produced what they named Mani-
festo for Agile Development [7]. The values and principles
that were the foundation of the manifesto and that were
proposed as an attempt to influence the software development
community are presented in the following four values and
12 underlying principles in Figure 1:

While there is no formal agreement on the meaning of the
concept of ‘‘agile’’, in this research, ‘‘Agile Development’’
means software development processes or methods that are
shaped around the values and principles in Figure 1. These
methods include, but are not limited to: XP [9], [14], [15],
Scrum [8], [16]–[18], Crystal Family [10], Feature Driven
Development (FDD) [19], [20], Dynamic Systems Develop-
ment Method [21], Adaptive Software Development [22], and
OpenUp [23].

B. AGILITY ASSESSMENT
The adoption of so-called agile practices may not be
straightforward [24]–[26]. The 13th Annual State of Agile
SurveyTM [1] revealed that, although 94% of companies

79240 VOLUME 8, 2020



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

FIGURE 1. Agile values and principles.

surveyed claimed they are using agile practices, only 4% of
the companies indicated they are mastering agile practices.
In this scenario, it is important for organizations to identify
their gaps in agile practices, otherwise, the organization may
not receive the benefits of adopting them [4].

Agility Assessment (AA) comprises assessment tech-
niques, models and tools that focus on indicating problems
in adopting agile practices at a project-level, organization-
level or individual-level. There are many approaches for AA
such as agility assessment models, agility checklists, agility
surveys, and agility assessment tools [27]. In Section VIII we
present some of these AA approaches and discuss how they
relate to this study.

C. CODE SMELLS AND AGILE SMELLS
The term code smell was popularized by Fowler and
Becker [12] to describe poor design solutions and code struc-
tures that should be analyzed carefully. The authors proposed
a baseline catalogue of code smells that is divided in three
categories (Application-level, Class-level and Method-level)
and includes 22 smells such as Duplicated Code (identical or
very similar code exists in more than one location), Shotgun
Surgery (a single change needs to be applied to multiple
classes at the same time), Large Class (a class that has
grown too large), Feature Envy (a class that uses methods

of another class excessively), Inappropriate Intimacy (a class
that has dependencies on implementation details of another
class), Cyclomatic Complexity (too many branches or loops),
Too Many Parameters (a long list of parameters), and Long
Method (a method, function, or procedure that has grown too
large).

In this study, we extend the term Code Smell to the con-
text of agile development and propose the term Agile Smell.
An Agile Smell denotes a practice likely to impair the proper
adoption of agile development.

D. AGILITY ASSESSMENT AND AGILE SMELLS
The catalogue of code smells [12] proposed by Fowler and
Becker and other contributions [28]–[30] have been broadly
used by the software industry to assess the quality of their
source-code. However, manually identifying the occurrence
of code smells in projects that could have hundreds of thou-
sands of code lines is costly and neither effective nor efficient
and a more scalable technique is needed [31], [32]. One of the
approaches to optimize the source-code quality assessment is
through automatically detecting code smells [29], [32]–[34].
These techniques require the specification of a code smell
in a specific language. The DECOR [32] method proposed
by Moha et al., for example, is organized in four steps:
Description Analysis, Specification, Processing, Detection,
and Validation. In the Specification step, the smells are coded
in a specification language. These specifications are then used
as input for theDetection step that assesses the code and finds
potential code smells. The code smells identified in this step
are confirmed in the Validation step.
In this sense, the catalog of agile smells proposed in this

study could be used to guide agility assessments and be a
prelude for automatic detection of agile smells.

III. STUDY ORGANIZATION
This section presents the research methodology followed
to identify and confirm a set of agile practices that may
impair the adoption of agile methods (AKA agile smells).
The methodology of this research was based on the method
proposed by Spinola et al [35] and consists of four steps
divided into three phases as depicted in Figure 2:
Phase 1 - Elicitation: The first phase, elicitation phase,

was divided in two steps: (1) An informal literature review
that was conducted to identify basic concepts that supported
the definition of an accurate and comprehensive systematic
literature review protocol; and (2) A systematic literature
review that was planned and executed to identify a set of
agile smells. The systematic literature review design details,
the mechanisms and collected data and the set of identified
agile smells are described in Section IV.
Phase 2 - Confirmation: In the confirmation phase, we con-

ducted a survey with industry practitioners to confirm the
agile smells identified in the elicitation phase and reveal their
relevance. The survey is described in Section V
Phase 3 - Consolidation: In this phase, the most relevant

agile smells were organized in a structured format named

VOLUME 8, 2020 79241



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

FIGURE 2. The research methodology organized in three phases and four steps.

the Catalogue of Agile Smells. This catalogue is presented
in Section VI.

IV. ELICITATION PHASE: SYSTEMATIC
LITERATURE REVIEW
In the elicitation phase, a systematic literature review (SLR)
was conducted to explore the existing body of knowledge and
identify a set of agile smells (ie. practices that may impair the
proper adoption of agile development).

The methodology of the SLR was based on the method
proposed by Kitchenham and Charters [36] and consists of
three main phases: planning, execution and reporting.

A. SYSTEMATIC LITERATURE REVIEW PLANNING
1) AIM, RESEARCH QUESTIONS AND SCOPE
The aim of the literature review is to identify elements that
allow us to answer the RQ1 and RQ2 questions. In other
words, the goal of the SLR is to discover (i) a set of practices
that may impair the adoption of agile development (AKA
agile smells) and (ii) strategies on how to check for the occur-
rence of these practices in real projects. Since the literature
does not use the term ‘‘Agile Smell’’, we extracted the agile
smells from agile practices, rules, constraints or restrictions.
The research questions for this SLR were derived from the
RQ1 andRQ2 (presented in Section I) and can be summarized
as:

SLR-RQ1: What are the practices that impair the
proper adoption of agile development?

SLR-RQ2: How can we identify the occurrence of such
practices?

The scope of this review was defined based on the pop-
ulation, intervention, comparison and outcome (PICO [37])
approach. The Population is the set of software development
projects. The Intervention is the collection of agile software
development processes. There is no comparison. The out-
come is a set of agile rules, constraints, practices and tech-
niques. Three papers obtained from a previous conventional
literature review were used as control:

1) [38] Miller, G.G.: The characteristics of agile soft-
ware processes. In: Proceedings of the 39th International

Conference and Exhibition on Technology of Object-
Oriented Languages and Systems (TOOLS39). TOOLS
’01, IEEE Computer Society, Washington, DC, USA
(2001)

2) [39] Lindvall, M., Basili, V.R., Boehm, B.W., Costa,
P., Dangle, K., Shull, F., Tesoriero, R., Williams, L.A.,
Zelkowitz, M.V.: Empirical findings in agile methods.
In: Proceedings of the Second XP Universe and First
Agile Universe Conference on Extreme Programming
and Agile Methods - XP/Agile Universe 2002. Springer-
Verlag, London, UK, UK (2002)

3) [40] Abrantes, J.F., Travassos, G.H.: Common agile
practices in software processes. In: 2011 International
Symposium on Empirical Software Engineering and
Measurement. pp. 355–358 (Sept 2011) .

The keywords for Population are ‘‘software pro-
cess’’, ‘‘software projects’’, ‘‘software systems’’, ‘‘soft-
ware development’’, and ‘‘software engineering’’. The key-
words for Intervention are ‘‘agile methods’’, ‘‘agile pro-
cesses’’, ‘‘agile approaches’’, ‘‘agile methodologies’’, and
‘‘agile development’’. The keywords for Outcome are
‘‘rules’’, ‘‘constraints’’, ‘‘restrictions’’, ‘‘practices’’, ‘‘tech-
nics/techniques’’, and ‘‘classification’’. The sources are col-
lected from the following digital databases, including confer-
ences, journals and technical reports indexed by ACMDigital
Library, IEEE Xplore, Scopus, and Web of Science. The
search string taken as the basis for all search engines, struc-
tured according to Pai et al. [37] was: (‘‘software process’’
or ‘‘software project’’ or ‘‘software systems’’ or ‘‘software
development’’ or ‘‘software engineering’’) and (‘‘agile meth-
ods’’ or ‘‘agile processes’’ or ‘‘agile approaches’’ or ‘‘agile
methodologies’’ or ‘‘agile development’’) and (‘‘rules’’ or
‘‘constraints’’ or ‘‘restrictions’’ or ‘‘practices’’ or ‘‘technics’’
or ‘‘techniques’’ or ‘‘classification’’)

The set of formal literature studies includes all articles
returned by the protocol that meets at least one of the fol-
lowing inclusion criteria (IC): (IC1) Documents must address
one or more agile methods; (IC2) Documents must discuss
practices, characteristics, rules or constraints related to an
agile method.

Publications that satisfy at least one of the following exclu-
sion criteria (EC)were omitted: (EC1)Documents not written
in English; (EC2) Documents whose full text is not available;
(EC3) Documents clearly dealing with topics irrelevant to

79242 VOLUME 8, 2020



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

the purpose of this review; (EC4) Documents merely report-
ing the use of individual software processes in development
projects; (EC5) If the same study has been published more
than once, the most relevant version, such as the one explain-
ing the study in greatest detail will be used and the others will
be excluded.

2) DATA EXTRACTION CRITERIA
To identify and extract the agile smells from the selected stud-
ies, we defined two data extraction criteria (DEC): (DEC1)
an agile smell is a practice that may impair the adoption of
agile methods; and (DEC2) the occurrence of an agile smell
should be objectively verified. The DEC1 criterion defines
an agile smell as a negative practice that should be avoided.
The DEC2 criterion was introduced to reduce the risk of
identifying agile smells that are vague or hard to be verified
through objective strategies. Note that the gap this research
is trying to fulfill is the lack of objective criteria to perform
an agility assessment. The values and principles proposed by
the Manifesto for Agile Development and the methodologies
derived from the manifesto are described in a vague way [41],
[42]. Therefore, identifying agile smells that are difficult to
be objectively verified would not differentiate them from the
body of knowledge already consolidated in this area.

The following information was extracted from each
paper selected after running the data extraction process:
document title, author(s), source, year of publication, agile
method, agile smell name and agile smell description. The
results were tabulated. Analysis was carried out to identify
duplication.

B. SYSTEMATIC LITERATURE REVIEW EXECUTION
After the planning phase, seven steps were applied in the
execution phase to select the primary studies:

• Step 1: Initial Search. We applied the search string to
the selected digital databases. A broad number of studies
was retrieved in this phase: ACM Digital Library (438),
IEEE Xplore (564), Scopus (2233), and Web of Science
(1592).

• Step 2: Combination. Since the digital databases index
many of the same publications [43], we combined the
results and the total number of studies after this step was
2376. All the control studies were retrieved.

• Step 3: Filter by Title. This step aimed at applying the
exclusion criteria EC1, EC2, EC3 and EC4 by reading
the title of the studies. After this step, the number of
papers was reduced to 261.

• Step 4: Filter by Abstract. This step aimed at apply-
ing the exclusion criteria EC3 and EC4 by reading the
abstract of the studies. At the end of this step, 127 studies
remained.

• Step 5: Filter by full text. It consisted of filtering the
selected studies by reading their full text and applying
the exclusion criteria EC3 and EC4. At the end of this
step, 42 studies remained.

