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ABSTRACT Renewable distributed generation will be a key component of future power distribution
networks. In order to control the voltage conditions for distribution networks integrated with distributed
generation (DG) units, it is vital to quantify the impacts of control variables on voltage magnitudes under
consumption and generation uncertainties. To do so, we need to run, for each control action, several power
flow simulations for various consumption and generation realizations. This is computationally infeasible
for systems with many uncertain inputs. In this work, we address this challenge by developing surrogates,
or metamodels, that analytically estimate the random voltage as a function of input variables which include
random parameters (consumption and generation levels) and control actions (power factors). Specifically,
we propose amodel reductionmethod for building these surrogates, which reduces the number of simulations
needed for training. This method identifies and includes only the consumption and generation variables
that are influential on the voltage at a given bus. Using this ‘reduced’ surrogate, we then develop a
sensitivity-based approach for probabilistic voltage control. We demonstrate the computational efficacy
of the control approach on a IEEE 69-bus system with a large number of correlated input parameters.
The highlights of computational efficiency in this case study include (1) accurate probabilistic power
flow analysis using surrogates constructed by only 500 training simulations for a system with more than
150 random parameters, and (2) successful surrogate-based voltage control approach which only requires
150 additional simulation samples, as opposed to the conventional perturb-and-observe voltage control which
needs more than 500,000 samples.

INDEX TERMS Distributed generation, distribution network, sensitivity analysis, polynomial chaos expan-
sion.

I. INTRODUCTION
In the future, power distribution will involve large penetra-
tion of renewable distributed generation (DG) units, due to
shortages of fossil fuel shortage, greenhouse gas emissions
from fossil fuels, technology development, cost reduction,
and government incentives [1]. Although there is no unique
definition for DG units (also known as embedded generation,
dispersed generation or decentralized generation) one can
roughly define them as small generation units that mainly use
renewable energies and are directly connected to distribution
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or customers’ side of networks [2]. The penetration of DG
units can result in an increase in power supply capacity and
a reduction in transmission loss [3]. However, despite the
advantages of DG integration, they also pose major planning
and operation challenges. The main operation challenges are
voltage control, grid protection and fault level [4]. In this
work, we focus on the voltage control problem and intro-
duce a surrogate-based sensitivity analysis framework that
efficiently evaluates how changes in active and reactive power
of DGs will impact the voltage profile of the network.

There are two conventional sensitivity analysis approaches
that evaluate the change in voltage at a specific bus as a
result of a change in active and/or reactive power at another
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bus: (1) the ‘‘Jacobian-based’’ approach (which uses the
inverse of the Jacobian matrix that is formed in the
Newton-Raphson power flow method), and (2) the perturb-
and-observe approach. The Jacobian-based approach was
used in [5] for voltage sensitivity analysis and selecting the
optimal reactive control of DGs, and in [6], [7] for sensitivity
analysis and voltage control in distribution systems with wind
and photovoltaic generation systems. It must be noted that
in Jacobian-based approach for sensitivity analysis requires
close monitoring and full observation of the corresponding
network. Additionally, it requires voltage sensitivities to be
updated every time the state of the network changes (i.e.,
every time that there is a change in consumption and/or
generation). Thus, Jacobian-based voltage control methods,
such as [5]–[11], cannot be used for proactive voltage con-
trol because the exact future demand and generation are not
known. In other words, proactive voltage control with such
approaches is feasible only when deterministic predictions
for demand and generation are used. Consequently, these con-
trol approaches are mostly applied after a voltage violation is
observed [5], [8].

In [12], the perturb-and-observe approach was used for
voltage sensitivity analysis. Unlike Jacobian-based methods,
the perturb-and-observe approach is also applicable when
power flow is calculated using an algorithm other than
Newton-Raphson [13], but similar to Jacobian-based meth-
ods, it requires the sensitivity analysis to be re-evaluated
every time that there is a change in the system. This is because
these conventional methods provide local sensitivity analysis
and do not provide analytical insights on the impact of change
in power on the voltage profile. Consequently, one has to
either repeatedly update the Jacobian matrix or run several
power flow simulations for different system states during the
operation. This requirement for simulation runs has encour-
aged studies to develop analytical approximations of voltage
change. For instance, in [14], data was used to approximate
voltage change as a linear function. However, a linear approx-
imation may not be accurate when large changes in power
generation or consumption are considered. In [15], an analyti-
cal approach for sensitivity analysis was proposed, but several
simplifying assumptions (e.g., considering the power losses
to be negligible) were made which can compromise accu-
racy. In [13], a surface-fitting approach was used to approx-
imate voltage, but it required an unnecessarily large number
of simulations. Moreover, none of these studies considered
power consumption to be random. The random behavior of
consumers and renewable energy sources can cause random
fluctuations in voltage profile of distribution network. This
randomness calls for methods that probabilistic calculate the
voltage change. In [16], [17], an upper bound for change in
voltage at a specific bus as a result of change in active and
reactive power at other buses was derived and verified using
simulations. But this upper bound can be substantially greater
than typical voltage changes and result in a voltage analysis
that is too conservative and unrealistic.

