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ABSTRACT To implement the quality prediction scheme for batch processes, long short-term memory
(LSTM) neural network is a feasible tool to handle with the process dynamics and nonlinearity. However,
a global LSTM soft sensor suffers a decline in performance facing batch-to-batch variations. To overcome
the batch diversity problem and take advantage of LSTM model, a multivariate trajectory based ensemble
just-in-time learning strategy is proposed in this paper. Different trajectory based similarity measurements
are designed to extract historical batch trajectories which share similar spatial positions and trends. For
each selected trajectory, an online local LSTM soft sensing model is constructed and the real-time quality
prediction result for each local model can be obtained. Then, a weighting parameter is determined for
each model by cross validation. Bringing together quality prediction results from different local models,
the ensemble prediction result can be finally figured out. Two case studies are carried out to prove the
effectiveness of the proposed methodology including a fed-batch reactor and the fed-batch penicillin
fermentation process.

INDEX TERMS Batch production systems, Ensemble just-in-time learning, long short-term memory,
multivariate trajectory analysis, soft sensor, quality prediction.

I. INTRODUCTION
Nowadays, the proportion of batch processes in modern
industry is increasing rapidly due to the growing demand
of high-value-added products (e.g., food, pharmaceuticals,
semiconductors, polymers, etc.) [1]–[5]. It is noted that the
quality of batch process products should be paid extreme
attention to, although online quality variables are usually
difficult to be measured. Hence, the quality prediction of
batch processes becomes a significant task of process indus-
try. Meanwhile, the real-time property of quality predic-
tion is also required to avoid the control failure and qual-
ity corruption during productions [6]–[8]. To achieve the
quality prediction scheme of batch processes, data-driven
soft sensor techniques are developed by making use of the
process data [9]–[14]. Mathematical models are established
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with historical data to extract the latent relationship between
ordinary process variables and quality variables. For online
quality prediction purpose, real-time measurement of the
easy-to-measure process variables is implemented to esti-
mate the critical quality variables through the established
prediction model. There are many kinds of data-driven soft
sensors of batch processes, such as partial least squares
(PLS) [15], support vector regression (SVR) [16], Gaussian
process regression (GPR) [17] and artificial neural network
(ANN) methods [18], [19]. PLS is developed to extract the
correlations between process input and output with a linear
model. To solve the problem of data nonlinearity, SVR and
ANN based soft sensors are designed with the idea of kernel
function and nonlinear mapping, respectively. Considering
the limited process data, GPR is used to implement adaptive
modeling and quality prediction scheme. In summary, these
existing soft sensingmodels mainly focus on the within-batch
characteristics of complicated batch processes.
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However, the aforementioned soft sensors are under the
assumption that the data of different batches used for mod-
eling are identical, which means these batches share the sim-
ilar trajectories without prominent batch-to-batch variations.
In light of this framework, the global monitoring strategy can
be carried out to generate an overall integrated soft sensor
model. When faced with practical targets such as parallel-
running processes, the gap between the ideal model and
the run-to-run batch variations become a formidable chal-
lenge [20], [21]. As a result, model updating is necessary
referring to different types of process data and the modeling
step is no longer restricted to the offline stage. Phase/stage
based data-driven modeling techniques are developed to han-
dle with this issue where the range of modeling data is limited
to the local samples. Besides, online modeling strategies are
also suggested to follow the changing trajectory of the real-
time batch data. To implement online local modeling, just-in-
time learning (JITL) algorithm is proposed as a useful online
tool to extract local similar samples, which is also known
as locally weighted learning and lazy learning [22]–[25].
The main idea of JITL is conducting the real-time similarity
measurement between the current query sample and historical
samples and sorting by similarity indices. To take the advan-
tage of JITL, may relevant soft senor methods are proposed
by scholars to deal with quality prediction and monitoring
tasks. Three steps are designed for a typical JITL based soft
sensor, which consist of similar sample extraction, online
local modeling and quality prediction.