• Step 6: Removal of repeated studies. We applied the
exclusion criterion EC5 and removed two studies. After
this step, the number of papers selected for full consid-
eration was reduced to 40.

• Step 7: Addition by Heuristic. We inserted 15 relevant
studies from other sources, totaling 55 studies. These
studies were added manually, based on our background
knowledge. Appendix X shows the final list of studies
considered in this literature review.

Figure 3 shows the process and the results obtained in
each step. The selected documents were fully read and
the data extraction criteria applied to identify the agile
smells.

C. LITERATURE REVIEW REPORTING
During the SLR, we identified many agile values, practices
and characteristics. However, none of the studies investigated
agile methods from the perspective of this study, namely,
trying to identify a set of agile practices that may impair the
adoption of agile methods. The SLR confirmed that most of
the body of knowledge around agile development focused on
adoption of agile development rather than agility assessment.
The studies neglected to describe explicitly how to verify
whether the values, practices and characteristics of agile
development have been properly adopted.

After reading the selected papers, we extracted 20 agile
smells using the two data extraction criteria (DEC1 and
DEC2) established in the research protocol. The identified
agile smells answer research question SLR-RQ1 and are
presented below in alphabetical order:
1) Absence of Frequent Deliveries: The practice of deliv-

ering products continuously and frequently is very
important to agile methods and that is almost a mantra
among agile software developers. The Absence of Fre-
quent Deliveries smell is detected when the devel-
opment team does not deliver a new version of the
software frequently. The occurrence of this smell
may indicate that this practice has been jeopardized.
References: [8]–[10], [14]–[23], [40], [44]–[53].

2) Absence of Test-driven Development: Test Driven
Development (TDD) is an agile software development
technique that is based on the following short cycle of
repetitions: First, the developer writes a test case that
defines the desired behavior for a new functionality.
Then, the code is written that can be validated by the
test case. The Absence of Test-driven Development smell
is detected when the development team does not apply
the technique TDD (Test Driven Development) during
the development of the software. The presence of this
smell may indicate the team is not applying the TDD
technique. References: [2], [9], [10], [14], [15], [21],
[40], [44], [45], [47]–[49], [52], [54]–[61].

3) Absence of Timeboxed Iteration: The Timeboxed
Iteration practice defines that all iterations should
have a fixed time duration. Thus, an iteration should
not be extended or shortened to fit planned or

VOLUME 8, 2020 79243



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

FIGURE 3. The process of primary study selection.

unplanned features. The Absence of Timeboxed Iteration
smell is detected when an iteration is shorter or longer
than the predefined duration. The presence of this smell
may indicate the timeboxed iteration practice has not
been applied properly. References: [8], [10], [16]–[18],
[22], [38], [46], [48]–[50], [53]–[55].

4) Absence of Timeboxed Meeting: This smell derives
from an agile practice that states the meetings prescribed
by the agile method (iteration planning, review, retro-
spective, etc) should have a predefined duration and the
duration should preferably be the same during the entire
software project. The Absence of Timeboxed Meeting
smell is detected when a given meeting (prescribed by
the agile method) is shorter or longer than the predefined
duration. The presence of this smell may indicate the
team is not properly conducting the meeting or they are
not planning the meetings properly. References: [18],
[44], [46], [48], [54]. [52], [57].

5) Complex Tasks: Complex tasks should be avoided in
agile projects. They should be decomposed by the devel-
opment team into simpler tasks. The Complex Tasks
smell is detected when there are complex tasks in a given
iteration. The presence of this smell may indicate that
the developers are not properly breaking complex tasks
into simpler tasks. References: [8], [16], [17], [40], [46],
[47], [49], [52], [55], [61], [62].

6) Concurrent Iterations: In an agile project, the entire
team should focus on the same iteration goal. Running
two (or more) consecutive iterations means the team is
divided and focused on different goals. The Concurrent
Iterations smell is detected when there are two (or more)
open iterations in the same project. The presence of this
smell may indicate the development team is not focused
on the same goal. References: [18], [55], [63], [64].

7) Dependence on Internal Specialists: One characteris-
tic of an ideal agile team is one in which any participant

can work on any feature. Thus, the team should avoid the
situation where a member becomes the only specialist
in a feature or technology. The Dependence on Inter-
nal Specialists smell is detected when all tasks related
to a given feature were assigned to the same devel-
oper. The presence of this smell may indicate the cre-
ation of an internal specialist and the project is becom-
ing dependent on a specific developer. References:
[2], [8], [9], [14], [15], [17], [18], [44], [45], [47]–[50],
[54], [55], [65]–[69].

8) Goals Not Defined: Agile development teams need to
know exactly what they are working on and the goals
of the project and iterations should be clear and well-
defined. The Goals Not Defined smell is detected when
the goals of the project or of a given iteration are not
defined. The presence of this smell may indicate the
development team does not have a clear view of the goals
and therefore could not choose the most important work
to do. References: [8], [10], [16], [17], [19]–[23], [38],
[46], [48], [51], [69]. [52].

9) Iteration Started without an Estimated Effort: The
scope and duration of the iterations in an agile project
are typically defined by the development team that
must commit to the iteration goals and deadlines.
The Iteration Started without an Estimated Effort
smell is detected when an iteration that contains non-
estimated tasks is started. The presence of this smell
may indicate that the development team is commit-
ted to a deadline without a good understanding of
the effort to deliver the iteration scope. References:
[18], [61], [63], [64], [67], [69].

10) IterationWithout a Deliverable: The practice of deliv-
ering products continuously and frequently is very
important to agile methods and can be considered a
mantra among agile software developers. The agile
methods state the development team should deliver a

79244 VOLUME 8, 2020



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

new version of the software at the end of each iteration.
The Iteration Without a Deliverable smell is detected
when an iteration does not have an associated deliver-
able product. The presence of this smell may indicate
that the continuous and frequent delivery practice has
been jeopardized. References: [8]–[10], [14]–[23], [40],
[44]–[46], [48], [49], [51], [53].

11) Iteration Without an Iteration Planning: Iteration
planning is an important success factor in agile methods.
Normally an iteration plan is elaborated with the main
stakeholders (developers and customer) that together
decide what should be developed in the iteration. The
IterationWithout an Iteration Planning smell is detected
when there is no planning associated with a given iter-
ation. The presence of this smell may indicate that the
iterations are not being planned properly. References:
[8]–[10], [14]–[23], [40], [44]–[50], [52], [54]–[61],
[64], [66], [67], [70], [71].

12) Iteration Without an Iteration Retrospective: Retro-
spective meetings represent opportunities for the devel-
opment team to reflect on how they are working and
improve themethodwhen necessary. The IterationWith-
out an Iteration Retrospective smell is detected when
there is no retrospective meeting associated with a
given iteration. The presence of this smell may indi-
cate that an important opportunity for improvement pre-
scribed by agile methods is being wasted. References:
[10], [16]–[23], [46]–[61].

13) Iteration Without an Iteration Review: The itera-
tion review is a meeting where the development team
presents to the product owner what was accomplished
during the previous iteration. Typically, there is a soft-
ware demonstration showing the new features and a dis-
cussion of what is being delivered. The IterationWithout
an Iteration Review smell is detected when there is no
review associated with a given iteration. The presence of
this smell may indicate the development team is missing
an important opportunity to present the results of the
iteration to the product owner. References: [8], [10],
[16]–[23], [46]–[49], [52]–[56], [58]–[60], [71].

14) Iterations with Different Duration: In order to pro-
mote sustainable development and to understand their
productivity, the development team should work at a
constant pace. That means the iterations in a given
project should ideally have the same duration. The Iter-
ations with Different Duration smell is detected when
iterations in the same project do not have the same
duration. The presence of this smell may indicate the
development team is not maintaining a constant pace.
References: [18], [47], [52], [55], [63], [64].

15) Large Development Team: An agile development team
should be small to be efficient and effective. The Large
Development Team smell is detected when the develop-
ment team is larger than the predefined recommended
size. References: [8], [16]–[20], [39], [48]–[50], [52],
[53], [65], [67].

16) Long Break Between Iterations: To promote sus-
tainable development and understand its productivity,
the development team must measure all the work done.
Since the work done during the interval between itera-
tions is typically not counted in productivity assessment,
long breaks may impact the way the team measures its
productivity. The Long Break Between Iterations smell
is detected when there is a break between two con-
secutive iterations longer than a predefined and recom-
mended size. The presence of this smell may indicate
the development team is working on untraceable work
that can harm the calculation of team productivity. Ref-
erences: [18], [46], [55], [57], [60], [63], [64].

17) Lower Priority Tasks Executed First: In an agile
project, the development team should focus on higher
priority tasks. The Lower Priority Tasks Executed First
smell is detected when tasks with lower priority are
executed before tasks with higher priority. The occur-
rence of this smell may indicate that the development
team has not worked on the highest priority tasks. Ref-
erences: [8]–[10], [14]–[17], [19]–[23], [44]–[46], [48],
[49], [51]–[53], [55], [60], [69].

18) Shared Developers: In an agile project, business people
and developers must work together daily throughout
the project. Developers are expected to become experts
in the project scope and switching a developer across
multiple projects does not contribute to the involvement
of that developer in the project. The Shared Developers
smell is detected when a developer is working on more
than one project at the same time or when that developer
is frequently switching between different projects. The
presence of this smell may indicate the organization is
not properly allocating the developers. References: [2],
[18], [46], [52], [53], [55], [61], [65].

19) Unfinished Work in a Closed Iteration: The entire
scope of an iteration should preferably be delivered at
the end of the iteration. But, as the iteration should
be timeboxed, the development team must finish the
iteration by the predefined deadline even if there is
unfinished work. In that case, those unfinished work
should be moved to the product backlog to be used in
a future iteration planning. The Unfinished Work in a
Closed Iteration smell is detected when a given iteration
is closed evenwith unfinished tasks. The presence of this
smell may indicate the team is not properly managing
the backlog items and not moving unfinished work to
the project backlog. References: [18], [46], [55], [63],
[64]. [52], [69].

20) UnplannedWork: Agile teams usually commit to deliv-
ering a set of features before an iteration begins. To
achieve the agreed commitment, the teams must work
without interference, following the iteration plan and
unplanned work should be avoided. The Unplanned
Work smell is detected when tasks are included in a
given iteration after it starts. The presence of this smell
may indicate the unplanned tasks are jeopardizing the

VOLUME 8, 2020 79245



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

commitment with the iteration deadline. References:
[18], [44], [46], [48], [51], [52], [55], [60], [69].

To answer SLR-RQ2, we propose at least one identification
strategy for each one of the agile smells identified in the
literature review. For example, for the agile smell Complex
Tasks, the following identification strategy was proposed:

1) Identification Strategy for the Complex Tasks smell:
A strategy to identify the presence of the ‘‘Complex
Tasks’’ smell is to verify whether the tasks estimates
exceed an allowable threshold.

The identification strategies for other agile smells are pre-
sented in the catalogue in Section VI.

V. CONFIRMATION PHASE: SURVEY
In order to confirm the results from the literature review,
we conducted a survey with practitioners based on semi-
structured interviews [72]. The remainder of this section
presents the survey that was based on the protocol proposed
by Oishi [73]. The survey was divided into three phases:
planning, execution and reporting.