To summarize, there are very limited works that have fully
accounted for uncertainty in demand and generation of power
system in voltage control problems. This scarcity is mainly
due to the high computational cost associatedwith developing
analytical models and performing sensitivity analysis in the
presence of large number of uncertainty sources. In this work,
we propose a model reduction technique that can facilitate
building polynomial surrogates for distribution systems with
many random parameters. Recently, polynomial surrogates
have been successfully used in probabilistic power flow anal-
ysis [18], [19], where the power system response is approxi-
mated as a function of random inputs under a fixed decision
or control action. It should be noted that for these surrogates
to be used in a control framework, for any new control action,
a new surrogate should be constructed using new simulation
runs. This will cause a computational inefficiency challenge
for problems with numerous control action alternatives.

The ultimate goal of this work is to develop a computation-
ally efficient framework for voltage control of distribution
systems with DGs. To this end, we seek to use surrogates
which are analytical functions that represent the system
response (e.g., voltages), as a function of inputs (e.g., power
consumption). In this work, we propose a surrogate defined
over an augmented input space which includes both random
system parameters and also decision or control variables in
distribution systems with DGs. Specifically, the proposed
surrogate is a polynomial model that approximates voltage
at each bus as a function of the following input variables:
(1) random parameters, including power consumptions,
active powers generated by uncontrollable DGs, and active
powers generated by controllable DGs and (2) decision vari-
ables, including power factors of controllable DGs.

As demonstration, we consider a general scenario with
high penetration of DGs into the distribution system, and treat
power consumption and generation at all buses as correlated
random variables. Moreover, we consider the realistic case
where some of the DGs are not controllable and operate at
unit power factor. We will show that the proposed surrogate
(i) can facilitate efficient calculation of probability distribu-
tion of voltage levels, (ii) can enable fast global sensitiv-
ity analysis and offer analytical insights into how changes
in power at a given bus impact voltages at other buses,
and (iii) can enable a surrogate-based control approach with
a computational cost that is substantially smaller than that of
the conventional perturb-and-observe approach. To the best
of our knowledge, this work is the first attempt at developing
analytical surrogates, in the augmented space of random
parameters and decision variables, that allows computation-
ally affordable probabilistic voltage control.

The main challenge in building an accurate polynomial
surrogate for distribution systems is the high dimensionality
of random inputs. That is, as the number of random inputs
increases, the number of simulations needed to form a suf-
ficiently large training set also increases significantly. In this
work, we propose using a novel divide-and-conquer approach
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that effectively identifies the influential inputs and ignores the
non-influential parameters as random inputs, thereby reduc-
ing the dimensionality of the model and in turn the num-
ber of required simulation samples in the training set. This
model-reduction technique allows us to avoid simplifying
assumptions and include all influential sources of uncertainty
in the voltage control scheme. The proposed divide-and-
conquer approach also identifies the appropriate polynomial
order for the surrogate and thus can demonstrably improve
the surrogate accuracy.

In summary, the contributions of this paper are:
1. Developing polynomial surrogates for voltage levels

in distribution systems over an augmented input space that
includes random parameters as well as decision variables.

2. Proposing a divide-and-conquer model reduction
approach that facilitates the training of surrogates for distri-
bution systems with large number of random inputs.

3. Proposing a surrogate-based probabilistic voltage
control algorithm for distribution systems with DGs.

4. Demonstrating the applicability and efficiency of the
surrogate-based voltage control of distribution networks with
DGs in the presence of many correlated random inputs.

The rest of the paper is organized as follows: Section II
presents general concepts and theoretical background in
polynomial approximation as well as the proposed divide-
and-conquer approach. In Section III, we introduce our
surrogate-based probabilistic voltage sensitivity approach
along with the proposed voltage control algorithm.
In Section IV, we demonstrate the validity and efficiency of
our proposed surrogate-based approach on the IEEE 69-bus
system.

II. POLYNOMIAL SURROGATES FOR VOLTAGE LEVELS
As mentioned earlier, we seek to build a surrogate to approx-
imate voltage at each bus as a function of input variables,
which include random parameters and decision variables. The
resulting surrogate will be used to calculate, for each bus,
the voltage probability distribution, and in turn the voltage
violation probability, which is the probability of the voltage
not being in a ‘‘safe’’ range. In what follows, we provide the
technical background for polynomial surrogates and propose
an efficient approach to train these surrogates.

A. POLYNOMIAL SURROGATES
The polynomial chaos expansion (PCE), or polynomial sur-
rogate, is one of the most widely used surrogates that approx-
imates the system response (in our case the voltage) by a
polynomial function in the space of random inputs and can
thus replace the full-scale expensive simulation to enable
fast response calculation [20], [21]. Specifically, let u denote
the voltage at a given bus and x denote the vector of input
variables. Then, the PCE produces u(x), which is a functional
representation of the system response in the form of an expan-
sion with orthogonal bases that are polynomial functions of
input variables x.