It is worth mentioning that the criterion of the JITL similar
measurement varies in terms of different literatures. One
of the most widely used strategy is to measure both the
Euclidean distance and angle between two samples, where the
weighted sum of these two similarity values are regarded as
the similarity index of the current sample. However, there is
no acknowledged similarity measurement performing effec-
tively under various process conditions.

To make JITL adapt to different circumstances, the ensem-
ble strategy is adopted to integrate multiple similarity mea-
surements. Recently, an ensemble JITL (EJITL) technique is
proposed, which preserves the advantage of the traditional
JITL and improves the robustness of similar sample extrac-
tions [26]. In the EJITL framework, several similarity mea-
surements are carried out simultaneously to obtain individual
online local prediction models. Hence, the prediction results
can be integrated with ensemble learning strategies. EJITL
has been successfully applied on the online local modeling
and quality prediction of continuous processes.

Different from continuous processes, batch processes
behave more complicated than continuous processes, partic-
ularly due to the strong process dynamics and nonlinearity.
As a result, the performance of the JITL/EJITL strategy used
in continuous processes is limited since it only takes one
single query sample for similarity measurements, where the
feature of the current batch trajectory is ignored. Besides, a
nonlinear dynamic soft sensor is necessary for the quality
prediction of complex batch processes.

To address the aforementioned issues, a multivariate tra-
jectory based ensemble JITL (TEJITL) technique is devel-
oped in this study. Meanwhile, long short-term memory
(LSTM) is introduced as the nonlinear dynamic soft sens-
ing method [27]–[29]. Firstly, multiple consecutive real-time
samples of a batch process are used as the query samples.
During the similarity calculation stage, three similarity mea-
surements are adopted including the information of the dis-
tance, angle and trend between batch trajectories. For each
individual measurement, historical trajectories with larger
similarity measurements are collected as the online modeling
samples. Hence, several LSTM soft sensor models can be
constructed with the extracted batch trajectories and used
for the quality prediction of online query samples. To inte-
grate the quality prediction results of different sub-models,
weighting parameters of different similarity measurements
are defined and calculated based on the cross validation
strategy. Finally, the weighted sum of each prediction result is
judged as the ensemble result of the real-time batch trajectory.
By the use of TEJITL-LSTM soft sensor, the issue of within-
batch process nonlinearity and dynamics is firstly resolved
owing to the nonlinear dynamic modeling framework. Mean-
while, the batch-to-batch variations are also taken into consid-
eration with online local modeling strategy. A novel TEJITL
framework is developed to implement online local modeling
for batch processes with run-to-run variation. Combined with
the nonlinear dynamic LSTM soft sensing model, ensembled
quality prediction results can be obtained and the average
prediction error is expected to be smaller than a single JITL
technique based LSTM for batch processes.

The remainder of this paper is organized as follows.
Section II offers a brief view of the basic approaches. The next
section demonstrates the detailed methodology of the pro-
posed soft sensor framework for batch processes, followed by
two case studies as the verification of the proposed method.
In the final section, concluding remarks are drawn.

II. PRELIMINNARIES
In this section, some preliminaries of the basic models used
in this paper are demonstrated, which mainly consists of
the fundamental knowledge of JITL technique and LSTM
network.

A. JITL ALGORITHM
In general, traditional data-driven methods are mostly
designed for global modeling, which is difficult to handle
with multiple batch trajectories within a single global model.
To this end, JITL is designed to provide an online local
modeling strategy, which proves to be an effective model
updating technique.

Assume a historical dataset XH ∈ Rm×n is given, where m
is the variable index and n is the sample index. For an online
query sample xq ∈ Rm, JITL aims at the extraction of themost
similar samples in XH compared with xq. A fixed similarity
measurement is conducted as si = f

(
xq, xi

)
, where i =

1, 2, . . . , n. For most similarity measurements, a larger simi-
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FIGURE 1. The flow diagram of the typical JITL procedure.