A. SURVEY PLANNING
1) AIM AND RESEARCH QUESTIONS
The aim of the survey was to evaluate the relevance of the
identified agile smells for an Agility Assessment. That is,
how relevant is each of the agile smells to assess how an
organization is using agile practices. The research questions
for the survey are:

Survey-RQ1: Is the given agile smell relevant to
assess how an agile practice has been
applied?

Survey-RQ2: Is the strategy for identification of the
agile smell coherent and consistent
with industry practices?

2) INSTRUMENTATION AND QUESTIONNAIRE
The material used in the survey included an online question-
naire divided into three sections: (1) Subject Characterization
(2) Organization Characterization and (3) Agile Smells. In
Subject Characterization and Organization Characterization
sections, the participants should provide information about
themselves and the companies in which they work. The Agile
Smells section contained a list of the 20 agile smells collected
from the literature review. The agile smells were displayed in
alphabetical order (as presented in Section IV-C) in the fol-
lowing structure: Name, Short Description and Identification
Strategy.

SQ1: What is the relevance of the given agile smell to
assess how a project/organization is using agile
practices?

SQ2: What is the relevance of the given identification
strategy?

FIGURE 4. Formula of agile smell relevance by participant.

FIGURE 5. Formula of final agile smell relevance.

TABLE 1. Summary of the survey participants characterization.

The questionnaire accepted the following answers:

(a) Not relevant (0 pts)
(b) Slightly relevant (1 pt)
(c) Very relevant (2 pts)
(d) Absolutely relevant (3 pts)

Each answer has an associated value that varies from 0 to
3 (based on the relevance of the identification strategy) and
that is used to calculate the relevance of the agile smell.
The relevance of an agile smell, to a given participant, is the
sum of the answers of Question 1 and Question 2 as shown
in Fig. 4. Thus, to a given participant, the most relevant agile
smell achieves a 6-point score and the least relevant agile
smell has a 0-point score.

The final relevance of an agile smell is the sum of the
relevance for all participants as illustrated in the formula
presented in Fig. 5.

3) PARTICIPANTS SELECTION
We applied a convenience sampling approach [74] and par-
ticipants were selected from our professional and academic
networks. The criteria for the selection of participants were:
(a) the participant should have at least 5-years experience as a
Project Manager or Quality Assurance Consultant and (b) the
participant should work or have worked in an organization
that adopts a software process based on agile methods. We
avoid selecting participants that are aware of this research,
so we excluded coauthors and coworkers.

79246 VOLUME 8, 2020



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

TABLE 2. Summary of data collected and analyzed in the survey.

During the planning phase, we conducted a preliminary
analysis using subjects from inside our research group. The
data from this execution was not considered in the final
results. Our goal was to collect feedback from the participants
and assess the interview plan.

B. CHARACTERIZATION OF PARTICIPANTS
During the analysis phase, 20 candidate subjects were chosen
to be interviewed. We focused on practitioners working on
agile projects with relevant experience in this topic. Table 1
presents a summary of the participants characteristics.

The selected subjects included 15 Project Managers and
5 Quality Assurance Consultants. Regarding the highest
schooling degree, 4 participants have doctoral degree, 6 par-
ticipants have master degree, 7 participants have bachelor
degree and there are 3 participants with associated degree.
The distribution for years of professional experience is:
12 participants have between 5 and 10 years of professional
experience, 12 participants have between 11 and 20 years and
three participants have more than 21 years of professional
experience. Regarding the geographic distribution, 16 partic-
ipants are from Brazil and four from Canada.

C. SURVEY REPORTING
In the last phase, the data collected in the survey were orga-
nized, tabulated and analysed. Table 2 presents a summary of
the data collected and analyzed in the survey. The table shows
the agile smells in relevance order (the most relevant smells
are shown first) and the column Rank indicates the order in
the list. Columns S1 to S20 represent the raw data collected
in the survey (ie. the answers that each participant provided).
These columns are divided in two sides: the left value refers
to the answer to Survey-RQ1 and the right value refers to the
answer to Survey-RQ2. As explained in the research protocol

section, the values vary from 0 to 3 (No relevant to Absolutely
relevant). The Total column is the final degree of relevance for
the agile smell and was calculated according to the formula
in Figure 5.

Note that, as we did not define any tiebreaker criterion,
the agile smells Shared Developers and Unplanned Work
are technically tied. The same issue occurs with the agile
smells Large Development Team and Long Break Between
Iterations.

D. DATA ANALYSIS DISCUSSION
Most of the agile smells received a positive value for the
degree of relevance (ie, they were considered Slightly rel-
evant, Relevant or Absolutely relevant). If we take the top
10 most ranked agile smells in Table 2, they were all con-
sidered at least Slightly relevant to all the participants.
Figure 6 shows the distribution of the degree of relevance

the agile smells received in the survey. The number of Not
relevant answers was considerably low (only 4.25%, or 34 in
800 responses). The numbers of Slightly relevant, Relevant
and Absolutely relevantwere, respectively, 32.25% (or 258 in
800), 43.75% (or 350 in 800) and 19.8% (or 158 in 800).
These data reveal the identified agile smells are coherent with
practices adopted by industry and they could be ultimately
used to assess how the agile methods are being applied.
Most participants assigned different degrees of relevance

for the presented agile smells. In other words, for most of the
participants, some agile smells are more or less relevant than
others. That perception was crucial to build the ranking of
the most relevant agile smells. Indeed the difference between
the relevance of the agile smells at the top and at the bottom
of the ranking is significant. While the three top-ranked agile
smells vary from 96 to 86 points, the three agile smells at the
bottom of the ranking vary from 57 to 49. This difference

VOLUME 8, 2020 79247



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

FIGURE 6. Distribution of the degree of relevance according to the survey.

TABLE 3. Agile smell template.

between the degree of relevance illustrates that the agile
smells may impact the adoption of agile methods in different
levels.

VI. CONSOLIDATION PHASE
The aim of this phase was to consolidate, complement and
organize the agile smells obtained and confirmed in the previ-
ous phases as a structured catalogue. Regarding the catalogue
structure, the agile smells were described using a template
adapted from [75] and shown in Table 3.

The Id andName sections indicate, respectively, the unique
identifier and the name of the agile smell. The Description
section presents a brief description of the agile smell and
contains: (a) the motivation behind the agile smell and (b) the
likely consequences if the agile smell occurs. The Target
section indicates which element is being assessed when an
occurrence of an agile smell is identified. It can assume the
values: Organization, Project, Iteration or Team. The Agile
Methods section presents the agile methods practices that
motivated the agile smells. Thus, this section establishes a
connection between the agile methods analysed during the
literature review and the agile smell. The Industry Perspective
section discusses the agile smell relevance from the perspec-
tive of the consulted industry practitioners. The Relevance
section represents the degree of relevance obtained in the
survey converted to the percent of maximum possible score
(POMP) [76]. The Identification Strategy and Parameter

TABLE 4. AS 01: Lower Priority Tasks Executed First.

sections describe strategies to detect the occurrence of the
agile smell in real projects. These sections are designed
to support approaches aimed at automatically detecting the
occurrence of agile smells in real projects.

For brevity, we have selected the 10 highest ranked agile
smells to present in this paper: (Tables 4 to 13).

VII. CATALOGUE USE GUIDELINE
In this section, we describe an use guideline for the catalogue.

Who can use the catalogue?The catalogue can be used by
researchers and practitioners that aim at executing an agility
assessment and the users may include developers, project
managers or quality assurance consultants.

How to use the catalogue? The guideline is based on the
method proposed byMoha et al. [32] and is composed of four
steps as depicted in Figure 7:

• Step 1: Selection: In this phase, the agile smells that will
be used in the next phases are selected. The selection of
an agile smell should be based on the relation between
the smell and the agile method adopted by the project.
Agile smells that are not related to any agile practice
adopted by the project should not be selected in this
phase.

• Step 2: Identification: This phase aims at identifying the
occurrence of the agile smells selected in the previous
phase. In the remainder of this guideline, an occurrence
of an agile smell will be denoted as an issue. The Identi-
fication Strategies (presented in the catalogue) are man-
ually applied and the project data assessed to identify the
issues.

79248 VOLUME 8, 2020



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

TABLE 5. AS 02: Absence of Frequent Deliveries.

TABLE 6. AS 03: Iteration Without a Deliverable.

• Step 3: Validation: In this phase, the issues detected in
the previous phase are analyzed and the false-positives
are discarded.

TABLE 7. AS 04: Goals Not Defined.

• Step 4: Reporting: The positive issues are consolidated
and a report is generated.

VIII. RELATED WORK
Studies that aim at consolidating the body of knowledge
around agility assessment are in some level related to this
paper. We divide those studies in two categories: (a) studies
that aim at identifying agile practices and characteristics to
support the adoption of agile methods, and (b) studies that
aim at identifying requirements to support agility assessment.

A. MAPPING AGILE PRACTICES
This category includes studies that identified agile practices
or characteristics to support the adoption of agile devel-
opment. We consider these studies related to our research
because the identified agile practices could be ultimately used
as input to an agility assessment process.

Miller [38] conducted one of the first studies that aimed
at investigating characteristics of agile development. Among
the identified characteristics, we can mention: modularity
on development process, iterative with short cycles, time-
bound with iteration cycles from one to six weeks, parsimony
in development processes removing unnecessary activities,
adaptive with possible emergent new risks, incremental pro-
cess approaches that allow functioning application building
in small steps, convergent (and incremental) approach, and
people-oriented.

VOLUME 8, 2020 79249



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

TABLE 8. AS 05: Iteration Without an Iteration Planning.

In [77], Sidky proposed a structured method to guide
organizations in adopting agile development. The method
is divided in 4 stages: Discontinuing Factors, Project-level
Assessment, Organizational Readiness Assessment, and Rec-
onciliation. In each stage, different actions are proposed to
cover the following practices: Delivering Customer Value
by Embracing Change, Planning to Deliver Software Fre-
quently,Human-centric, Technical Excellence, andCustomer
Collaboration. This method was one of the first structured
approaches to guide the use of agile practices. However,
it differs from our study mainly by specifying the practices
in a generic way and by not giving an indication of how to
check if they were properly adopted.

TABLE 9. AS 06: Complex Tasks.

TABLE 10. AS 07: Iteration Without an Iteration Retrospective.

In [78], Shore and Warden described a set of practices
to guide the adoption of XP and other agile methods. The
practices are divided into two categories: Practicing XP and
Mastering Agile. The first category is focused on the XP

79250 VOLUME 8, 2020



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

TABLE 11. AS 08: Absence of Timeboxed Iteration.

method and contains 37 practices such as Pair Program-
ming, Retrospectives, Trust, Sit Together, Real Customer
Involvement, Stand-Up Meetings, Version Control, Release
Planning, and Incremental Requirements. The second part
contains generic agile practices such as Tune and Adapt,Work
in Small, Reversible Steps, Deliver Frequently, and Deliver
Business Results. The practices represent a useful asset for
guiding the adoption of agile practices, especially XP, into
the software industry.