Let us first consider the case where inputs x = (x1, . . . , xd )
are independent random variables. Let Ix ⊆ Rd be the
support of x (i.e., xi ∈ Ixi ) and Ix = ×di=1Ixi . Also, let
ρi : Ixi → R+ be the probability measure for input xi and
let ρ(x) =

∏d
i=1 ρi(xi). Given this setting, we form the set

of univariate orthonormal polynomials, {ψα,i}α∈N0 , which by
design satisfies∫

Ixi

ψα,i(xi) ψβ,i(xi) ρi(xi) dxi = δαβ , α, β ∈ N0, (1)

where N0 = N ∪ {0}, and δαβ is the Kronecker delta func-
tion. The probability density function of xi, ρi(xi) determines
what kind of polynomial functions {ψi} should be used. For
example, for Gaussian and uniform probability distributions,
respectively, Hermite and Legendre polynomials should be
used as the orthonormal polynomials. After determining
the type of one-dimensional polynomials, the d-dimensional
orthonormal polynomials are derived from the multipli-
cation of one-dimensional polynomials in all dimensions.
As an example, a d-dimensional polynomial, formed based
on one-dimensional polynomials with orders α1, α2, . . . , αd ,
in dimensions 1, 2, . . . , d is given by

ψα(x) = ψα1,1(x1)ψα2,2(x2) . . . ψαd ,d (xd ), (2)

where the multi-index α = (α1, α2, . . . , αd ). Consequently,
the orthonormality will also hold for d-dimensional polyno-
mials, i.e.∫

Ix
ψα(x)ψβ (x)ρ(x) dx = δαβ , α,β ∈ Nd

0 . (3)

Using this construction, any function u(x) : Ix → R that is
square-integrable can be represented as

u(x) =
∑
α∈Nd0

cαψα(x), (4)

where {ψα}α∈Nd0
is the set of orthonormal basis functions

satisfying Equation (3) [21]. However, for computation’s
sake, u(x) is approximated by a finite-order truncation of PCE
expansion given by

uk (x) :=
∑
α∈3d,k

cαψα(x), (5)

where k is the total order of the polynomial expansion and
3d,k is the set of multi-indices defined as

3d,k
:= {α ∈ Nd

0 : ‖α‖1 ≤ k}. (6)

The cardinality of 3d,k , i.e. the number of expansion terms,
here denoted by K , is a function of d and k according to

K := |3d,k
| =

(k + d)!
k!d !

. (7)

Given this setting, uk (x) approximates u(x) in a proper sense
and is referred to as the k-th degree PCE approximation
of u(x) [21].
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In order to build a PCE surrogate, the specific goal is
to calculate the vector of unknown expansion coefficients
c = (cα1 , .., cαK )

T in Equation (5). To do so, we obtain M
input samples and based on which M system responses are
calculated using computer models. This results in the data
vector u = (u(x(1)), . . . , u(x(M )))T . Among the methods to
estimate the PCE coefficients, regression is one of the most
widely used approach which concerns solving the following
problem [22]

min
c
‖u−9c‖22 , (8)

where 9 is the model matrix, constructed according to

9 = [ψij], ψij = ψαj (x
(i)), 1 6 i 6 M , 1 6 j 6 K . (9)

In the next sections, we will address challenges associated
with solving this regression problems for high dimensional
systems with different types of inputs.

B. CHOICE OF INPUT VARIABLES
As mentioned earlier, the input variables in this work are
not necessarily independent random variables. Specifically,
the vector of input variables x includes correlated random
parameters (i.e. power consumption and active power gen-
erated by controllable and uncontrollable DGs) and decision
variables (i.e. power factors of controllable DGs) that are
not inherently random. In this section, we explain how to
address the correlation issue, and also how power factors can
be considered as input variables of the polynomial surrogate.

1) CORRELATED SYSTEM PARAMETERS
To construct the polynomial surrogate over correlated random
inputs, the common practice is to convert correlated variables
to independent random variables using Cholesky decomposi-
tion or Copula [18], [19]. However, in this work, we deem
this orthogonalization to be unnecessary. This is because the
only reason for making variables uncorrelated is to maintain
the orthogonality of PCE basis functions. The latter is desired
for two reasons. First, an orthogonal basis set allows for ana-
lytical evaluation of first two statistical moments of system
output and also the sensitivity indices after the surrogate is
built [21], [23]. However, it should be noted that even when
basis functions in a surrogate are not orthogonal with respect
to random inputs, one could still numerically calculate the
statistical moments and sensitivity indices with high accuracy
if the trained surrogate is evaluated at a sufficiently large
number of input samples. This numerical calculation will
incur minimal computational cost as it only involves evalu-
ating an analytical function at input samples. Another reason
to prefer the orthogonality of basis functions is to prevent
the model matrix 9 from being highly coherent. Coherence
of 9 is especially important when the number of samples
is smaller than the number of unknown coefficients and an
under-determined system must be solved to estimate the PCE
coefficients [24]. This doesn’t apply to our work either, since
by excluding non-influential inputs in the divide-and-conquer

approach, as will be shown, we effectively reduce the number
of unknowns and only a few hundred samples are enough to
keep 9 overdetermined.

