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ABSTRACT Some portions of dorsal hand may be occluded due to injuries, pigmentation, or tattoos, which
significantly affects the performance of dorsal hand vein recognition systems. Biometric graph matching
is a common shape-based feature extraction algorithm for vein recognition. However, this method does
not consider edge attributes, which can provide additional discrimination ability. We present an improved
biometric graph matching method that includes edge attributes for graph registration and a matching module
to extract discriminating features. Moreover, we propose a recognition system for partially occluded dorsal
hand vein. A database of normal hand vein images, three databases of images with artificially occluded
dorsal hand vein with occlusions in different positions and ratios, and a database of images with tattooed
hands are established to verify the validity of the proposed method. The experimental results demonstrated
that the equal error rates and the accuracies were 0.0202 and 98.09%± 0.28%, respectively for the normal
hand vein images, 0.0453 and 96.58%± 0.34%, respectively for images of artificially occluded dorsal hand
vein with occlusion at all positions and area ratios (0− 20%, mean occluded area ratio = 9.3%), and 0.0343
and 97.14%± 0.29%, respectively for the images of tattooed hands.

INDEX TERMS Dorsal hand vein recognition, biometric graph matching, occlusion, databases.

I. INTRODUCTION
Vein patterns in the dorsal hand are commonly used for bio-
metric recognition and are detected using infrared light from
the live body. Compared with other hand-based biometrics,
such as fingerprints and palm print, the primary advantages
of dorsal vein pattern identification are that no contact is
required during image acquisition [1], and it is difficult to
falsify the vein pattern [2]. Dorsal hand vein images are
more conducive to collect vein pattern than palm, because the
anterior surface of the palm is much thicker than the dorsal
surface [3]. Thus, dorsal hand vein recognition has attracted
broad interest in the field of biometric recognition.

Nowadays, many dorsal hand vein acquisition systems
and feature description algorithms have been developed and
were successfully used for dorsal hand vein recognition.
For capturing vein patterns, the acquisition systems consist
of 3 types of imaging approaches, including near
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infrared [4]–[6], far infrared [7], and hyperspectral
techniques [8], [9].

The feature descriptors can be extracted using two types of
algorithms: texture-based feature extraction algorithms and
shape-based feature extraction algorithms [10], [11]. The
former takes advantage of texture variations, and the statis-
tical features of the texture are used for identification. For
instance, Li and Kang introduced several improved variants
of local binary patterns (LBP) to describe the characteristics
of vein patterns [12]–[14]. Premalatha and Kumar inves-
tigated local phase quantization (LPQ) and its variants to
develop a descriptor for individual identification [15], [16].
Wei extracted discriminative local features using hyperspec-
tral images of dorsal hand vein [8]. Wang improved the
scale-invariant feature transform (SIFT) method for use in
cross-device hand vein recognition [17]. Meng and Wang
used the Gabor filter and its variants to increase the dis-
criminative power of feature descriptors and minimize the
effects of noise, rotation, and shift [18], [19]. Generally,
texture-based feature extraction algorithms focus on texture
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variations, but do not consider the holistic geometric shape of
vein pattern, thus leaving room for improving the recognition
accuracy [11]. More importantly, texture-based features are
not the essential distinction between individuals and are not
robust to changes in lighting conditions [10].