Abrantes and Travassos [40] conducted a study to iden-
tify the most commonly used agile practices. The authors
identified a set of 12 practices: test driven development,
continuous integration, pair programming, planning game,
onsite customer, collective code ownership, small releases,
metaphor, refactoring, sustainable pace, simple design, and
coding standards.

Although many others papers aim at mapping agile prac-
tices [46], [67], [79]–[82], these studies do not investigate
agile methods from the perspective of this study, namely,
trying to identify practices that impair the use of agile devel-
opment and indicate how these practices can be checked in
real scenarios. The agile practices presented in the studies
above are typically described for educational purposes rather
than focusing on agility assessment. That is, the intention of
the authors is to guide development teams and organizations
in how to apply the agile practices. There is little focus

TABLE 12. AS 09: Iteration Started without an Estimated Effort.

on verifying whether the agile practices have been properly
adopted.

B. AGILITY ASSESSMENT REQUIREMENTS
Studies in this category describe practices and requirements
to be checked in an agility assessment.

Yatzeck proposed in [63] a two-checklist method to aid
the adoption and assessment of the agile process in large
companies. The first checklist is focused on guiding the
adoption of Scrum and it is composed of 10 items. The second
checklist, called ‘‘You Should Immediately Be Suspicious
If’’, describes 8 practices that may indicate misuse of agile
practices: 1) ‘‘There is no high-level architecture’’, 2) ‘‘There
is no plan’’, 3) ‘‘There is no project dashboard, or you don’t
have access’’, 4) ‘‘You aren’t invited to an iteration planning
meeting and a showcase for every iteration’’, 5) ‘‘You don’t
get any escalations coming out of the planning workshop’’,
6) ‘‘The team performs perfectly in Iteration 1’’, 7) ‘‘You
aren’t welcome to join daily standup Scrum meetings as an
observer’’, and 8) ‘‘You can’t get metrics about software
quality’’. These items are similar to the Bad Agile Smells
proposed in this study since they describe practices that

VOLUME 8, 2020 79251



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

TABLE 13. AS 10: Iteration Without an Iteration Review.

may jeopardize the adoption of agile methods. However,
the study differs from ours in three aspects: (a) the practices
are described in a generic way and there is no indication
of how they could be checked in real scenarios. Therefore,
the verification of these practices may be threatened by the
bias of the person performing the agility assessment that has
to interpret the practice and determine how to check it; (b) the
items are focused on the Scrum method; and (c) there is no
clear relation between the items and the agile practices that
motivated them. The author did not explain the origin of the
items. The author also failed in not describing the criteria that
define the target companies (large companies).

Hermida proposed an online agility assessment approach
called ‘‘Abetterteam’’ [83]. The tool has a questionnaire com-
posed of 30 three-option questions. The author claimed the
tool is able to verify the adoption of the practices proposed
by Shore and Warden in [78]. However, the author did not
indicate how the questionnaire is related to the practices
proposed by Shore and the rationale behind the assessment
result.

Krebs et al. proposed an agility assessment model called
Agile Journey Index (AJI) [84] that aids organizations in
improving their application of the agile method. The model
looks at 19 key practices and divides them into 3 categories:
Plan, Do and Feedback. The assessment consists of rating
each practice on a scale of 1 to 10. Although the model

FIGURE 7. Catalogue use guideline.

specifies criteria for each score, the evaluation of these crite-
ria depends on qualitative analysis and there is no indication
of how to identify the occurrence of these practices in real
projects. Another drawback of this model is that it considers
only Scrum practices and neglects other agile methods.

In [85], Williams et al. proposed the Comparative
AgilityTM (CA) method to aid organizations in determining
their relative agile capability compared to other companies
who responded to CA. The tool, that is available as a survey-
tool, assesses agility using seven dimensions: Teamwork,
Requirements, Planning, Technical Practices, Quality, Cul-
ture, and Knowledge Creation. Each dimension has between
three and six characteristics (32 in total) and each character-
istic is made up of approximately four agile practices (125 in
total). For each practice, the respondent indicates the truth of
the practice using a five-point Likert scale: True; More true
than false; Neither true nor false; More false than true; or
False. Although the approach uses an innovative assessment
technique (by comparing the answers given by the company
with a global trend), the authors neglected to indicate how
the practices were identified, how they are related to the agile
methods, and how they can be verified. One of the questions
that composes the method, for example, is ‘‘Team members
leave planning meetings knowing what needs to be done and

79252 VOLUME 8, 2020



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

have confidence they can meet their commitments’’. There are
no clear criteria to check the occurrence of this practice.

The Enterprise and Team Level Agility Maturity
Matrix [86] is an agility assessment method available as a
spreadsheet divided into two sections: one for describing the
Organization and another for describing the Development
Team. There are a number of agile indicators for each section
(14 organizational indicators and 37 team indicators) and
each indicator ranges from a ‘0’ (impeded) to a ‘4’ (ideal).
For each cell in the matrix, there is a simple explanation of
what it means to be at that level for that indicator.
IBM DevOps Practices Self-Assessment [87] is another

agility assessment approach available as a web application.
The solution contains 15 questions divided into 4 areas:
Demographic, Practices, Strategies, and Motivation. The
authors claimed the tool can ‘‘evaluate the state of an orga-
nization’s software delivery approach’’. However, there are
no indications of how the questions were formed, how the
answers should be analyzed and how the results are related to
agile practices.

The Scrum Checklist [88] is a tool to help development
teams getting started with Scrum, or assessing their cur-
rent implementation of Scrum. The checklist is made up
of 80 items divided into 4 groups: The Bottom Line; Core
Scrum; Recommended But Not Always Necessary; Scaling;
and Positive Indicators. According to the author, the items on
the checklist are not rules and therefore were not designed
to be verifiable or to produce a measure that indicates the
level of compliance with Scrum. Instead, they are guidelines
that might be used by the team as a discussion tool at the
retrospective meetings. Examples of items on the checklist
are ‘‘Whole team believes plan is achievable?’’ or ‘‘Having
fun? High energy level?’’.

There are also models that aim to assess team members
individually. In [89], Campbell and MacIver define a self-
assessment model named Agility Maturity Self-Assessment
that intends to identify the skills of individuals in six areas:
Agile Teams, Agile Leadership, Agile Project Management,
Agile Communication/Promotion, Business Value, and Risk
Management. The questions have the following structure
‘‘How experienced are you in the given area. . . ’’. The author
did not provide any indication of how to analyze the answers.
In [90], Ribeiro proposed a survey where the participants
can assess their skill in agile development by answering a
questionnaire composed of 25 questions (including an open
question). The author did not provide indications of how to
analyze the answers and to assess the skill of the individuals.
Other self-assessment tools andmethods are proposed in [91],
[92] and [93]. In [94], an extensive case study was conducted
to evaluate 22 agile maturity self-assessment surveys accord-
ing to seven criteria namely: a) comprehensiveness, b) fitness
for purpose, c) ability to discriminate, d) objectivity, e) con-
ciseness, f) generalizability, and g) suitability for multiple
assessment. The authors concluded none of the evaluated
approaches fully satisfy all of the criteria but are helpful to
some degree.

Although these studies may be useful for guiding the
assessment of developers in specific skills related to agile
development, they differ from this study in not considering
the assessment of projects and organizations and not provid-
ing objective indications of how the practices can be checked
in an agility assessment.

Other studies proposed methods, tools or requirements to
support agility assessment [95]–[99], and [100]. However,
these proposals differ from the catalogue of agile smells in
three ways namely: (a) the practices are usually described in a
vague way which makes their verification jeopardized by the
bias of the professional performing the assessment. (b) there
is no indication of how to verify the occurrence of these
practices; and (c) there is no clear relationship between the
proposed criteria for agility assessment and any agile method.

A comprehensive study conducted by Chronis [101] inves-
tigated three questionnaire based approaches to measure
the agility of development teams: Team Agility Assessment
(TAA) [102], Perceptive Agile Measurement (PAM) [103],
and Objectives Principles Strategies (OPS) [104]. These
approaches do not focus on a specific agile methodology.
Instead, they try to evaluate the degree of agility based on
generic agile principles and values. The approach proposed
by Leffingwell [102] (TAA), for example, assesses the agility
of a development team by considering six aspects: a) Product
Ownership, b) Release Planning and Tracking, c) Iteration
Planning and Tracking, d) Team, e) Testing Practices, and
f) Development Practices/Infrastructure. On the other hand,
the method proposed by So and Scholl [103] (PAM) focuses
on eight agile areas (that the authors named scales): a) Itera-
tion Planning, b) Iterative Development, c) Continuous Inte-
gration and Testing, d) Stand-Up Meetings, e) Customer
Access, f) Customer Acceptance Tests, g) Retrospectives,
and h) Collocation. The framework proposed by Soundarara-
jan (OPS) focuses on 17 agile strategies namely: a) Iterative
progression, b) Incremental development, c) Short delivery
cycles, d) Evolutionary requirements, e) Continuous feed-
back, f) Refactoring, g) Test-first development, h) Self-
managing teams, i) Continuous integration, j) Constant veloc-
ity, k) Minimal documentation, l) High bandwidth communi-
cation, m) Retrospection, n) Client-driven iterations, o) Dis-
tribution of expertise, p) Configuration management, and
q) Adherence to standards.

Other studies aimed at assessing the agility of a software
development methodology. Nebe and Baloni [105] investi-
gated the integration of agile development and User-Centred
Design (UCD) and proposed a checklist to assess the user-
centeredness of agile processes.

Qumer and Henderson-Sellers [106] introduce a frame-
work to assist the selection and assessment of agile devel-
opment methods. The framework is composed of seven
components: 1) Knowledge-Base, 2) Process Fragment and
Process Composer, 3) Publisher, 4) Registry, 5) Agility
Calculator, 6) Knowledge-Transformer, and 7) Visualizer.
The Agility Calculator, for example, generates a report
and may assist organizations in making decisions about

VOLUME 8, 2020 79253



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

the selection or adoption of an agile method or method
fragments.

It is important to note that most of the agile smells proposed
in this study are intimately related to some agile practices
described in the studies presented previously. For example,
some of the smells presented in Section VI are related to
the Timeboxed practice (mentioned in several studies already
discussed). This relationship is expected as almost all the
agile practices derived from the same set of values and prin-
ciples proposed in the Manifesto for Agile Development [7]
and shown in Section VIII. However, we consider our study
an important contribution because the proposed catalogue
is focused on providing elements (agile smells) that can be
directly checked in an agility assessment. Thus, for each
smell, the catalogue indicates the motivating agile practice
and at least one strategy to identify its occurrence in a real
software project.

IX. RESULTS AND THREATS TO VALIDITY
In this section we present the results of this study and discuss
some threats to validity.

A. RESULTS
The main contribution of this study is the catalogue of
agile smells shown in Tables 4 to 13. These agile smells
were organized to aid managers and developers assessing
the agility of their projects, iterations and agile teams. This
catalogue of agile smells fills a gap in the agile literature
by making explicit an important set of agility assessment
requirements. While theManifesto for Agile Development [7]
and other agile methods [8]–[10], [20]–[23] present the agile
values, principles and practices in a rather vague descrip-
tion [41], [42], this catalogue presents objective criteria to
assess whether some agile practices have been properly
adopted. We present the agile smells in a uniform vocabulary
using templates that were designed to support practitioners
in agility assessment. The Identification Strategy section pro-
vides a guideline to detect the occurrence of these agile smells
in real projects.