2) TREATING DECISION VARIABLES AS INPUT VARIABLES
In control actions targeted at preventing voltage violation,
power factors for controllable DGs are one of the main
factors to control. We specifically aim to include power
factors as input variables of PCE surrogates, in addition to
random inputs.We do so because with the resulting surrogate,
one can analytically evaluate the probabilistic system con-
ditions given various choices of power factors. Specifically,
we treat power factors as input variables uniformly dis-
tributed between a minimum andmaximum allowable values.
Therefore, the training samples are uniformly distributed
within that allowable range. It should be noted that we do
not assume that power factors are random system parameters.
We only treat them as an additional input variables, assumed
to be uniformly distributed over a prescribed range, so that
a controller can use the resulting surrogates to analytically
calculate voltage levels for different choices of power factors
as possible control actions. It should be noted that at each
fixed value of power factors, the probability distributions in
voltage levels are only due to the random system parameters
(e.g. power consumptions).

C. MODEL REDUCTION
A main challenge in building a PCE surrogate using
regression problem in 8 is the curse of dimensionality.
Specifically, as the dimensionality of the problem (i.e. the
number of random inputs) increases the number of polyno-
mial basis increases significantly. For instance, for a system
with 150 input variables, a 2nd order polynomial surrogate
will include a total number of K = 11, 476 unknown coef-
ficients. This means that at least 11,476 runs of the com-
puter model are needed for the regression problem not to be
underdetermined.

In this work, we seek to reduce the dimensionality of
the problem by removing the input variables that are not
influential. In large scale physical systems, it is likely that
the response of interest does not depend equally on all the
inputs, and the variation in some of the inputs has negligible
impact on the system response. Capitalizing on this possi-
bility, in order to lower the number of required computer
simulations, we aim to exclude those uninfluential inputs.
Specifically, to determine whether or not an input is influen-
tial, in an incremental approach we start with a second order
polynomial and try adding input variables to the model, one
variable at a time. For each trial, we train the surrogate and
compute the ‘‘calculation’’ error, chosen to be the `2 norm
of regression residual, evaluated on the same training data.
Then, out of the tried inputs, we choose to keep the input
that results in the smallest calculation error. In a subsequent
iterations, we try including more input variables or increasing
the polynomial order and accept the trail that leads to the
largest reduction in calculation error. Finally, we will stop
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adding inputs and increasing the polynomial order if there
is no further improvement in the ‘validation’ error, chosen to
be the `2 norm of regression residual, evaluated on a separate
test data set.

Algorithm 1 shows the pseudocode for the proposed
divide-and-conquer approach. In this pseudocode, at step
t , kt is the expansion order and xrt is the reduced dimen-
sion vector which only includes the ‘‘influential’’ inputs.
Corresponding to this vector, 9d and 9k denote reduced
model matrices (with columns fewer thanK ), evaluated at the
training samples. In the validation step, 9r

test is the reduced
model matrix evaluated at the test data, and utest denotes the
response vector evaluated on the test samples.

Algorithm 1 The Divide-and-Conquer Algorithm for PCE
Coefficients Estimation
1: Set t = 1, xrt = ∅, kt = 2.
2: Set validation error εmin � 1.
3: while validation error is improving do
4: for {xi : xi 6∈ xrt } do
5: Try including ith input: xrt = (xrt , xi).
6: Build model matrix 9 i

d with xrt .
7: Estimate coefficients: c(i)d =

argmin
∥∥u−9 i

dc
∥∥2
2.

8: Calculate error: e(i)d = min
∥∥u−9 i

dc
∥∥2
2.

9: Remove ith input: xrt = xrt \ xi.
10: end for
11: Pick the best dimension: i∗ = argmin{e(i)d }, ed =

min{e(i)d }, 9d = 9
i∗
t , cd = c(i

∗)
d .

12: Try increasing the order: kt = kt + 1.
13: Build the corresponding model matrix 9k .
14: Estimate coefficients: ck = argmin ‖u−9kc‖22.
15: Calculate error: ek = min ‖u−9kc‖22.
16: if ek < ed then
17: c∗ = ck , and build 9r

test based on 9k .
18: else
19: c∗ = cd , and build 9r

test based on 9d .
20: end if
21: Calculate validation error for best solution,

ε =
∥∥utest −9r

testc
∗
∥∥2
2.