FIGURE 2. The structure of LSTM neural network.

larity value indicates the higher degree of similarity between
two samples. Hence, the historical samples can be sorted
according to the similarity measurement in the descending
order. Therefore, a predefined number of historical samples
with the largest similarity measurements are collected as the
potential modeling data XM . Then, a specific online local
model can be constructed with the selected modeling data and
further utilized to accomplish a practical task (e.g., process
monitoring, process control, quality prediction, etc.). The
typical procedure of JITL is presented in Fig.1.

B. LONG SHORT-TERM MEMORY NEURAL NETWORK
As an improved neural network based on the recurrent neural
network (RNN), LSTM provides a modified structure by
designing several ‘‘gates’’ in its basic unit which is named as
‘‘cell’’. The purpose of these gates is to capture both the short-
term information and the long-term memory along the time
index. LSTM preserves the advantage of RNN and reveals a
better performance when handling with time-series data [30].
Therefore, LSTM has been adopted for nonlinear dynamic
modeling on plentiful applications. The detailed structure of
the LSTM structure is illustrated in Fig.2.

For each time instant t , an LSTM cell is constructed to
establish the link along the time index between the sample
of time instant t − 1 and t + 1. Moreover, at the variable
layer, the cell input xt is connected to a latent variable ht .
Then, a nonlinear mapping between ht and the cell output
yt are carried out. It can be easily inferred that the crucial
issue in training the LSTM model is to clarify the inner
structure and parameters of the cell. In other words, the major

task of LSTM is to obtain ht on the basis of xt and deliver
useful dynamic information to the next cell. To resolve these
problems, the following gates are developed. The input gate
it of the LSTM cell can be illustrated as

it = σ (Wxixt +Whiht−1 + bi) (1)

where σ in (1) represents the sigmoid activation function that
σ (x) = 1

/
(1+ e−x); Wxi,Whi are weighting parameters and

bi is the bias. Then, a tanh activation function is designed as
c̃t to capture the necessary part of the system input, which is
defined as:

c̃t = tanh(Wxcxt +Whcht−1 + bc) (2)

whereWxc,Whc are weighting parameters and bc denotes the
bias. To determine whether the long-term memory should be
remained from the previous cells, the forget gate is defined as

ft = σ (Wxf xt +Whf ht−1 + bf ) (3)

where Wxf ,Whf are weighting parameters and bf is the bias.
Hence, the cell state ct can be developed by combing the
weighted cell input and the remaining information of the
long-term memory, which can be described as

ct = ft � ct−1 + it � c̃t (4)

where� indicates the pointwise multiplication. To create the
connection between the cell state and the hidden latent state,
the output gate is defined as

ot = σ (Wxoxt +Whoht−1 + bo) (5)

whereWxo,Who are weighting parameters and bo denotes the
bias. Based on ct and ot , ht can be calculated as

ht = ot � tanh(ct ) (6)

Finally, the current value of system output can be estimated
according to the latent cell state as

ŷt = σ
(
Wyht + by

)
(7)

where Wy denotes the weighting parameter and by is the
output bias.

In summary, the complete forward pass network struc-
ture of LSTM has been demonstrated referring to (1) to
(7). To train a LSTM neural network, the back propagation
through time (BPTT) can be used, which is demonstrated in
Appendix A.

III. METHODOLOGY
In this section, the detailed methodology of the soft sensor
development is demonstrated and discussions are held.

A. MULTIVARIATE TRAJECTORY BASED EJITL
1) DATA UNFOLDING
According to Fig. 1, the historical dataset should firstly be
determined before the implementation of EJITL. For continu-
ous processes, the raw data XC ∈ RM×N are two-dimensional
and convenient for similarity measurements. On the contrary,
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FIGURE 3. The unfolding way of batch dataset.

the original data of batch processes are three-way data, which
can be denoted as XB ∈ RI×J×K including the batch index I ,
variable index J , and time index K . Therefore, a data unfold-
ing procedure is necessary to convert the original data to the
two-way form for similarity measurements. The unfolding
way is illustrated in Fig. 3.