The agile smells can be used to assess agility in the level of
organization, project, iteration or team. Agile smells such as
Goals Not Defined and Dependence on Internal Specialists
are designed to assess the project. Occurrences of these agile
smells indicate adjustments in the project may be necessary.
The agile smell Dependence on Internal Specialists may
reveal a failure in the project planning.

Agile smells such as Iteration Without a Deliverable, Iter-
ation Without an Iteration Retrospective, Absence of Time-
boxed Iteration and Iteration Without an Iteration Planning
are designed to assess the iterations. Occurrences of these
agile smells indicate adjustments in the iteration planning
and iteration execution may be necessary. The agile smells
Iteration Without an Iteration Retrospective and Iteration
Without an Iteration Planning indicate the lack of important
meetings prescribed by the agile methods.

The Lower Priority Tasks Executed First agile smell
assesses the agile team. The occurrence of this agile smell
may indicate the agile team is not working on the most
important tasks as prescribed by almost all agile methods.

The Shared Developers agile smell targets the organiza-
tion. An occurrence of this smell may indicate the organiza-
tion is not properly allocating developers based on the agile
values.

B. THREATS TO VALIDITY
This section discusses the threats to the validity of this
research and the actions that were taken to avoid them.
External Validity. This refers to the degree to which the

identified agile smells are relevant to the industry. To confirm
the lack of bias of the extraction method used in the literature
review and to confirm the relevance of the identified agile
smells to the industry, a survey with experienced practitioners
from two different countries was conducted.
Construct Validity. This validates whether the research

explores what it claims to be exploring. A threat in this
category is not reaching the ‘‘state of the art’’ about agile
development. As a significant part of the body of knowl-
edge about Agile Methods is created by software engineer-
ing (SE) practitioners that usually do not publish in academic
forums [107], we decided to include in the literature review
the grey literature (non-peer-reviewed material).
Internal Validity. This validates whether the agile smells

identified in the literature review are internally valid. A risk
to this validity came from the fact there is no use of the term
‘‘smell’’ in the current literature. We thus sought to mitigate
this threat by defining objective criteria to extract the agile
smells from the selected papers.
Conclusion Validity. This threat is related to problems that

can impact the reliability of our conclusions. A risk in this
category regards the survey sampling size. The survey was
conducted with a sampling that is not representative enough
to allow us to affirm that the set of identified agile smells
represents the most relevant. So, there may be some variation
in the ranked list whether we conduct a survey with a more
representative sampling.

X. CONCLUSION
The goal of this study was twofold: (a) identify a set
of practices that may impair the proper adoption of agile
development (AKA agile smells); and (b) propose strate-
gies to identify the occurrence of such practices in real
projects.

The study was organized into three phases: Elicitation,
Confirmation, and Consolidation. In the Elicitation phase,
we conducted a literature review including peer-reviewed
academic publications and ‘‘grey’’ literature that extracted
an initial set of 20 agile smells. In the Confirmation phase,
this set of agile smells was the subject of a survey that aimed
at characterizing the smells according to their relevance.
Finally, in the Consolidation phase, the agile smells were
consolidated and organized as a catalogue.

79254 VOLUME 8, 2020



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

The catalogue aims at helping practitioners conduct agility
assessment by (a) describing a set of practices that may impair
the proper use of agile methods and (b) presenting strategies
to identify the occurrence of such practices in real projects.

The catalogue can be used by researchers and industry
practitioners who intend to execute agility assessment of their
projects or organizations. The catalogue can also be used in
research that aims at automatically detecting agile smells.
As proposed by methods such as DECOR [32], making the
smells explicit through a structured catalogue is a prelude to
an automatic approach toward detection.

In future work, we will (a) evaluate the practical use
of the catalogue guideline with case studies in the con-
text of industry; (b) investigate how to measure eventual
‘‘technical debts’’ caused by these smells; (c) extend the
catalogue including new agile smells; (d) identify the most
relevant smells through a more comprehensive survey with
a more representative sampling; and (e) investigate the
relationship between the agile smells and specific agile
methods.

APPENDIX
LITERATURE REVIEW SELECTED STUDIES
The 55 studies selected for full consideration in the system-
atic literature review are listed below.

P1: Schwaber, K.: SCRUMdevelopment process. In: Busi-
ness Object Design and Implementation, pp. 117–134.
Springer London (1997) [16].

P2: Stapleton, J.: Dynamic systems development method:
the method in practice. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA
(1997) [21].

P3: Beck, K.: Embracing change with extreme program-
ming. Computer 32(10), 70–77 (1999) [14].

P4: Beck, K.: Extreme programming explained: embrace
change. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2000) [14].

P5: Cunningham,W.: Extreme programming. http://www.-
extremeprogramming.org/ (1999), accessed: 2017-12-
01 [9].

P6: Luca, J.D.: Feature driven development FDD.
http://www.-featuredrivendevelopment.com/ (1999),
accessed: 2017-12-01 [20].

P7: Highsmith, III, J.A.: Adaptive software development: a
collaborative approach to managing complex systems.
Dorset House Publishing Co., Inc., New York, NY,
USA (2000) [22].

P8: Miller, G.G.: The characteristics of agile software
processes. In: Proceedings of the 39th Interna-
tional Conference and Exhibition on Technology of
Object-Oriented Languages and Systems (TOOLS39).
TOOLS ’01, IEEE Computer Society, Washington,
DC, USA (2001) [38].

P9: Palmer, S.R., Felsing, M.: A practical guide to feature-
driven development. Pearson Education, 1st edn.
(2001) [].

P10: Maurer, F., Martel, S.: Extreme programming: rapid
development for web-based applications. IEEE Inter-
net Computing 6(1), 86–90 (2002) [44].

P11: Newkirk, J.: Introduction to agile processes and
extreme programming. In: Proceedings of the 24th
International Conference on Software Engineering.
ICSE 2002. pp. 695–696 (May 2002) [45].

P12: Lindvall, M., Basili, V.R., Boehm, B.W., Costa, P.,
Dangle, K., Shull, F., Tesoriero, R., Williams, L.A.,
Zelkowitz, M.V.: Empirical findings in agile meth-
ods. In: Proceedings of the Second XP Universe and
First Agile Universe Conference on Extreme Program-
ming and Agile Methods - XP/Agile Universe 2002.
Springer-Verlag, London, UK, UK (2002) [39].

P13: Abrahamsson, P., Salo, O., Ronkainen, J., Warsta,
J.: Agile software development methods - review
and analysis. Tech. Rep. 478, VTT Publications
(2002) [23].

P14: Schwaber, K., Beedle,M.: Agile software development
with scrum. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edn. (2001) [17].

P15: Cockburn, A.: Agile software development. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA (2002) [10].

P16: Martin, R.C.: Agile software development: principles,
patterns, and practices. Prentice Hall PTR, Upper Sad-
dle River, NJ, USA (2003) [46].

P17: Nisar, M., Hameed, T.: Agile methods handling off-
shore software development issues. In: Proceedings of
INMIC 2004 - 8th International Multitopic Confer-
ence. pp. 417–422 (2004). [62].

P18: McMahon, P.: Extending agile methods: a distributed
project and organizational improvement perspective.
CrossTalk (5), 16–19 (2005) [70].

P19: Miller, G.: Agile software development for the entire
project. CrossTalk 18(12), 9–12 (2005) [108].

P20: Pikkarainen, M., Salo, O., Still, J.: Deploying
agile practices in organizations: a case study,
vol. 3792 LNCS (2005) [109].

P21: Ambler, S.: Survey says: agile works in practice.
Dr. Dobb’s Journal 31(9), 62–64 (2006) [110].

P22: Cao, L., Ramesh, B.: Agile software development: ad
hoc practices or sound principles? IT professional 9(2),
41–47 (2007) [65].

P23: Thomas, J.: Introducing agile development practices
from the middle. In: Engineering of Computer Based
Systems, 2008. ECBS 2008. 15th Annual IEEE Inter-
national Conference and Workshop on the. pp. 401–
407. IEEE (2008) [66].

P24: Kautz, K., Pedersen, C., Monrad, O.: Cultures of
agility - agile software development in practice. In:
ACIS 2009 Procedings - 20th Australasian Conference
on Information Systems. pp. 174–184 (2009) [111].

P25: Batra, D.: Modified agile practices for outsourced soft-
ware projects. Communications of the ACM 52(9),
143–148+10 (2009) [112].

VOLUME 8, 2020 79255



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

P26: Misra, S.C., Kumar, V., Kumar, U.: Identifying some
important success factors in adopting agile software
development practices. J. Syst. Softw. 82(11), 1869–
1890 (nov 2009) [67].

P27: Li, J.: Research and practice of agile unified process.
In: ICSTE 2010 - 2010 2nd International Conference
on Software Technology and Engineering, Proceed-
ings. vol. 2, pp. V2340–V2343 (2010) [68].

P28: Williams, L.: Agile software development methodolo-
gies and practices. In: Advances in Computers, vol. 80,
pp. 1–44. Elsevier (2010) [47].

P29: Abrantes, J.F., Travassos, G.H.: Common agile prac-
tices in software processes. In: 2011 International
Symposium on Empirical Software Engineering and
Measurement. pp. 355–358 (Sept 2011) [40].

P30: Shi, Z., Chen, L., Chen, T.E.: Agile planning and
development methods. In: ICCRD2011 - 2011 3rd
International Conference on Computer Research and
Development. vol. 1, pp. 488–491 (2011) [71].

P31: Poppendieck, M., Cusumano, M.: Lean software
development: a tutorial. IEEE Software 29(5), 26–32
(2012) [113].

P32: Sletholt, M., Hannay, J., Pfahl, D., Langtangen, H.:
What do we know about scientific software devel-
opment’s agile practices? Computing in Science and
Engineering 14(2), 24–36 (2012) [54].

P33: Dyck, S., Majchrzak, T.: Identifying common charac-
teristics in fundamental, integrated, and agile software
development methodologies. In: Proceedings of the
Annual Hawaii International Conference on System
Sciences. pp. 5299–5308 (2012) [114].

P34: Alzoabi, Z.: Agile software: body of knowledge. In:
Business Intelligence and Agile Methodologies for
Knowledge-Based Organizations: Cross-Disciplinary
Applications, pp. 14–34. IGI Global (2012) [48].

P35: Yatzeck, E.: A corporate agile 10-point checklist [63].
P36: Meyer, B.: Agile!: the good, the hype and the

ugly, Agile!: the good, the hype and the ugly,
vol. 9783319051550 (2014) [55].

P37: Papatheocharous, E., Andreou, A.: Empirical evidence
and state of practice of software agile teams. Journal
of Software: Evolution and Process 26(9), 855–866
(2014) [2].

P38: Chagas, L.F., de Carvalho, D.D., Lima, A.M., Reis,
C.A.L.: Systematic literature review on the charac-
teristics of agile project management in the context
of maturity models. In: International Conference on
Software Process Improvement and Capability Deter-
mination. pp. 177–189. Springer (2014) [64].

P39: Moran, A.: Agile software development. In: Agile Risk
Management, pp. 1–16. Springer (2014) [49].