Unlike texture-based feature extraction algorithms,
shape-based feature extraction algorithms are robust to dif-
ferent lighting conditions and consider holistic geometric
shape of vein pattern, which is unique in each person [11].
Typically, these algorithms segment the vein area and subse-
quently abstract the skeletons and extract the shape features.
For example, many studies have extracted important points,
such as endpoints [20], crossing points [6], [21] and vein
minutiae [22]–[26], to describe their distinctiveness. How-
ever, few studies considered the holistic shape attributes,
which are crucial for identification. Huang et al. proposed
a spatial graph method that considered the minutiae of the
vein skeleton and used factorized graph matching (FGM)
to capture the shape attributes [11]. Biometric graph match-
ing (BGM) was proposed by Lajevardi to improve the sys-
tem’s robustness to translation, nonlinear distortion, and
small rotation [27], [28]. The BGM algorithm used the vein
skeleton to generate a spatial graph and found the maximum
common subgraph (MCS) between two graphs. The topo-
logical measures of MCS were used to determine whether
the individual is a genuine. It is noteworthy that BGM is
a modular approach, and additional features, such as vein
length and vein width, can be added as attributes of the graph
to increase the distinctiveness [29]. Zhong used BGM to
create a dorsal hand vein recognition system for uncontrolled
environments [30], [31]. Although the BGM algorithm has
been used successfully for hand vein authentication, it does
not consider the vascular connections (i.e., the edge attributes
of graph), which are important aspects of the vein pattern.

Therefore, we present an improved BGM (IBGM) method
for dorsal hand vein recognition systems. The IBGM makes
better use of the edge attributes of the vein pattern than
the BGM for extracting discriminating features. Using opti-
mization, the IBGM eliminates repetitive computation of
edge/vertex matching in the graph matching module, thereby
improving the efficiency of the method. A recognition sys-
tem for partially occluded dorsal hand vein is established to
verify the validity of the IBGM. Experiments are performed
on images of normal (non-occluded) hand vein, artificially
occluded hand vein, and tattooed hand vein.

The remainder of the paper is organized as follows.
Section 2 provides an overview of the BGM, and the IBGM
approach is described in section 3. Section 4 introduces the
recognition system, the image databases, and the perfor-
mance evaluation approaches. The experimental results are
provided in section 5. Section 6 concludes the paper and
provides perspectives for future studies.

II. OVERVIEW OF BGM
The BGM takes into account the geometric shape of the
vein, which is an essential factor in determining differences

between individuals. Thus, the BGM has been used suc-
cessfully for hand vein authentication under controlled and
uncontrolled conditions [28] - [30], [32]. Generally, the BGM
algorithm consists of three parts, including graph registration,
graph matching and measurement of distance features.

A. GRAPH REGISTRATION
In this phase, the graphs are registered using only the vertices.
For each edge pair whose edges belong to different graphs,
the similarity based on the length and slope attributes is
defined. Based on the similarity, the top N edge pairs are
used to find the best registration. Each chosen edge pair is
treated as the origin and positive x-axis of a Cartesian coor-
dinate system, and the remaining vertices are transformed
accordingly [29]. Subsequently, the number of corresponded
vertices between the two graphs is counted. As defined
in (1), a pair of vertices correspond if the Euclidean distance
between their coordinates is below a threshold, the number of
corresponded vertices,Vk , is increased by one and the vertices
are labeled registered.

Vk =

{
Vk + 1 if

√(
xg1 − xg2

)2
+
(
yg1 − yg2

)2
< ε

Vk else
. (1)

where Vk is the number of corresponded vertices when
the kth pair of edges are located on positive x-axis
(k = 1, 2, · · · ,N ).

(
xg1 , yg1

)
and

(
xg2 , yg2

)
represent the

unlabeled vertices from graph g1 and g2 respectively, and ε is
a threshold.

The distance score, dk , which represents the similarity
between the graphs when the kth pair of edges are the origin
and positive x-axis, is defined in (2). When dk reaches the
minimum, the best aligned graphs gout and g′out are obtained
and are used as the input of graph matching.

dk = 1−
Vk

√
m1 × m2

. (2)

where dk is a distance score;m1 andm2 represent the numbers
of vertices in graph g1 and g2, respectively.

B. GRAPH MATCHING
Subsequently, graph matching is used to extract the MCS,
whose topological attributes are used to distinguish between
an impostor and a genuine. A clever modification of Hun-
gary’s algorithm is proposed to extract the MCS. As defined
in [33], the cost matrix represents the edit cost to convert gout
to g′out .