22: if ε < εmin then
23: εmin = ε and t = t + 1.
24: Accept the change in xrt or kt , accordingly.
25: else
26: Stop.
27: end if
28: end while

The main computation cost of the proposed divide-and-
conquer approach is due to the least square minimizations,
which in turn depends on the size of 9r

t in each step. Since
this is an incremental algorithm involving solving reduced
models with very few inputs in each iteration, one can
expect the algorithm to be very efficient. At the conclu-
sion of this algorithm, for probabilistic voltage calculation at

each bus, we will have a reduced polynomial surrogate which
only includes a subset of random parameters and decision
variables.

III. VOLTAGE CONTROL USING POLYNOMIAL
SURROGATES
Here, we briefly explain our proposed probabilistic volt-
age control framework. First, using the reduced surrogate
proposed in previous section, for each bus we calculate
the voltage violation probability, which is the probability
that the voltage at that bus is not within the ‘‘safe’’ range.
A critical bus is then defined as the bus with a violation
probability greater than a prescribed threshold (taken to be
5% in the numerical case of this paper), and the most critical
bus is the critical bus with the highest violation probability.
At each control step, we focus on the most critical bus,
and identify the most influential DG for that bus. For this
identification, we rank influential (controllable) DGs using a
surrogate-based sensitivity analysis. In what follows, we pro-
vide the background on global sensitivity analysis and then
thoroughly explain the surrogate-based control approach.

A. SURROGATE-BASED SENSITIVITY ANALYSIS
Sensitivity analysis studies how variability (or uncertainty)
of each input impacts the variability (or uncertainty) of the
system’s response. The two main categories of sensitivity
analysis include local and global sensitivity analysis. Local
sensitivity analysis methods typically consider varying an
input variable around a fixed point in the input space while
keeping the rest of the inputs as fixed or deterministic.
Therefore, they measure the response sensitivity only in a
small neighborhood in the input space. Global sensitivity
analysis, on the other hand, considers the variability in the
whole input space and studies how such global input vari-
ability induces variability in the system’s response.

One of the most widely used global sensitivity analysis
approaches is the Sobol’ method [25], where the variance of
system’s response is decomposed as summation of variances
of different terms in the model and sensitivity is evaluated
by Sobol’ indices. Traditionally, Sobol’ indices are calculated
using Monte Carlo (MC) simulations. However, having con-
structed a PCE surrogate to replace expensive simulations,
one can calculate Sobol’ indices. This can be done analyti-
cally if inputs are not correlated [23], or with minimal com-
putational cost if they are correlated [26]. To evaluate Sobol’
indices using a PCE surrogate, we first need to decompose
the PCE expansion based on the indices of its terms. Let us
define ν to be a generic index set, ν ⊂ {1, . . . , d}, to label the
inputs that are varied and denote these labeled inputs by xν ,
as a subvector of x. We also define3d,k

ν to be a set of all basis
functions associated with these labeled inputs. That is, 3d,k

ν

contains all the multi-indices within 3d,k that have non-zero
terms αp 6= 0 if and only if p ∈ ν:

3d,k
ν =

{
α ∈ 3d,k

: p ∈ ν ⇔ αp 6= 0, p = 1, . . . , d
}
. (10)
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We can now rewrite PCE as the summation of terms that only
depend on the input variables xν :

uk (x) = c0 +
∑

ν⊂{1,...,d}

ukν(xν), (11)

where,

ukν(xν) =
∑
α∈3

d,k
ν

cαψα(xν), (12)

is the kth-order polynomial expansion that only includes
labeled inputs xν . If the inputs are correlated (i.e., x is a vector
of correlated variables) following [26], the variance of uk (x)
can be calculated as

Var(uk (x)) =
∑

ν⊂{1,...,d}

Cov
[
ukν(xν), u

k (x)
]
, (13)

where,

Cov
[
ukν(xν), u

k (x)
]
= Var(ukν(xν))

+

∑
ν 6=η

Cov
[
ukν(xν), u

k
η(xη)

]
, (14)

In order to calculate total covariance-based sensitiv-
ity indices S(cov)ν , structural (or uncorrelated) sensitiv-
ity indices S(S)ν and correlative sensitivity indices S(C)ν ,
Equations (13) and (14) are normalized as follows [26]

S(cov)ν =
Cov

[
ukν(xν), u

k (x)
]

Var(uk (x))
, (15)

S(S)ν =
Var(ukν(xν))
Var(uk (x))

, (16)

S(C)ν = S(cov)ν − S(S)ν . (17)

It should also be noted that these indices are calculated by
only evaluating the PCE surrogate at sample inputs, which
incurs minimal computation cost. It should be noted that in
the case of uncorrelated random inputs, Equation 17 vanishes
and the Sobol’ indices will be given by Equation 16.

Limited research works have been so far reported on global
sensitivity analysis for power systems. In [27], active power
at different buses are considered to be uncertain and global
sensitivity analysis is used to rank buses at which active
power most influentially impacts the system response, e.g.
voltages and branch currents. However, in distribution sys-
tems, it is the power factor of distributed generators that are
typically modified for a voltage control [5]. In what follows,
we discuss how such voltage control can be done effectively
by leveraging sensitivity analysis and carefully selecting the
buses at which power factor modification yields the best
result.