According to Fig. 3, the three-way data is unfolded with
the variable-wise strategy and an unfolded two-way dataset
can be obtained as XH ∈ RJ×IK . Then, data normalization
can be conducted along the variable index for further EJITL
procedures.

2) SIMILARITY MEASUREMENTS
Given a fixed number of consecutive online query samples
xq, xq+1, . . . xq+n−1 which have been normalized, the key
task of the TEJITL is to extract the most similar historical tra-
jectories for online local modeling. Firstly, the historical data
are synchronized with the query sample length. For example,
the h-th historical batch trajectory can be represented as
xh, xh+1, . . . xh+n−1. Thus, totally IK − n+ 1 historical batch
trajectories are stored for similarity measurements. In this
study, three different similarity measurements are designed
to evaluate the similarity degree of two batch trajectories.

The first JITL strategy is the Euclidean distance measure-
ment. The distance based measurement can be denoted as

dh,i =
√
(xh − xi)T 1−1 (xh − xi),

(h = 1, 2, . . . , IK − n+ 1;

i = q, q+ 1, . . . , q+ n− 1) (8)

sh,i = e−dh,i
/
ω, (h = 1, 2, . . . , IK − n+ 1;

i = q, q+ 1, . . . , q+ n− 1) (9)

sh =
q+n−1∑
i=q

sh,i

/
n (10)

where xi denotes the normalized online sample; xh denotes
the normalized historical sample;1 is a diagonal matrix with
variances of each variable of the original historical input;
dh,i is the normalized distance between the two samples.
Therefore, the similarity measurement between every two
samples can be defined as sh,i, where ω is an adjustment
parameter of the exponential function. Finally, the similarity
measurement sh between the online trajectory and the h-th

historical batch trajectory can be calculated as the mean value
of the sample similarity measurements.

Note that the distance is not the only explanation of the
sample similarity. Therefore, the second JITL strategy takes
the information of the angle into consideration as a supple-
ment of the distance measurement. Given the same dataset
as the first measurement, an additional angle measurement is
defined based on the distance measurement as [23]

dh,i = ‖xh − xi‖2
(h = 1, 2, . . . , IK − n+ 1;

i = q, q+ 1, . . . , q+ n− 1) (11)

cos
(
θh,i
)
=
〈xh, xi〉
‖xh‖2 ‖xi‖2
(h = 1, 2, . . . , IK − n+ 1;

i = q, q+ 1, . . . , q+ n− 1) (12)

sh,i =

λe−dh,i
/
ω
+ (1− λ) cos

(
θh,i
)
, cos

(
θh,i
)
≥ 0

0, cos
(
θh,i
)
< 0

(h = 1, 2, . . . , IK − n+ 1;

i = q, q+ 1, . . . , q+ n− 1) (13)

sh =
q+n−1∑
i=q

sh,i

/
n (14)

The value of cos
(
θh,i
)
indicates the angle between the

online sample and the historical sample. In addition, samples
with an extremely large angle will result in a negative result
of cos

(
θh,i
)
. Under such a situation, the similarity value is

automatically adjusted to 0. Compared to the first measure-
ment, it defines a trade-off parameter λ to evaluate the weight
of the angle measurement. In general, the angle measurement
is useful when facing several equal-distance trajectories. His-
torical trajectories with smaller angle compared to the online
trajectory will have the priority for local modeling.