Ccost =

[
C D
S 0

]
. (3)

where C =
[
cij|1 ≤ i ≤ m1, 1 ≤ j ≤ m2

]
and cij represents

the cost of substituting vertex between gout and g′out . The
diagonal elements, dii of D and sjj of S indicate the cost of
deleting points in gout and the cost of inserting points in g′out .
All elements outside the main diagonal of D and S are equal
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to∞ [34].

cij =

√(
xi − x ′j

)2
+

(
yi − y′j

)2
. (4)

dii = 5× (1+ De (vi)) . (5)

sjj = 5×
(
1+ De

(
v′j
))
. (6)

where vi and v′j are the ith vertex of gout and the jth vertex

of g′out ; the corresponding coordinates are (xi, yi) and
(
x ′j , y

′
j

)
,

and De (•) is a degree (number of incident edges).

C. MEASUREMENT OF DISTANCE FEATURES
Finally, four distance features based on the MCS’s topologi-
cal characteristics are used to determine whether the individ-
ual is a genuine [29].

i. The distance based on the vertices, dv, is defined in (7):

dv = 1−

∣∣MCS (gout , g′out)∣∣v√
|gout |v

∣∣g′out ∣∣v . (7)

where |•|v represents the number of vertices in the spatial
graph.
C2 represents the number of vertices in the two largest

connected components in the MCS;
δ2d represents the variance of the vertex degree distribution

of the MCS;
ii. The distance based on the edges, de, is defined in (8).

de = 1−

∣∣MCS (gout , g′out)∣∣e√
|gout |e

∣∣g′out ∣∣e . (8)

where |•|e represents the number of edges in the spatial graph.

III. IMPROVED BIOMETRIC GRAPH MATCHING
The BGM only uses the attributes of the vertices [34] but
does not consider the edge attributes; thus there is room for
improving the accuracy. Moreover, the edge attributes are
also crucial for the identification of individuals. Therefore,
we propose the IBGM to extract more discriminating features
by including edge attributes in the graph registration and
matching. The modified algorithm IBGM is described as
follows:

A. MODIFIED GRAPH REGISTRATION
In this phase, the graphs are registered using the vertices and
the edges. A pair of vertices correspond is defined in (1);
similarly, we define a pair of edges correspond as (9). The
corresponded edges are labeled registered.

Ek =


Ek + 1 if

 abs
(
lg1 − lg2

)
max

(
lg1 , lg2

) ≤ εl
&abs

(
θg1 − θg2

)
< εθ


Ek else

. (9)

where Ek is the number of corresponded edges when the
kth pair of edges are located on positive x-axis. lg1 , lg2 and
θg1 , θg2 represent the lengths and angles of the unlabeled

edges in graph g1 and g2. In this study, the values are chosen
empirically and are εl= 20% and εθ=22.5◦.
Based on the premise that edges have more information

than vertices, the distance score which is defined in (2),
is redefined as (10). The attributes of the edges are added to
the distance score and receive higher weights than those of
the vertices. When dk reaches the minimum, we obtain the
best aligned graphs gout and g′out .

dk =
(
1−

Ek
√
n1 × n2

)
+ w

(
1−

Vk
√
m1 × m2

)
. (10)

where dk is a new distance score. Ek and Vk are the number
of corresponded edges and vertices, n1, n2 andm1,m2 are the
number of edges and vertices in graph g1 and g2, respectively.
In this study, w is equal to 0.1.

B. MODIFIED GRAPH MATCHING
In this study, we use both edge and vertex attributes to find the
MCS. According to the modified graph registration module,
several matched edges (for instance, the edge pair located on
positive x-axis) and the corresponded vertices do not need
to match repeatedly in graph matching. Thus, we modify the
graph matching module to reduce the computational com-
plexity. The details are as follows:

First, the matched edges and corresponded vertices
(called Ve ) in the registration module are labeled and do not
need to match repeatedly.

Second, we match the unmatched vertices using a mod-
ification of Hungary’s algorithm (called Vm). Accordingly,
the size of the cost matrix Ccost changes from (m1 + m2) ×

(m1 + m2) to (m1 + m2 − 2p) × (m1 + m2 − 2p), where m1
and m2 are the numbers of vertices in gout and g′out , and p
is the size of Ve. This approach improves the point matching
efficiency due to the smaller size of Ccost .