B. SURROGATE-BASED VOLTAGE CONTROL
In this section, we thoroughly explain the proposed proba-
bilistic voltage control. Figure 1 summarizes the proposed
methodology for surrogate-based probabilistic voltage con-
trol, which consists of four procedures: (1) surrogate training,

FIGURE 1. Summary of proposed surrogate-based probabilistic voltage
sensitivity analysis and control.

(2) surrogate-based power flow analysis, (3) surrogate-based
sensitivity analysis, and (4) control action. After training
the voltage surrogates, a surrogate-based probabilistic power
flow analysis is performed by calling the surrogate and cal-
culating the voltage PDF at every bus. Then, we identify the
critical buses (i.e., buses with voltage violation probability
larger than the prescribed threshold). In the next step, we tar-
get the most critical bus and perform the surrogate-based
sensitivity analysis to rank the respective influential DGs (and
accordingly the influential control actions). This ranking is
carried out based on the structural sensitivity indices, and not
the correlative ones, because control actions are taken one at
a time and do not cause any correlative impact.

Once sensitivity analysis is performed and influential DGs
are ranked, the last step is to modify the operation of influen-
tial DGs in order to bring the voltage violation probability at
the most critical bus within the safety threshold. This is done
by reducing the power factor of the top-ranked controllable
DG.With each power factor reduction, a new surrogate-based
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power flow analysis is performed to evaluate the new voltage
probability distributions. If for the most critical bus that is tar-
geted, the violation probability is still critical after lowering
the power factor at all the influential DGs to the lowest allow-
able level, PFmin, then the algorithm sequentially curtails
active power generation at the top-ranked controllable DGs
to reduce the violation probability. Finally, if the violation
probability is within the specified threshold at every bus,
the algorithm will terminate.

It should be noted that both surrogate-based probabilistic
power flow and sensitivity analysis incur minimal compu-
tational cost as they only involve evaluating the analytical
surrogates at randomly drawn input samples. The discus-
sion on how to choose the number of evaluation samples is
included in Section IV. Also, the proposed control approach
is a centralized approach, meaning that all control commands
are sent by one central unit in the system. The research on
how central unit communicates with DGs is out of the scope
of this study, and can be found in e.g., [28].

It should also be highlighted that the proposed surrogate-
based sensitivity analysis and control approach does not
require exact knowledge of consumption and generation
levels at a specific control step. Instead, it only incorporates
information about the probability distribution of genera-
tion and consumption levels. These probability distributions
can be obtained from offline analysis of historical data
and in doing so, one does not necessarily need to closely
monitor demand and generation levels. This is while the
Jacobian-based methods necessitates extensive system mon-
itoring [13]. Our proposed approach is also significantly
more efficient compared to conventional perturb-and-observe
approach [12] as for each candidate control action, it only
evaluates analytical functions to calculate voltage distribu-
tions. This underscores the applicability of this approach for
short-term probabilistic voltage control.

In the next section, we show the applicability and effi-
ciency of our approach for a distribution network with a
significantly large number of correlated random inputs and
decision variables. It should be noted that the computational
cost of constructing the surrogates does not directly depend
on the size of the network, but rather on the number of random
parameters and decision variables.

IV. NUMERICAL RESULTS AND DISCUSSION
A. TEST CASE
The IEEE 69 bus test system (shown in Fig. 2) is chosen as
the test case in this study. The nominal voltage of the system
is 12.66 kV and the generator connected to node 1 is set to a
voltage of 1.04 per unit.

1) GENERATION UNCERTAINTY
In this work, we consider small units of DGs that operate
at a constant power factor as the uncontrollable DGs, for
which the reactive power cannot be controlled. On the other
hand, we consider larger DG units, for which the power factor

FIGURE 2. The IEEE 69 bus distribution system chosen as the test case for
this study.

can be modified during the voltage control, as the control-
lable DGs. We also consider both controllable and uncon-
trollable DGs to generate electricity from renewable energy
sources. We assume that at each bus there exist small units
of uncontrollable DGs. For all the uncontrollable DG units,
we consider the mean active power generation of 0.02 MW
and a random power generation following N (0.02, 0.005).
On the other hand, the controllable DGs are considered to
exist in nodes with numbers divisible by 4 (shown by tick
lines in Fig. 2), and to have mean active power genera-
tion of 0.135 MW and a random power generation follow-
ing N (0.135, 0.04). We also set the correlation coefficient
between any pairs of active power generations in the network
to be 0.8. This is because distributed generators typically
use renewable energy sources which are random and highly
correlated.