Apart from the information of the distance and angle,
the trend of the batch trajectory should be evaluated as well.
The previous two measurements mainly judge the similarity
degree in terms of the static spatial coordinates of batch
trajectories and neglect the information of the time-varying
change to some extent. To find the solution of the problem,
the third similarity measurement is proposed to compare the
trend of two batch trajectories, which is defined as [23]

dh,i = ‖(xh+s − xh)− (xi+s − xi)‖2 ,

(h = 1, 2, . . . , IK − n+ 1;

i = q, q+ 1, . . . , q+ n− s− 1) (15)

sh,i = e−dh,i
/
ω,

(h = 1, 2, . . . , IK − n+ 1;

i = q, q+ 1, . . . , q+ n− s− 1) (16)
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sh =
q+n−s−1∑

i=q

sh,i

/
(n− s− 1) (17)

By the calculation of the difference between the nearby
samples with a fixed step size s, the trajectory trend can be
described and compared as a novel similarity measurement.
Thus, the time-varying feature of batch trajectories is able to
be captured for similarity measurements.

3) ENSEMBLE QUALITY PREDICTION
To implement ensemble quality prediction, several individual
soft sensing models should be firstly constructed based on the
results of similarity measurements. Several historical batch
trajectories with the largest similarity measurements sh are
extracted as the modeling samples of the online local LSTM
soft sensor for each strategy. Thus, there are a number of
separated soft sensing models, which is determined by the
types of similarity measurements and the number of selected
trajectories of different strategies.

Next, the easy-to-measure process variables of a selected
batch trajectory at time instant t are extracted as the LSTM
input xt referring to (1)-(5), while the quality variables are
regarded as the LSTM output yt . Therefore, the modeling
dataset can be denoted as XH ,b =

{
xt,b, xt+1,b, . . . , xt+n−1,b

}
and YH ,b =

{
yt,b, yt+1,b, . . . , yt+n−1,b

}
, where t is the first

moment of the time index of the modeling samples and b =
1, 2, . . . ,B is the batch index of all the extracted historical
trajectories. Hence, the LSTM structure can be determined as
well as the values of system input and output. According to
the BPTT algorithm illustrated in Appendix A, all the model
parameters (W∗, b∗) can be estimated after the root mean
squared error (RMSE) presented in (18) converges.

RMSE =

√√√√t+n−1∑
k=t

(
ŷk − yk

)/
s (18)

where ŷk and yk are the predicted value and the real value of
the quality variable, respectively.

With the constructed LSTM prediction model of the b-th
historical trajectory, the predicted output of the online sam-
ples can be directly calculated according to the forward pass
network structure as Ŷq,b =

{
ŷq,b, ŷq+1,b, . . . , ŷq+n−1,b

}
.

As a result, totally B distinct predicting results can be figured
out for a single online trajectory.

As an ensemble soft sensing method, the most important
issue is how to integrate different prediction results and
improve the performance of quality prediction. To this extent,
the cross validation strategy is carried out for each established
LSTM prediction model. The effectiveness of one model will
be verified according to the testing results of all theB−1 batch
trajectories. The RMSE through the cross validation can be
denoted as

RMSEb,r =

√√√√ n∑
k=1

(
ŷk,b,r − yk,b,r

)/
s (19)

FIGURE 4. The flow diagram of the proposed methodology.

where r = 1, 2, . . . ,B − 1 denotes other testing historical
trajectories. Then, the average RMSE of the b-th historical
modeling trajectory can be calculated as

RMSEb =

B−1∑
r=1

RMSEb,r

B− 1
(20)

The value of the average RMSE of the b-th modeling tra-
jectory is able to evaluate the quality prediction performance
in a directly way. Obviously, a larger average RMSE indicates
the corresponding large prediction error. To reflect the results
of cross validation, a weighting parameter is designed for
each modeling result, which can be defined as

ηi =
e−RMSE

2
i

B∑
b=1

e−RMSE
2
b

(21)

By the use of the exponential function, a larger RMSE
value will result in the smaller weight with the negative
correlation. Finally, since the quality prediction result of
the current query samples have been acquired as Ŷq,b ={
ŷq,b, ŷq+1,b, . . . , ŷq+n−1,b

}
, the ensemble result can be cal-

culated based on the weighting parameters as

ŷq =
B∑
i=1

ηiŷq,i (22)

where ŷq is the q-th ensemble prediction result and Ŷq ={
ŷq, ŷq+1, . . . , ŷq+n−1

}
becomes the integrated prediction

result of the query trajectory. It can be inferred that soft
sensing models with larger weights will contribute more to
the final prediction output, which is expected to improve
the robustness of the quality prediction through ensemble
learning strategy.