Finally, we match the unmatched edges whose vertices
are either obtained from Ve and Vm or from Vm. The
improved MCS is defined by the matched vertices and
edges.

C. MODIFIED MEASUREMENT OF DISTANCE FEATURES
Six distance features are used to describe the topological
attributes; the four features dv, C2, δ2d , and de are the
same as in Section 2, and two new features are included.
The new distance score based on the edges, se, is defined
in (11) and (12).

se =
nm−1∑
i=1

fi (v). (11)

f (v) = ω1 × numm + ω2 × nume. (12)

where nm is the number of matched edge pairs. The edge that
is located on x-axis is not considered in this score. f (v) is
the score of an edge pair, which is defined empirically
in (12). Different weights (ω1 and ω2) are used to increase
the discrimination ability. numm represents the number of
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FIGURE 1. The flowchart of the recognition system.

vertices obtained from Vm and nume represents the num-
ber of vertices obtained from Ve. In this study, the values
of ω1 and ω2 are 0.1 and 0.25, respectively. There are
four vertices in a matched edge pair. If three vertices
are from Vm and one vertex is from Ve, the score f (v)
is 0.55.

The second new distance feature, the overlap area ratio, kr ,
is defined in (13). kr from a genuine person is typically larger
than that from an impostor.

kr =
overlap area
ROI area

. (13)

where the overlap area is the intersection of two images after
the MCS has been obtained. The region of interest (ROI)
is 256X256 pixels in this study.

IV. DORSAL HAND VEIN RECOGNITION SYSTEM
Dorsal hand vein may be occluded due to injury or pigmen-
tation, which may lower the performance of the recognition
system. Therefore, it is crucial to be able to extract discrimi-
nating features from occluded hand vein.We propose a recog-
nition system for partially occluded dorsal hand vein using
IBGM, which is capable of extracting more discriminating
features than BGM.

Fig.1 illustrates the flowchart of the recognition system.
First, the acquisition system is used to collect dorsal hand
vein images to establish the training set and testing set.
Subsequently, the sets are used during the training process
and verification/identification process. During the training
stage, the training set is used for skeleton abstraction and
feature extraction. The IBGM is used to obtain the dis-
tance features to construct a profile database. Following the
same procedures, a test profile is created during the ver-
ification/identification stage. Finally, the k-nearest neigh-
bor (KNN) is used to compare the profile database with the
test profile to determine if the test person is an authorized

user (verification) or to identify who the test person is (iden-
tification).

A. THE ACQUISITION SYSTEM
The vein structure beneath the skin cannot be detected using
visible light. However, near-infrared (NIR) light penetrates
deeper into biological tissues and is used as a light source to
capture hand vein images. We designed an image acquisition
system to collect one spectral dorsal hand vein images. Fig.2a
shows the system that consists of six components: 1) a pro-
tective box, 2) a low-cost NIR CMOS camera, 3) an optical
lens, 4) an NIR light source, 5) a light diffuser, and 6) a hand
grip. The NIR LEDs are evenly and circumferentially located
around the camera to collect high-quality vein images. In this
work, a light diffuser is used to produce parallel light rays
to avoid bright spots in the vein images. The NIR light in
natural light is blocked by the protective box to avoid light
effects in the images. The hand grip is used to constrain
the volunteer’s hand and to be able to change the posture.
The most important part of the acquisition system is the
NIR CMOS camera, which is used to collect the dorsal hand
vein images; the spatial resolution of the camera is 320X240
pixels. Examples of vein images are shown in Fig.2b.