2) DEMAND UNCERTAINTY
We consider power consumption at every bus to follow a
normal distribution, with their means set to be the nomi-
nal values of the benchmark IEEE 69 bus system and their
standard deviations set to be 10% of the corresponding
mean values. Similar to the correlation in generation levels,
we assume the correlation coefficient between any pair of
active power consumptions to be 0.8. We set the power factor
for uncontrollable DGs to be 1 and set the allowable range of
power factors for controllable DGs to be between 0.8 and 1.
It should be noted that these assumptions are made without
loss of generality to enable the numerical validation of our
approach. Actual power consumption and generation distri-
butions together with their correlation characteristics can be
estimated based on historical data, geographical extent of the
distribution system, spacing of DGs in the system, weather
conditions, etc. It should be noted that any (continuous) prob-
ability distribution can be transformed to uniform or normal
distributions that can be respectively used with Legendre or
Hermite polynomials in a voltage surrogate. In general, it is
easier to transform non-normal distributions to uniform distri-
butions and use Legendre-based polynomial surrogates. This
is because one can simply transform an arbitrary random vari-
able with a given distribution into a uniform random variable
using its cumulative distribution function (cdf). If needed,
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transformation to normal random variables can also be done
(see [29], [30] for more details.)

Next, we provide the validation results showing the effi-
ciency and applicability of our proposed surrogate-based
approach. In particular, for surrogate-based power flow
analysis, we compare our method against the MC sam-
pling approach, and for surrogate-based voltage control,
we compare our approach against the perturb-and-observe
approach.

B. VALIDATION OF SURROGATE-BASED VOLTAGE
ESTIMATION
As the first step, at each bus we train a separate PCE sur-
rogate to approximate its voltage as a function of all active
power consumptions, active powers generated by uncontrol-
lable DGs, active powers generated by controllable DGs, and
power factors of the controllable DGs. So, for each voltage
surrogate, there is a total of 170 input variables, that are
characterized in Table 1. Out of these inputs, we identify
and include only the influential variables using the proposed
divide-and-conquer approach. To do so, we obtain simulation
samples, which are random realizations of input variables
and the associated voltage values obtained from power flow
simulation. These samples include a ‘training’ set and a ‘test’
set. The latter always includes 100 samples and is used to
calculate the validation error (see Algorithm 1). In what
follows, we explain how to determine the number of samples
in the training set.

TABLE 1. The characteristics of the inputs used in the PCE surrogates.

1) SIZE OF TRAINING SET
To determine the number training samples, in a prelimi-
nary convergence analysis, we train surrogates using dif-
ferent choices for sample size, denoted by M , and record
the approximation accuracy on a pre-specified test set. For
each sample sizeM , we calculate the relative validation error
averaged across all the buses and over 100 test samples.
Specifically, the average relative validation error is given
by 1

n

∑n
i=1{

∥∥uPCEi − ui
∥∥2
2/‖ui‖

2
2}, where ui and u

PCE
i are the

100 dimensional vectors of ‘‘exact’’ and ‘‘surrogate-based’’
voltage values at bus i, respectively, and n is the number of
buses. Figure 3 shows the convergence of this error measure
versus the number of training samples. It can be seen that with
only a few hundred training samples, good accuracy can be
achieved in approximating voltage levels. Accordingly, in this
work we used 500 training samples, at which the validation
error seems to have converged.

FIGURE 3. Average relative validation error vs. the number of training
samples used to construct PCE surrogate.

2) VALIDATION AGAINST MC-BASED POWER FLOW RESULTS
In addition to the validation results of Fig. 3, we seek to
validate our surrogate-based voltage estimates against the
conventional MC-based estimates by comparing two proba-
bilisticmeasures: (1) probability distributions, and (2) voltage
violation probability. In order to accurately calculate these
measures, we need to determine the number of ‘evaluation’
samples, Nev, based on which the estimated measures are
converged. In this work, convergence is chosen to be a point
beyond which the change in estimated mean and standard
deviation is within 10−3. To determine Nev, we generate con-
vergence plots for voltage levels at all the buses. As an exam-
ple, Figure 4 shows the convergence of mean and standard
deviation of MC-based voltage level at bus 20 as a represen-
tative bus. By inspecting all the 69 convergence plots, it was
found that Nev = 5000 evaluation samples are sufficient.
Using these evaluation samples, as a representative case,
the surrogate-based and MC-based probability distributions
of voltage at bus 20 are calculated and compared in Figure 5.
We observed similar good agreements at all the other buses,
as well. Furthermore, Figure 6 compares the voltage violation
probabilities, defined in this work to be the probability of

FIGURE 4. Convergence plot for mean and standard deviation of voltage
probability distribution at bus 20 using MC sampling. Power factors of
controllable DGs are set to be 0.95.
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FIGURE 5. Probability distribution of voltage at node 20 generated by
Monte Carlo simulations vs. approximated probability distribution using
PCE surrogate.

FIGURE 6. Monte Carlo estimation of voltage violation probability vs.
approximated probability of voltage violation using PCE surrogate,
(a) before control actions, and (b) after control actions.

voltage levels being greater than 1.05 p.u. or smaller than
0.95 p.u. It should be noted that in determining Nev and
producing comparative results of Figures 5 and 6, we assumed
the values for all the decision variables (i.e., the power factors
at controllable DGs) to be 0.95.