P40: Diebold, P., Dahlem, M.: Agile practices in practice:
a mapping study. In: Proceedings of the 18th Inter-
national Conference on Evaluation and Assessment in
Software Engineering. p. 30. ACM (2014) [50].

P41: Berteig, M.: Rules of scrum. http://www.agileadvice.
com/rules-of-scrum/(2015), accessed: 2017-12-01 [18].

P42: Ghani, I., Bello, M.: Agile adoption in IT organiza-
tions. KSII Transactions on Internet and Information
Systems 9(8), 3231–3248 (2015) [51].

P43: Gregory, P., Barroca, L., Taylor, K., Salah, D., Sharp,
H.: Agile challenges in practice: a thematic analysis,
vol. 212 (2015) [115].

P44: Dikert, K., Paasivaara, M., Lassenius, C.: Challenges
and success factors for large-scale agile transforma-
tions: a systematic literature review. Journal of Sys-
tems and Software 119, 87–108 (2016) [116].

P45: Eloranta, V.P., Koskimies, K.,Mikkonen, T.: Exploring
ScrumBut - an empirical study of scrum anti-patterns.
Information and Software Technology 74, 194–203
(2016) [69].

P46: Uikey, N., Suman, U.: Tailoring for agile methodolo-
gies: a framework for sustaining quality and produc-
tivity. International Journal of Business Information
Systems 23(4), 432–455 (2016) [56].

P46: Tripp, J., Armstrong, D.: Agile methodologies: organi-
zational adoption motives, tailoring, and performance.
Journal of Computer Information Systems 58, 1–10
(10 2016). [59].

P48: Kropp, M., Meier, A., Biddle, R.: Agile practices,
collaboration and experience an empirical study about
the effect of experience in agile software development,
vol. 10027 LNCS (2016) [57].

P49: Jain, R., Suman, U.: Effectiveness of agile practices
in global software development. International Journal
of Grid and Distributed Computing 9(10), 231–248
(2016) [58].

P50: Alliance, S.: Learn about scrum. https://www.
scrumalliance.-org/why-scrum (2016), accessed: 2017-
12-01 [8].

P51: Hoda, R., Noble, J.: Becoming agile: a grounded
theory of agile transitions in practice. In: Proceed-
ings - 2017 IEEE/ACM 39th International Conference
on Software Engineering, ICSE 2017. pp. 141–151
(2017) [117].

P52: Sunner, D.: Agile: adapting to need of the hour: under-
standing agile methodology and agile techniques. In:
Proceedings of the 2016 2nd International Confer-
ence on Applied and Theoretical Computing and Com-
munication Technology, iCATccT 2016. pp. 130–135
(2017) [52].

P53: Bello, M., Ghani, I.: A survey on success factors and
obstacles for further adoption of agile in it organisa-
tions. International Journal of Advanced Media and
Communication 7(3), 167–180 (2017) [53].

P54: Lacerda, L., Furtado, F.: Factors that help in the
implantation of agile methods: a systematic mapping
of the liteature. In: Iberian Conference on Informa-
tion Systems and Technologies, CISTI. vol. 2018-June,
pp. 1–6 (2018) [60].

79256 VOLUME 8, 2020



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

P55: Vallon, R., da Silva Estacio, B., Prikladnicki,
R., Grechenig, T.: Systematic literature review on agile
practices in global software development. Information
and Software Technology 96, 161–180 (2018) [61].

REFERENCES
[1] VersionOne. (2019). The 13th Annual State of Agile Report 2019.

Accessed: Jan. 15, 2020. [Online]. Available: http://stateofagile.
versionone.com

[2] E. Papatheocharous and A. S. Andreou, ‘‘Empirical evidence and state of
practice of software agile teams,’’ J. Softw., Evol. Process, vol. 26, no. 9,
pp. 855–866, Sep. 2014.

[3] O. Ozcan-Top and O. Demirörs, ‘‘A reference model for software agility
assessment: AgilityMod,’’ in Software Process Improvement and Capa-
bility Determination, T. Rout, R. V. O’Connor, and A. Dorling, Eds.
Cham, Switzerland: Springer, 2015, pp. 145–158.

[4] S. W. Ambler and M. Lines, Disciplined Agile Delivery: A Practitioner’s
Guide to Agile Software Delivery in the Enterprise. Indianapolis, IN,
USA: IBM Press, 2012.

[5] S. Ambler. (2018). IT Project Success Rates Survey Results.
Accessed: Oct. 1, 2019. [Online]. Available: http://www.ambysoft.
com/surveys/success2018.html

[6] O. E. Adalı, Ö. Özcan-Top, and O. Demirörs, ‘‘Evaluation of agility
assessment tools: A multiple case study,’’ in Software Process Improve-
ment and Capability Determination, P. M. Clarke, R. V. O’Connor,
T. Rout, and A. Dorling, Eds. Cham, Switzerland: Springer, 2016,
pp. 135–149.

[7] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland, and
D. Thomas. (2001). Manifesto for agile software development. [Online].
Available: http://www.agilemanifesto.org/

[8] S. Alliance. (2016). Learn About Scrum. Accessed: Dec. 1, 2017.
[Online]. Available: https://www.scrumalliance.-org/why-scrum

[9] W. Cunningham. (1999). Extreme Programming. Accessed: Dec. 1, 2017.
[Online]. Available: http://www.-extremeprogramming.org/

[10] A. Cockburn. Agile Software Development. Reading, MA, USA:
Addison-Wesley, 2002.

[11] E. Foundation. (2012). OpenUp Methodology. Accessed: Dec. 1, 2017.
[Online]. Available: http://epf.eclipse.org/wikis/openup/

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refac-
toring: Improving the Design of Existing Code. Reading, MA, USA:
Addison-Wesley, 1999.

[13] U. Telemaco, T. Oliveira, P. Alencar, and D. Cowan, ‘‘A catalog of bad
agile smells for agility assessment,’’ in Proc. Ibero-Amer. Conf. Softw.
Eng. (CIbSE), Havana, Cuba, 2019, pp. 30–43.

[14] K. Beck, ‘‘Embracing change with extreme programming,’’ Computer,
vol. 32, no. 10, pp. 70–77, 1999.

[15] K. Beck, Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley, 2000.

[16] K. Schwaber, ‘‘SCRUM development process,’’ in Business Object
Design and Implementation. London, U.K.: Springer, 1997, pp. 117–134.

[17] K. Schwaber and M. Beedle, Agile Software Development With Scrum,
1st ed. Upper Saddle River, NJ, USA: Prentice-Hall, 2001.

[18] M. Berteig. (2015). Rules of Scrum. Accessed: Dec. 1, 2017. [Online].
Available: http://www.agileadvice.com/rules-of-scrum/

[19] S. R. Palmer and M. Felsing, A Practical Guide to Feature-Driven Devel-
opment, 1st ed. London, U.K.: Pearson, 2001.

[20] J. D. Luca. (1999). Feature Driven Development FDD.
Accessed: Dec. 1, 2017. [Online]. Available: http://www.
-featuredrivendevelopment.com/

[21] J. Stapleton, Dynamic Systems Development Method: The Method in
Practice. Boston, MA, USA: Addison-Wesley, 1997.

[22] J. A. Highsmith, III, Adaptive Software Development: A Collabora-
tive Approach to Managing Complex Systems. New York, NY, USA:
Dorset House, 2000.

[23] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, ‘‘Agile software
development methods—Review and analysis,’’ VTT Publications, Espoo,
Finland, Tech. Rep. 478, 2002.

[24] S. Fraser, B. Boehm, J. Järkvik, E. Lundh, and K. Vilkki, ‘‘How do
Agile/XP developmentmethods affect companies?’’ inExtreme Program-
ming and Agile Processes in Software Engineering, P. Abrahamsson,
M. Marchesi, and G. Succi, Eds. Berlin, Germany: Springer, 2006,
pp. 225–228.

[25] T. J. Gandomani, H. Zulzalil, A. A. A. Ghani, A. B. M. Sultan, and
M. Z. Nafchi, ‘‘Obstacles in moving to agile software development meth-
ods at a glance,’’ J. Comput. Sci., vol. 9, no. 5, p. 620 2013.

[26] T. J. Gandomani, H. Zulzalil, A. Ghani, A. Azim, and A. B. Sultan,
‘‘Important considerations for agile software development methods gov-
ernance,’’ J. Theor. Appl. Inf. Technol., vol. 55, no. 3, pp. 345–351, 2013.

[27] S. Soundararajan and J. D. Arthur, ‘‘A structured framework for assessing
the’ goodness’ of agile methods,’’ in Proc. 18th IEEE Int. Conf. Work-
shops Eng. Comput.-Based Syst., Apr. 2011, pp. 14–23.

[28] W. H. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray,
AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
Hoboken, NJ, USA: Wiley, 1998.

[29] E. van Emden and L. Moonen, ‘‘Java quality assurance by detecting code
smells,’’ in Proc. 9th Work. Conf. Reverse Eng., 2002, pp. 97–106.

[30] M. Lanza and R. Marinescu, Object-Oriented Metrics in Practice: Using
Software Metrics to Characterize, Evaluate, and Improve the Design of
Object-Oriented Systems. Berlin, Germany: Springer-Verlag, 2007.

[31] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, ‘‘Detecting defects
in object-oriented designs: Using reading techniques to increase software
quality,’’ ACM SIGPLAN Notices, vol. 34, no. 10, pp. 47–56, Oct. 1999.

[32] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur, ‘‘DECOR:
A method for the specification and detection of code and design smells,’’
IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20–36, Jan. 2010.

[33] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw, ‘‘Build-
ing empirical support for automated code smell detection,’’ in Proc.
ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Sep. 2010,
pp. 1–10.

[34] F. Arcelli Fontana, P. Braione, and M. Zanoni, ‘‘Automatic detection of
bad smells in code: An experimental assessment.,’’ J. Object Technol.,
vol. 11, no. 2, p. 5:1, 2012.

[35] R. O. Spinola, A. C. Dias-Neto, and G. H. Travassos, ‘‘Abordagem para
desenvolver tecnologia de software com apoio de estudos secundários e
primários,’’ in Proc. Exp. Softw. Eng. Latin Amer. Workshop (ESELAW),
2008, pp. 1–25.

[36] B. Kitchenham and S. Charters, ‘‘Guidelines for performing systematic
literature reviews in software engineering,’’ Keele Univ., Univ. Durham,
Durham, U.K., Tech. Rep. EBSE 2007-001, Jul. 2007.

[37] M. Pai, M. McCulloch, J. Gorman, N. Pai, W. Enanoria, G. Kennedy,
P. Tharyan, and J. Colford, ‘‘Systematic reviews and meta-analyses:
An illustrated, step-by-step guide,’’ Med. J. India, vol. 17, no. 2,
pp. 86–95, 2004.

[38] G. G. Miller, ‘‘The characteristics of agile software processes,’’ in Proc.
39th Int. Conf. Exhib. Technol. Object-Oriented Lang. Syst. (TOOLS).
Washington, DC, USA: IEEE Computer Society, 2001.