VOLUME 8, 2020 73859



F. Shen et al.: LSTM Soft Sensor Development of Batch Processes With Multivariate Trajectory-Based Ensemble Just-in-Time Learning

FIGURE 5. The fed-batch reactor.

FIGURE 6. Error distributions of the batch reactor process.

In summary, the detailed procedure of the proposed
methodology is demonstrated in Fig. 4 as

1) Collecting historical dataset XH and implementing data
normalization;

2) Collecting the real-time query samples as the batch
trajectory

{
xq, xq+1, . . . , xq+n−1

}
;

3) Calculating different similarity measurements and
extracting the modeling trajectories for each strategy;

4) Constructing online local soft sensing models y =
fb (x) for each modeling trajectory;

5) Collecting the predicted results of different models{
ŷq,b, ŷq+1,b, . . . , ŷq+n−1,b

}
;

6) Determine the weighting parameters ηb of local models
by cross validation strategy;

7) Obtain the ensembled prediction result{
ŷq, ŷq+1, . . . , ŷq+n−1

}
by the weighted sum of local

models;
8) Go to the next query trajectory.

B. DISCUSSIONS
There are two major concerns in this work. The first point is
the development of the online local LSTM soft sensor, which
is expected to make progress in modeling accuracy. For the
traditional LSTM soft sensor for batch processes, the global
modeling strategy is utilized and all historical samples are
regarded as modeling data. However, the dynamic character-
istic of batch data varies during different operating period.
Although LSTM is able to extract the long-term time-varying
feature, the network structure still retains the idea of the
recurrent neural network. Hence, it is not proper to describe
the entire batch process within a single LSTM model. This is

TABLE 1. Process variables used for soft sensor in fed-batch reactor.

the reason of using the online local LSTM soft sensor in this
study.

Another innovation is the design of the multivariate trajec-
tory based EJITL strategy. When using one type of similarity
measurement as the conventional JITL strategy, the modeling
effect may vary from one dataset to another due to batch-to-
batch variations. By the use of EJITL, the performance of
online local modeling can be significantly improved. Besides,
different from the single-sample similarity measurements of
conventional EJITL methods, batch trajectories are made full
use of to create a compatible modeling dataset with the online
local LSTM soft sensor.

By the combination of TEJITL strategy and online local
LSTM soft sensing model, the within-batch dynamics and
nonlinearity problem can be dealt with as well as the batch-
to-batch variations. It is noted that the length of the batch
trajectory for modeling should be determined firstly. Mean-
while, it is doubtful whether the ensemble quality prediction
can provide amore effective result than any individual predic-
tion mode. To verify these problems, the following two case
studies are presented.

IV. CASE STUDIES
A. A FED-BATCH REACTOR PROCESS
In this subsection, a fed-batch reactor process is used to verify
the proposed method as presented in Fig. 5 [31]. In this
process, two chemical reactions occur as A + B → C and
2B → D(A and B are reactants, C is the final product, D is
the byproduct). As a fed-batch process, reactant A is fed at the
beginning of the batch, while reactant B is continuously fed
during the batch operation. Thus, the only manipulated vari-
able is the feed rate of reactant B. The detailed mathematical
model of the process is presented in Appendix B [1].

In this case, the concentration of the final product C is
regarded as the quality variable. The relevant process vari-
ables for quality prediction are listed in Table. 1.

There are totally 20 historical batches and each batch
has 220 samples. Batch-to-batch variations are generated
by setting diverse trajectories of the manipulated variable
(feed rate of reactant B) and adding random noise. All the
variables for the similarity measurement and soft sensor
modeling are normalized to the range of −1 to 1. During
the similarity measurement stage, the trade-off parameter λ
between distance and angle of the second measurement is set
as 0.5 and the step size s of the third measurement is set as 3.
Given an online batch trajectory with 5 consecutive samples,
5 historical trajectories with the largest values of sh for each
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FIGURE 7. Comparisons of the predicted result with the reference of real value for the batch reactor process.