C. VALIDATION OF SURROGATE-BASED VOLTAGE
CONTROL
In this task, we develop a control framework to ensure that
voltage violation probability, as defined earlier, is always less

than 0.05 at every bus. After the estimation of voltage levels
by either PCE or MC, it can be seen in Figure 6 that bus 27
has the highest voltage violation probability at about 0.14.
We then use the proposed surrogate-based control approach,
and compare it step by step against the conventional perturb-
and-observe approach. For brevity purposes, we consider the
two control options to include (1) power factor reduction,
which is done by setting the power factor at a controllable
DG to the lowest value of PFmin = 0.8; and (2) power
curtailment, which is done by reducing the active power (AP)
generation at a controllable DG by 20%.

Table 2 and 3 show the predictive control steps using
the surrogate-based and the perturb-and-observe approach,
respectively. As can be seen, the initial steps of the predictive
control simply involves alleviating violation probability at
bus 27 by reducing power factors at the corresponding most
influential DGs. In the surrogate-based approach, in these
first steps, we do not need to run any new simulations (in
addition to the original 500 ‘training’ simulations) to eval-
uate the violation probabilities or identify the most influ-
ential DG. On the other hand, in the perturb-and-observe
approach, only in its first step, in order to identify the most
influential DG, one needs 17 × 5000 new simulations. This
is because there are 17 candidate controllable DGs for PF
reduction, each requiring 5000 simulation samples to esti-
mate its after-control impact on violation probabilities at
bus 27. In the perturb-and-observe, out of these 17 candidate
PF reductions, the one that results in the lowest violation
probability is selected. Similarly, the second, third and forth
steps of this approach require 16 × 5000, 15 × 5000 and
14 × 5000 simulation samples to select the most influential
DGs, respectively.

TABLE 2. Surrogate-based probabilistic control steps to achieve violation
probability less than 0.05 at all buses.

TABLE 3. Probabilistic control steps suggested by perturb-and-observe
approach to achieve violation probability less than 0.05 at all buses.
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By Step 5 of the surrogate-based predictive control,
the power factor of all influential DGs (i.e., those selected by
the divide-and-conquer approach) had already been reduced
to PFmin. Therefore, we resort to the second control option
(i.e., power curtailment at the influential DGs). After cur-
tailing the active power at bus 24, as the most influential
bus, the new violation probabilities were calculated using the
polynomial surrogate, where the maximum value was found
to be 0.048 at bus 27. Since this value is very close to the
threshold of 0.05, we can use a refined violation probability
estimation to minimize the impact of approximation errors.
In particular, whenever the surrogate estimation for voltage
values is within 1.05 ± 0.002 p.u., we switch to a Monte
Carlo estimation of voltage value. This results in 150 addi-
tional simulations given that control action. As can be seen,
at Step 6, the ‘refined’ voltage violation probability was cal-
culated to be 0.053. Therefore, at an additional step, the active
power at the most influential bus (i.e., bus 24) is curtailed
again (by 20%) to ensure that the highest violation probability
is less than 0.05.

As a comparison, in the perturb-and-observe control
approach, after PF reduction of Step 4, one can observe an
insignificant change in the violation probability of bus 27,
decreasing from 0.077 to 0.07. Therefore, at Step 5 we con-
sider both PF reduction and power curtailment as control
options, hence the need to additional simulations. As can be
seen in Table 3, active power curtailment was in fact the more
effective option after that step.

In summary, it can be seen in Tables 2 and 3 that both
approaches result in the same sequence of control actions.
Figure 6b shows that both the exact and approximated viola-
tion probabilities at all the buses following the taken control
actions are below the threshold of 0.05. This is while the
surrogate-based predictive control approach requires sub-
stantially fewer simulation samples, thereby enabling more
efficient short-term voltage control.

V. CONCLUSION
In this work, we considered a distribution network with
uncertain and correlated power consumption and multiple
distribution generators with uncertain and correlated active
power generations. We showed that a relatively small number
of simulations can be used to build a surrogate for voltage
magnitudes. Specifically, we constructed PCE surrogates to
estimate the voltage profile of the system as a function of
active power consumption and generation, and power factors
of distributed generators. The approximated PCE surrogates
are then used for voltage approximation, efficient calcula-
tion of voltage probability distributions and an analytical
sensitivity analysis. Moreover, since the approximated PCE
surrogate is a function of power factors of distributed gen-
erators, it can be used with minimal computational cost to
identify influential distributed generators for which power
factor must be modified, whenever there is a critical voltage
violation. With ever increasing penetration of distributed
generators into power systems, fast and efficient voltage

analysis is necessary. Our proposedmethod provides efficient
computational tool for efficient and accurate voltage analysis
of distribution systems. Results from the implementation of
our proposed method on IEEE 69-bus system validate its
accuracy and efficiency.
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