[39] M. Lindvall, V. R. Basili, B. W. Boehm, P. Costa, K. Dangle, F. Shull,
R. Tesoriero, L. A. Williams, and M. V. Zelkowitz, ‘‘Empirical findings
in agile methods,’’ in Proc. 2nd XP Universe 1st Agile Universe Conf.
Extreme Program. Agile Methods. London, U.K.: Springer-Verlag, 2002.

[40] J. F. Abrantes and G. H. Travassos, ‘‘Common agile practices in software
processes,’’ in Proc. Int. Symp. Empirical Softw. Eng. Meas., Sep. 2011,
pp. 355–358.

[41] N. C. Tsourveloudis and K. P. Valavanis, ‘‘On the measurement of enter-
prise agility,’’ J. Intell. Robotic Syst., vol. 33, no. 3, 329–342, 2002.

[42] A. Gill and B. Henderson-Sellers, ‘‘Measuring agility and adaptibility of
agile methods: A 4 dimensional analytical tool,’’ in Proc. Int. Conf. Appl.
Comput. (IADIS). Lisbon, Portugal: IADIS Press, 2006.

[43] J. Li, J. F. Burnham, T. Lemley, and R. M. Britton, ‘‘Citation analysis:
Comparison of Web of science, scopus, SciFinder, and Google scholar,’’
J. Electron. Resour. Med. libraries, vol. 7, no. 3, pp. 196–217, 2010.

[44] F. Maurer and S. Martel, ‘‘Extreme programming. Rapid development
for Web-based applications,’’ IEEE Internet Comput., vol. 6, no. 1,
pp. 86–90, 2002.

[45] J. Newkirk, ‘‘Introduction to agile processes and extreme programming,’’
in Proc. 24th Int. Conf. Softw. Eng. (ICSE), May 2002, pp. 695–696.

[46] R. C. Martin, Agile Software Development: Principles, Patterns, and
Practices. Upper Saddle River, NJ, USA: Prentice-Hall, 2003.

[47] L.Williams, ‘‘Agile software development methodologies and practices,’’
Adv. Comput., vol. 80, pp. 1–44, Jan. 2010.

[48] Z. Alzoabi, ‘‘Agile software: Body of knowledge,’’ in Business Intel-
ligence and Agile Methodologies for Knowledge-Based Organizations:
Cross-Disciplinary Applications. Hershey, PA, USA: IGI Global, 2012,
pp. 14–34.

[49] A. Moran, ‘‘Agile software development,’’ in Agile Risk Management.
Cham, Switzerland: Springer, 2014, pp. 1–16.

[50] P. Diebold and M. Dahlem, ‘‘Agile practices in practice: A mapping
study,’’ in Proc. 18th Int. Conf. Eval. Assessment Softw. Eng., 2014,
pp. 1–10.

VOLUME 8, 2020 79257



U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

[51] I. Ghani and M. Bello, ‘‘Agile adoption in IT organizations,’’ KSII Trans.
Internet Inf. Syst., vol. 9, no. 8, pp. 3231–3248, 2015.

[52] D. Sunner, ‘‘Agile: Adapting to need of the hour: Understanding agile
methodology and agile techniques,’’ in Proc. 2nd Int. Conf. Appl. Theor.
Comput. Commun. Technol. (iCATccT), 2016, pp. 130–135.

[53] M. Bello and I. Ghani, ‘‘A survey on success factors and obstacles
for further adoption of agile in IT organisations,’’ Int. J. Adv. Media
Commun., vol. 7, no. 3, pp. 167–180, 2017.

[54] M. T. Sletholt, J. E. Hannay, D. Pfahl, and H. P. Langtangen, ‘‘What do we
know about scientific software Development’s agile practices?’’ Comput.
Sci. Eng., vol. 14, no. 2, pp. 24–37, Mar. 2012.

[55] B. Meyer, Agile!: The Good, the Hype and the Ugly. Cham, Switzerland:
Springer, 2014.

[56] U. Suman and N. Uikey, ‘‘Tailoring for agile methodologies: A frame-
work for sustaining quality and productivity,’’ Int. J. Bus. Inf. Syst.,
vol. 23, no. 4, pp. 432–455, 2016.

[57] M. Kropp, A. Meier, and R. Biddle, ‘‘Agile practices, collaboration
and experience,’’ in Product-Focused Software Process Improvement, P.
Abrahamsson, A. Jedlitschka, A. N. Duc, M. Felderer, S. Amasaki, and
T. Mikkonen, Eds. Cham, Switzerland: Springer, 2016, pp. 416–431.

[58] R. Jain and U. Suman, ‘‘Effectiveness of agile practices in global software
development,’’ Int. J. Grid Distrib. Comput., vol. 9, no. 10, pp. 231–248,
Oct. 2016.

[59] J. F. Tripp and D. J. Armstrong, ‘‘Agile methodologies:
Organizational adoption motives, tailoring, and performance,’’
J. Comput. Inf. Syst., vol. 58, no. 2, pp. 170–179, Apr. 2018, doi:
10.1080/08874417.2016.1220240.

[60] L. L. Lacerda and F. Furtado, ‘‘Factors that help in the implantation of
agile methods: A systematic mapping of the liteature,’’ in Proc. 13th
Iberian Conf. Inf. Syst. Technol. (CISTI), Jun. 2018, pp. 1–6.

[61] R. Vallon, B. J. da Silva Estácio, R. Prikladnicki, and T. Grechenig,
‘‘Systematic literature review on agile practices in global software devel-
opment,’’ Inf. Softw. Technol., vol. 96, pp. 161–180, Apr. 2018.

[62] T. H. Muhammad Faisal Nisar, ‘‘Agile methods handling offshore soft-
ware development issues,’’ in Proc. 8th Int. Multitopic Conf. (INMIC),
2004, pp. 417–422, doi: 10.1109/INMIC.2004.1492915.

[63] E. Yatzeck. (Dec. 2012). A Corporate Agile 10-Point Checklist.
Accessed: Jun. 30, 2019. [Online]. Available: http://pagilista.
blogspot.com/2012/12/a-corporate-agile-10-point-checklist.html

[64] L. F. Chagas, D. D. de Carvalho, A. M. Lima, and C. A. L. Reis,
‘‘Systematic literature review on the characteristics of agile project man-
agement in the context of maturitymodels,’’ in Software Process Improve-
ment and Capability Determination. Cham, Switzerland: Springer, 2014,
pp. 177–189.

[65] L. Cao and B. Ramesh, ‘‘Agile software development: Ad hoc practices
or sound principles?’’ IT Prof., vol. 9, no. 2, pp. 41–47, Mar. 2007.

[66] J. Thomas, ‘‘Introducing agile development practices from the middle,’’
in Proc. 15th Annu. IEEE Int. Conf. Workshop Eng. Comput. Based Syst.
(ECBS), Mar. 2008, pp. 401–407.

[67] S. C. Misra, V. Kumar, and U. Kumar, ‘‘Identifying some important
success factors in adopting agile software development practices,’’ J. Syst.
Softw., vol. 82, no. 11, pp. 1869–1890, Nov. 2009.

[68] J. Li and X. Wang, ‘‘Research and practice of agile unified pro-
cess,’’ in Proc. 2nd Int. Conf. Softw. Technol. Eng., vol. 2, Oct. 2010,
pp. V2340–V2343.

[69] V.-P. Eloranta, K. Koskimies, and T. Mikkonen, ‘‘Exploring ScrumBut—
An empirical study of scrum anti-patterns,’’ Inf. Softw. Technol., vol. 74,
pp. 194–203, Jun. 2016.

[70] P. McMahon, ‘‘Extending agile methods: A distributed project and
organizational improvement perspective,’’ CrossTalk, vol. 5, pp. 16–19,
Apr. 2005.

[71] S. Zhong, C. Liping, and C. Tian-En, ‘‘Agile planning and develop-
ment methods,’’ in Proc. 3rd Int. Conf. Comput. Res. Develop., vol. 1,
Mar. 2011, pp. 488–491.

[72] A. B. Kajornboon, ‘‘Using interviews as research instruments,’’ E-J. Res.
Teachers, vol. 2, no. 1, pp. 1–9, 2005.

[73] S. Oishi, How to Conduct in-Person Interviews for Surveys. Newcastle
upon Tyne, U.K.: SAGE, 2003.

[74] A. N. Ghazi, K. Petersen, S. S. V. R. Reddy, and H. Nekkanti, ‘‘Sur-
vey research in software engineering: Problems and strategies,’’ 2017,
arXiv:1704.01090. [Online]. Available: http://arxiv.org/abs/1704.01090

[75] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. London, U.K.: Pearson,
1995.

[76] P. Cohen, J. Cohen, L. S. Aiken, and S. G. West, ‘‘The problem of units
and the circumstance for POMP,’’Multivariate Behav. Res., vol. 34, no. 3,
pp. 315–346, Jul. 1999.

[77] A. S. Sidky, ‘‘A structured approach to adopting agile practices: The agile
adoption framework,’’ Ph.D. dissertation, Virginia Polytech. Inst., State
Univ., Blacksburg, VI, USA, 2007.

[78] J. Shore and S. Warden, The Art of Agile Development: Pragmatic Guide
to Agile Software Development. Newton, MA, USA: O’Reilly Media,
2007.

[79] V. Subramaniam and A. Hunt, Practices of an Agile Developer: Working
in the Real World. Raleigh, NC, USA: Pragmatic Bookshelf, 2006.

[80] O. Ktata and G. Lévesque, ‘‘Agile development: Issues and avenues
requiring a substantial enhancement of the business perspective in
large projects,’’ in Proc. 2nd Canadian Conf. Comput. Sci. Softw. Eng.
New York, NY, USA: ACM, 2009, pp. 59–66.

[81] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, ‘‘A decade of agile
methodologies,’’ J. Syst. Softw., vol. 85, no. 6, 1213–1221, Jun. 2012.

[82] X. Yu and S. Petter, ‘‘Understanding agile software development practices
using shared mental models theory,’’ Inf. Softw. Technol., vol. 56, no. 8,
pp. 911–921, Aug. 2014.

[83] S. Hermida. (2009). A Better Team. Accessed: Jun. 30, 2019. [Online].
Available: http://www.abetterteam.org/

[84] W. Krebs, P. Morgan, and R. Ashton. (2011). Agile Journey Index.
AgileBill Krebs. Accessed: Jun. 30, 2019. [Online]. Available:
http://www.agiledimensions.com/blog/wp-content/uploads/2011/10/
KrebsAgileJourneyIndex.pdf

[85] L. Williams, K. Rubin, and M. Cohn, ‘‘Driving process improvement
via comparative agility assessment,’’ in Proc. Agile Conf., Aug. 2010,
pp. 3–10.