B. HAND VEIN DATABASES
In this study, five databases of dorsal hand vein images were
created, including a database of normal hand vein (NHV),
three databases with artificially occluded vein (AOV_1 -
AOV_3), and a database with tattooed hand vein (THV),
to verify the performance of the IBGM. Compared with
other published hand vein datasets, we collected vein images
that were occluded due to injuries, pigmentation, or tat-
toos. The images in the databases were obtained using the
acquisition system shown in Fig.2a. The NHV contains 3680
ROIs (ROI extraction is described in the next section) of
normal right-hand vein images from 736 individuals, with
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FIGURE 2. The proposed acquisition system and captured vein images.
(a) The image acquisition system consists of the (1) protective box, (2) NIR
camera, (3) optical lens, (4) light source, (5) diffuser, and (6) hand grip.
(b) Raw dorsal hand vein images obtained with our acquisition system.

five samples per person (the raw dorsal hand vein images
are freely available at https://github.com/JLUqiankun/Vein).
The ROIs in the NHV are shown in Fig.3a. The AOV_1 -
AOV_3 contains artificially occluded vein images from the
NHV; the same 50% of the images (called test ROIs) from
the NHV are occluded with different positions and levels
of occlusion. Fig.3b - 3d show examples of the AOV_1,
AOV_2, and AOV_3, respectively. In AOV_1, the test ROIs
are artificially occluded at different positions with different
area ratios (5%, 10%, 15%, and 20%). In AOV_2, the test
ROIs are artificially occluded at different positions (nine
positions) with the same occluded area ratio (10%). Fig.3e
shows an example of a vein pattern that is divided into
3 ∗ 3 blocks and is used in the AOV_2. In AOV_3, the test
ROIs are artificially occluded at different positions with dif-
ferent area ratios (0 − 20%, mean occluded area ratio =
9.3%) because the location and area of tattoos are random
on people’s hands. The THV consists of 250 normal dorsal
hand vein images and tattooed dorsal hand vein images from
50 volunteers. The volunteers were asked to attach tattoo
stickers to the back of their hands. Fig.3f illustrates typical
examples of tattooed vein images. Additionally, as is com-
mon, most of the tattoos are located in the central area of the
dorsal hand.

FIGURE 3. Typical samples of dorsal hand vein from (a) Normal hand
vein. (b) AOV_1 occluded at different positions with different area ratios
(5%, 10%, 15%, and 20%). (c) AOV_2 occluded at nine positions with the
same occluded area ratio (10%). (d) AOV_3 occluded at different
positions with different area ratios (0 − 20%, mean occluded area ratio =
9.3%). (e) Normal vein image separated into 3 ∗ 3 blocks. (f) Tattooed
hand vein images collected from hands with tattoo stickers.

C. PREPROCESSING
Image preprocessing is a vital step in the recognition system
to obtain vein graphs [30]. Fig. 4 illustrates the process of
image preprocessing. First, we extract the boundary from raw
dorsal hand vein image (Fig. 4(a)) by conditional random
field [36], and a maximum inscribed circle based on Voronoi
diagram [6] is adopted to locate the largest circular region
as ROI; circular ROIs are preferred because of their larger
area and entropy [37], [38]. Fig. 4(b) illustrates the maximum
inscribed circle within the boundary of hand. Second, accord-
ing to the location of circle in Fig. 4(b), we locate circular
ROI on the hand (Fig. 4(c)) and extract circle ROI (Fig. 4(d)).
The ROIs are normalized to 256X256 in the study. Finally,
we use multi-matched filters as described in [28], to abstract
the vein skeleton (Fig. 4(e)). The skeleton is abstracted by
removing pixels at the boundaries and maintaining the con-
nection between pixels using morphological operators [20].
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FIGURE 4. The process of image preprocessing. (a) Raw dorsal hand vein
image. (b) The boundary of the hand and the maximum inscribed circle
within the boundary. (c) The maximum inscribed circle with the boundary
of hand. (d) Circular ROI. (e) Vein skeleton. (S1: Determining the boundary
of the hand and locating the maximum inscribed circle. S2: The maximum
inscribed circle on the hand. S3: Extraction of circular ROI. S4: Abstraction
of the skeleton.).