TABLE 2. Quality prediction results of fed-batch reactor.

similarity measurement are selected as the modeling data.
Hence, totally 15 historical datasets are collected for online
local quality prediction.

For the LSTM modeling, the dimensions of the cell input
and output are 4 and 1, respectively. The number of neurons in
a hidden layer is set as 25. Thus, 15 individual LSTMmodels
can be constructed and the corresponding predicted output
can be calculated directly. After cross validation, the weights
of different models can be determined and the final ensemble
quality prediction result is revealed. The RMSE and the coef-
ficient determination (R2) of different JITL strategies and the
proposed TEJITL framework are listed in Table. 2.

It can be inferred from the prediction results that the pro-
posed TEJITL-LSTM soft sensor provides a smaller RMSE
value and a larger R2 value that any individual JITL-LSTM
strategy, which means the quality prediction performance
can be significantly improved by the use of the multivariate
trajectory based ensemble strategy.

The boxplot with the error information of different strate-
gies is listed in Fig. 6. As shown in Fig. 6, the boxes in blue
indicate the ranges between the upper and lower quartiles,
which include 50% results of the prediction error each. It can
be observed clearly that the proposed TEJITL strategy offers
the narrowest error range, which proves that it provides a
better quality prediction result than other methods. Besides,
the comparisons of the predicted output between the proposed
method and other strategies are also presented in Fig. 7.

B. THE PENICILLIN FREMENTATION PROCESS
In this subsection, the effectiveness of the proposed method is
further verified through the fed-batch penicillin fermentation
process. The structure of the process is shown in Fig. 8.

FIGURE 8. Flow chart of the fed-batch penicillin fermentation process.

FIGURE 9. Error distributions of the penicillin process.

The process consists of two major phases. The first one is
the pre-culture phase as the biomass growing and fed-batch
stage. Next, the penicillin occurs at the second phase as the
final product. In most literatures, the PenSim v2.0 benchmark
software is used to generate process data [32], [33]. In this
work, an improved penicillin simulation platform based on
the PenSim model proposed by one of the authors in this
paper is utilized for data generation [34]. Customized trajec-
tories of manipulated variables are feasible in the framework,
which is more flexible than the original PenSim benchmark.
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FIGURE 10. Comparisons of the predicted result with the reference of real value for the penicillin process.

TABLE 3. Process variables used for soft sensor in penicillin process.

In this case, 10 historical batches are generated with 400
hours in each batch operation. The sampling interval is set as
1 hour. The penicillin concentration is regarded as the quality
variable and other 12 process variables listed in Table. 3 are
used as the input variables of LSTM soft sensor.

All the variables are normalized to the range between
−1 and 1. The trade-off parameter λ of JITL 2 between
distance and angle is set as 0.5, while the step size s of JITL
3 is set as 5. Consider a real-time batch trajectory with 10
consecutive samples, 5 historical trajectories with the largest
values of similarity measurements are collected for modeling.
Then, totally 15 historical datasets are extracted.

The dimensions of the LSTM cell input and output are
12 and 1, respectively. The number of neurons in a hidden
layer is set as 70. Hence, 15 individual quality predicted
results can be obtained according to the established LSTM
models. Finally, the ensemble quality prediction result can be
calculated based on the model weights. The RMSE and R2 of
each strategy are listed in Table. 4.