[86] D. MacKeen. (2013). Enterprise and Team Level Agility Maturity
Matrix. Eliassen Group. Accessed: Jun. 30, 2019. [Online]. Available:
http://blog.eliassen.com/introducing-the-enterprise-agility-maturity-
matrix

[87] IBM: IBM Devops Self-Assessment. Accessed: Jun. 30, 2019. [Online].
Available: https://devopsassessment.mybluemix.net/#/

[88] H. Kniberg. (2012). Scrum Checklist. Accessed: Jun. 30, 2019. [Online].
Available: http://www.crisp.se/scrum/checklist

[89] B. Campbell and R. MacIver. (2010). Agility Maturity Self Assessment.
Accessed: Jun. 30, 2019. [Online]. Available: http://www.robbiemaciver.
com/documents/presentations/A2010-Agile%20Maturity%20Self-
Assessment.pdf

[90] E. Ribeiro. (2015). Agility Maturity Self Assessment Survey.
Accessed: Jun. 30, 2019. [Online]. Available: https://beyondleanagile.
com/2015/12/08/agile-maturity-self-assessment-survey-published-at-
scrumalliance/

[91] D. Tousignant. (2013). How Agile Are You? Free Agile Maturity
Assessment. Accessed: Jun. 30, 2019. [Online]. Available:
https://capeprojectmanagement.com/agile-self-assessment/

[92] K. Waters. (2008). How Agile Are You? Free Agile Maturity Assessment.
Accessed: Jun. 30, 2019. [Online]. Available: https://www.101ways.
com/2008/01/21/how-agile-are-you-take-this-42-point-test/

[93] J. Rothman. (2013). Self Assessment Tool for Transitioning to Agile.
Accessed: Jun. 30, 2019. [Online]. Available: https://www.jrothman.
com/mpd/agile/2013/04/self-assessment-tool-for-transitioning-to-agile/

[94] O. R. Yürüm, O. Demirörs, and F. Rabhi, ‘‘A comprehensive evaluation
of agile maturity self-assessment surveys,’’ in Software Process Improve-
ment and Capability Determination, I. Stamelos, R. V. O’Connor, T. Rout,
and A. Dorling, Eds. Cham, Switzerland: Springer, 2018, pp. 300–315.

[95] Borland. (2009). Borland Agile Assessment. Accessed: Jun. 30,
2019. [Online]. Available: https://borland.typepad.com/agile-
transformation/2009/03/borland-agile-assessment-2009.html

[96] I. T. R. Group. (2013). Agile Process Assessment Tool.
Accessed: Jun. 30, 2019. [Online]. Available: https://www.infotech.com/
research/ss/it-deploy-changes-more-rapidly-by-going-agile/it-agile-
process-assessment-tool

[97] E. Gunnerson. (2015). Agile Team Evaluation. Accessed: Jun. 30, 2019.
[Online]. Available: https://blogs.msdn.microsoft.com/ericgu/2015/
10/05/agile-team-evaluation/

[98] (2015). VersionOne: Agile Assessment: Test Your Team’s Agility.
[Online]. Available: https://resources.collab.net/agile-101/agile-
assessment, accessed: 2019-06-30

[99] M. Britsch. (2017). Agility Questionnaire. Accessed: Jun. 30, 2019.
[Online]. Available: https://thedigitalbusinessanalyst.co.uk/agility-
questionnaire-130b03133b98

[100] M. Sahota. (2010). An Agile Adoption and Transformation Survival
Guide. [Online]. Available: http://www.barryovereem.com/wp-content/
uploads/M.-Sahota-Checklist-for-Change-Agents.pdf

[101] K. Chronis ‘‘Measuring agility—A validity study on tools measuring
the agility level of software development teams,’’ M.S. thesis, Univ.
Gotherburg, Goteborg, Sweden, 2015.

79258 VOLUME 8, 2020

http://dx.doi.org/10.1080/08874417.2016.1220240
http://dx.doi.org/10.1109/INMIC.2004.1492915


U. Telemaco et al.: Catalogue of Agile Smells for Agility Assessment

[102] D. Leffingwell, Scaling Software Agility: Best Practices for Large Enter-
prises. London, U.K.: Pearson, 2007.

[103] C. So and W. Scholl, ‘‘Perceptive agile measurement: New instruments
for quantitative studies in the pursuit of the social-psychological effect of
agile practices,’’ in Agile Processes in Software Engineering and Extreme
Programming, P. Abrahamsson, M. Marchesi, and F. Maurer, Eds. Berlin,
Germany: Springer, 2009, pp. 83–93.

[104] S. Soundararajan, ‘‘Assessing agile methods: Investigating adequacy,
capability, and effectiveness an objectives, principles, strategies
approach,’’ Ph.D. dissertation, Virginia Polytech. Inst. State Univ.,
Blacksburg, VI, USA, 2013.

[105] K. Nebe and S. Baloni, ‘‘Agile human-centred design: A confor-
mance checklist,’’ in Human Interface and the Management of Infor-
mation: Information, Design and Interaction, S. Yamamoto, Ed. Cham,
Switzerland: Springer, 2016, pp. 442–453.

[106] A. Qumer and B. Henderson-Sellers, ‘‘A framework to support the eval-
uation, adoption and improvement of agile methods in practice,’’ J. Syst.
Softw., vol. 81, no. 11, pp. 1899–1919, Nov. 2008.

[107] R. L. Glass and T. DeMarco, Software Creativity 2.0. Atlanta, GA, USA:
Developer Dot Star Books, 2006.

[108] Miller, G.:, ‘‘Agile software development for the entire project,’’
CrossTalk, vol. 18, no. 12, pp. 9–12, 2005.

[109] M. Pikkarainen, O. Salo, and J. Still, ‘‘Deploying agile practices in organi-
zations: A case study,’’ in Software Process Improvement, I. Richardson,
P. Abrahamsson, and R.Messnarz, Eds. Berlin, Germany: Springer, 2005,
pp. 16–27.

[110] S. Ambler, ‘‘Survey says: Agile works in practice,’’ Dobb’s J., vol. 31,
no. 9, pp.62–64, 2006.

[111] K. Kautz, C. Pedersen, and O. Monrad, ‘‘Cultures of agility—Agile
software development in practice,’’ in Proc. 20th Australas. Conf. Inf.
Syst. (ACIS), 2009, pp. 174–184.

[112] D. Batra, ‘‘Modified agile practices for outsourced software projects,’’
Commun. ACM, vol. 52, no. 9, pp. 143–148 and 10, Sep. 2009.

[113] M. Poppendieck and M. A. Cusumano, ‘‘Lean software development:
A tutorial,’’ IEEE Softw., vol. 29, no. 5, pp. 26–32, Sep. 2012.

[114] S. Dyck and T. A. Majchrzak, ‘‘Identifying common characteristics
in fundamental, integrated, and agile software development method-
ologies,’’ in Proc. 45th Hawaii Int. Conf. Syst. Sci., Jan. 2012,
pp. 5299–5308.

[115] P. Gregory, L. Barroca, K. Taylor, D. Salah, and H. Sharp, ‘‘Agile chal-
lenges in practice: A thematic analysis,’’ in Proc. Int. Conf. Agile Softw.
Develop., vol. 212, 2015, pp. 64–80.

[116] K. Dikert, M. Paasivaara, and C. Lassenius, ‘‘Challenges and success fac-
tors for large-scale agile transformations: A systematic literature review,’’
J. Syst. Softw., vol. 119, pp. 87–108, Sep. 2016.

[117] R. Hoda and J. Noble, ‘‘Becoming agile: A grounded theory of agile
transitions in practice,’’ in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.
(ICSE), May 2017, pp. 141–151.

ULISSES TELEMACO received the bachelor’s
degree in computer science from the Federal Uni-
versity of Rio Grande do Norte, in 2002 and the
M.Sc. degree in mechatronic engineering from
the Federal University of Bahia in 2009. He is
currently pursuing the Ph.D. degree in software
engineering with the Federal University of Rio de
Janeiro (UFRJ). He is also a Visiting Researcher
with the University of Waterloo, Canada. He is
also a Chief Technology Officer (CTO) at OWSE

Web Software Engineering, Inc., an Experienced Developer with more than
20 years working as a Software Architect. As a Technology Evangelist,
he has actively participated in the promotion of Java User Groups across
Brazil and around the world.

TOACY OLIVEIRA received the degree in electri-
cal engineering,M.Sc., and Ph.D. degrees from the
Pontifical Catholic University of Rio de Janeiro,
Brazil, in 1992, 1997, and 2001, respectively.
He spent three years at the University of Waterloo
as a Postdoctoral Fellow. He is currently an Assis-
tant Professor with the Federal University of Rio
de Janeiro with the Systems and Computing Engi-
neering Program, COPPE/UFRJ, Brazil. He is also
an Adjunct Professor with the David R. Cheriton

School of Computer Science, University of Waterloo, Canada. He has
published more than 70 refereed publications, and has been a member of
program committees of numerous conferences andworkshops. Besides being
a leading investigator in Brazilian research projects supported by CAPES and
CNPq, he has also exercised entrepreneurship by founding several companies
in Brazil. His current research interests focus on harnessing knowledge inten-
sive processes such those realized as modern software systems. His research
attempts to envision new techniques to capture, assess, and implement such
type of processes.

PAULO ALENCAR is currently a Research Pro-
fessor with the David R. Cheriton School of
Computer Science, University of Waterloo, and
also an Associate Director of the Computer Sys-
tems Group (CSG). He has received international
research awards from organizations such as Com-
paq and IBM. He has published more than 200 ref-
ereed publications and has been a member of
program committees of numerous highly-regarded
conferences and workshops. His recent research

in information technology and software engineering has focused on high-
level software architectures, design, components, and their interfaces; soft-
ware frameworks and application families; software processes, automated
workflows and work graphs, and evolution; Web-based approaches and
applications; open and big data applications; context-aware and event-based
systems; software agents; machine learning; cognitive chatbots; artificial
intelligence; and formal methods. He has been a Principal or a Co-Principal
Investigator in projects supported by NSERC, ORF-RE, IBM, SAP, CITO,
CSER, Bell, and funding agencies in Canada U.S., Brazil, Germany, and
Argentina. He is a member of the Association of Computing Machinery
(ACM), the Institute of Electrical and Electronic Engineers (IEEE), the Asso-
ciation for the Advancement of Artificial Intelligence (AAAI), the Waterloo
Water Institute (part of the Global Water Futures initiative), and theWaterloo
Artificial Intelligence Institute.

DON COWAN is currently a Distinguished
Professor Emeritus of computer science with the
University of Waterloo and also the Director of
the Computer Systems Group. He has made con-
tributions to computer science in areas such as
computer science, software engineering, and com-
plex applications. He has authored or coauthored
or an editor of more than 300 refereed articles
and 17 books in computer/communications, soft-
ware engineering, education, environmental infor-

mation systems, andmathematics. He has supervisedmore than 120 graduate
students and postdoctoral fellows. His group has developed over 80 web-
based and mobile software systems for many applications in areas such as
volunteerism, environment, socioeconomic development, tourist, population
health, aboriginal affairs, arts and culture, and built heritage. The University
ofWaterloo recognized his contributions to development of graduate students
by presenting him with the Award of Excellence in Graduate Supervision.
He was recognized for his research and support of the development of
computer science in Brazil by being awarded the National Order of Scientific
Merit (Grand Cross), the country’s highest civilian scientific honor, by the
President of Brazil. In 2009, he received the Waterloo Award, the City of
Waterloo’s highest civic honour, for his contributions to the City ofWaterloo.
In 2010, he was named a Distinguished Scientist by the Association for Com-
puting Machinery and, in 2011, he received a Doctor of Science (Honoris
Causa) from the University of Guelph for his contributions to Computer
Science and Software Engineering.

VOLUME 8, 2020 79259