FIGURE 5. The process of the proposed IBGM. (a) Vein images.
(b) Skeletons. (c) Spatial graphs. The circles and lines represent the
vertices and edges respectively. (d) MCS. The red and black lines are the
matched edges obtained from the graph registration module. The red line
represents the x-axis during graph registration and matching. The vertices
of the blue dotted lines are obtained from the black or red lines.
Additionally, the vertices of the green lines are matched by the
modification of Hungary’s algorithm or one vertex is obtained from black
or red lines. (e) Distance features. (S1: Abstraction of the skeleton.
S2: Extraction of spatial graph. S3: Extraction of MCS. S4: Extraction of
distance features.).

The edge with an endpoint is removed if its length is less than
20 pixels.

D. THE IBGM PROCESS
Fig.5 illustrates the process of the proposed IBGM. The vein
images (Fig.5(a)) are used to abstract skeleton (Fig.5(b)) with
multi-matched filters. Subsequently, we extract the vertices
and edges (circles and lines in Fig.5(c), respectively). The
key result (MCS) is shown in Fig.5(d). In Fig. 5(d), the red
and black lines are the matched edges obtained from the
graph registration module. The red line represents the x-axis
during graph registration and matching. The vertices of the
blue dotted lines are obtained from the black or red lines.
Additionally, the vertices of the green lines are matched by
the modification of Hungary’s algorithm or one vertex is
obtained from black or red lines. Finally, six distance features
based on the MCS’s topological characteristics are measured
to determine whether the individual is a genuine (Fig.5(e)).

E. PERFORMANCE EVALUATION APPROACH
The performance of the IBGM is evaluated by determining
the mean accuracy (ACCmean), standard deviation of the
accuracy (ACCstd ), mean equal error rate (EERmean), and
runtime (RT ) [37]. Additionally, the detection error trade-
off (DET) curve is also used to assess the performance of

the recognition system. The ACCmean (14) and ACCstd (16)
are used to evaluate the IBGM’s accuracy and robustness
using 100 times cross-validation. The higher the ACCmean,
the better the performance of the system is, the lower
the ACCstd , the more robust the system is.

ACCmean =

100∑
i=1

ACCi

100
. (14)

where ACCi is the recognition accuracy in the ith experiment,
which is defined in (15).

ACCi =
Number of recognized images

Number of test images
× 100%. (15)

ACCstd =

√√√√√ 100∑
i=1
(ACCi − ACCmean)2

100
. (16)

The RT (17) is used to measure the IBGM’s computational
complexity, which is important in a real-time system.

RT =
Run time for all testing images
Number of testing images

. (17)

The EERmean (18) represents the IBGM’s equal error rate.
The lower the EERmean, the higher the accuracy of the system
is.

EERmean =

100∑
i=1

EERi

100
. (18)

where EERi is the equal error rate in the ith experiment.

V. EXPERIMENTAL RESULTS AND DISCUSSION
We conducted detailed comparisons with similar algorithms,
such as LBP [12], LPQ [15], Gabor [19], SIFT [17],
FGM [11], and BGM [29] to determine the performance of
the IBGM. We also tested the IBGM only using only edge
attributes in the graph registration (IB0, short for IBGM with
w = 0 in Eq. (10)). We evaluated the performance of IBGM
using theNHV,AOV_1 toAOV_3, and the THV. In this study,
the samples in the NHV and AOV_1 to AOV_3 were used
to compare 7360 genuine comparisons and 270480 impostor
comparisons of the first sample of each hand [30]. The sam-
ples in the THVwere used to compare 1250 genuine compar-
isons and 12250 impostor comparisons. Seventy percent of
the impostor and genuine comparisons were used to train the
parameters using the KNN (K=1), and the rest were used for
testing. For each database, we conducted experiments using
100 times cross-validation.