The result indicates that the prediction error of the pro-
posed TEJITL based strategy is smaller than other JITL
strategies. Meanwhile, the boxplot is shown in Fig. 9, where

TABLE 4. Quality prediction results of penicillin process.

the proposed method performs better with a tight error range.
The comparisons of the predicted result are also shown
in Fig. 10. Although some outliers of TEJITL can be found
with larger prediction errors, the boxplot in Fig. 9 indi-
cates that the total outlier number of TEJITL is less than
other methods. Hence, the overall performance of TEJITL is
proved to be more effective. Compared with the reactor pro-
cess, the penicillin process is more complicated with stronger
process dynamics. As a result, a single JITL similarity mea-
surement has a greater opportunity to match wrong historical
trajectories even the searching range is limited to the same
phase.

V. CONCLUSION
In this study, a novel TEJITL strategy is developed for quality
prediction of batch processes combined with the online local
LSTM soft sensor. Two major issues are concerned includ-
ing the ensemble similarity measurements for batch trajec-
tories and the online local LSTM soft sensor development.
Therefore, the proposed framework can handle with both
the problem of within-batch process nonlinearity, dynamics
and run-to-run variations for batch processes. For simpler
cases that both batch-to-batch variations and within-batch
dynamics are not obvious, an individual global JITL-LSTM
model may perform as well as the proposed method.

Meanwhile, it may consume heavier computation load for
the proposed method due to the online modeling strategy.

The case studies prove that the proposed TEJITL-LSTM
soft sensor is able to provide a reliable and robust qual-
ity prediction result. In future work, the adaptive parameter
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selection scheme will be focused on, aiming at making auto
determination for model parameters such as the length of
the modeling strategy and the neuron number of the LSTM
hidden layer. Besides, the proposed method will be further
testified on practical industrial processes with uneven batch
length, which requires an improved trajectory based similar-
ity measurements.

APPENDIXES
APPENDIX A
THE BPTT ALGORITHM
According to the network structure of LSTM, the back propa-
gation through time (BPTT) algorithm is described as follows

L =
T∑
t=1

(
ŷt − yt

)2/T (23)

δht =
∂L
∂ht
+ δit+1W T

hi + δif+1W
T
hf + δot+1W

T
ho +

δc̃t+1W T
hc̃ (24)

δit = (δht)T � ot �
(
1− tanh2 (ct)

)
�

ct−1 � (it · (1− it)) (25)

δft = (δht)T � ot �
(
1− tanh2 (ct)

)
�c̃t � (ft · (1− ft)) (26)

δot = (δht)T � tanh (ct)� (ot · (1− ot)) (27)

δc̃t = (δht)T � ot �
(
1− tanh2 (ct)

)
�it�̃

(
1− tanh2 (c̃t)

)
(28)

δWx∗ =

T∑
t=1

〈δ∗t , xt 〉 (29)

δWh∗ =

T∑
t=1

〈δ∗t , ht−1〉 (30)

δb∗ =
T∑
t=1

δ∗t (31)

where L represents the loss function; T is the total number
of the data samples for model training; δWh∗ = ∂E/∂Wh∗

are gradients of weighting parameters; δb∗ = ∂E/∂b∗ are
gradients of biases; ∗ represents different gates which can be
i, f , o, c̃; α defines the step size of the gradient descending
rate. Thus, the values of model parameters Wh∗ ,Wx∗ , b∗ can
be estimated by gradient descent algorithms.

APPENDIX B
MATHEMATICAL MODEL OF THE BATCH REACTOR
The first principle model of the fed-batch reactor is based on
the material balance law described as follows

ċA = −k1cAcB − cA −
cAu
V
, cA (0) = cA0 (32)

ċB = −k1cAcB − 2k2c2B −

(
cA − cinB

)
u

V
, cB (0) = cB0 (33)

V̇ = u,V (0) = V0 (34)

ċC = k1cAcB −
cCu
V
, cC (0) = cC0 (35)

ċD = k2c2B −
cDu
V
, cD (0) = cD0 (36)

where cA, cB, cC , cD are concentrations of reactants
A,B,C,D, respectively; V represents the reactor holdup;
k1, k2 are kinetic coefficients; cinB is the inlet concentration
of reactant B; u is the manipulated variable.
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