A. PERFORMANCE EVALUATION FOR THE NHV
Fig.6 shows the comparison of the performances of the pro-
posed IBGM and the other methods. As illustrated in Fig.6a,
the accuracies of the LBP, LPQ, Gabor, SIFT, FGM, BGM,
and IB0 (only using edge attributes in graph registra-
tion) are 97.89% ± 0.29%, 96.83% ± 0.54%, 96.35% ±
0.55%, 96.67%±0.51%, 95.87%±0.78%, 96.82%±0.51%
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FIGURE 6. Comparative performance of IBGM and other methods
(LBP, LPQ, Gabor, SIFT, FGM, BGM and IB0) on the NHV.

and 93.22% ± 0.93%. The LBP achieves the best perfor-
mance among the seven typical methods in terms of accu-
racy, whereas the accuracy of the IBGM is 98.09% with
a low standard deviation (0.28%). This result demonstrates
that the IBGM achieves better recognition performance and
robustness than the LBP. As shown in Fig.6b, the proposed
IBGM has the lowest EER (0.0202, red dot in Fig.6b).
The IBGM can extract more topology features than FGM
and BGM, resulting in higher accuracy of recognition. The
IB0, which uses only edge attributes for graph registration,
has low distinctiveness of the features, adversely affecting
its performance. Few SIFT feature points were extracted
by the NHV, causing poor performance. The rotation and
translation invariance of global features is better than that
of local features; thus, the IBGM has better performance
than LBP, LPQ, and Gabor. These results indicate that the

TABLE 1. Comparative performance of IBGM and seven typical methods
for the AOV_1 (occlusion at different positions with different area ratios
(5%, 10%, 15%, and 20%)). Mean_5(10, 15, and 20), STD_5(10, 15,
and 20), EER_5(10, 15, and 20) denote the mean, STD, and EER with 5%
(10%, 15%, and 20%) occlusion, respectively.

TABLE 2. Comparative performance of IBGM and seven typical methods
for the AOV_2 (occlusion at 9 positions with the same occluded area
ratio (10%)).

TABLE 3. Comparative performance of IBGM and seven typical methods
for the AOV_3 (occlusion at different position with different area ratios
(0 − 20%, mean occluded area ratio = 9.3%)).

IBGM outperforms all other methods in terms of accuracy,
robustness, and EER.

B. PERFORMANCE EVALUATION FOR THE AOVs
The performance results for the AOVs are shown in Table.1 -
Table.3. Table.1 illustrates the recognition performance on
the AOV_1. For every method, we observed that the larger
the occluded area, the lower the accuracy is, and the larger the
EER is. For instance, for 5%, 10%, 15%, and 20% occluded
areas, the accuracies of SIFT are 96.69%±0.21%, 94.55%±
0.48%, 93.65%±0.53%, and 86.90%±0.66%, and the EERs
are 3.92%, 5.93%, 7.29%, and 14.64%. The SIFT has the
highest accuracy and lowest EER among the seven typical
methods. As shown in Table.1, for different occluded areas,
the IBGM has slightly higher accuracy and lower EER than
SIFT. In summary, the proposed IBGM is robust to occlu-
sion and has better performance than the other methods.
As the area of occlusion increases, the accuracy decreases
significantly.

The performance results for the AOV_2 are shown
in Table.2. The LBP, LPQ, and Gabor have accuracies of

VOLUME 8, 2020 74531



F. Liu et al.: Recognition System for Partially Occluded Dorsal Hand Vein Using IBGM

FIGURE 7. Comparative performance of IBGM and seven typical methods
for the THV.

91.71% ± 0.53%, 91.98% ± 0.57%, and 93.04% ± 0.76%;
these three methods have the lowest accuracies. Thus, we can
infer that the texture-based methods (LBP, LPQ, and Gabor)
are sensitive to occlusion. The shape-based methods (FGM,
BGM, and IBGM) have better recognition performance
than the texture-based methods. Additionally, because the
IB0 uses only edge attributes for graph registration, several
registration failures occurred. Overall, the IBGM has the
highest accuracy (97.24%±0.46%) and lowest EER (3.04%)
for the AOV_2, which indicates its robustness to occlusion.

The performance results for the AOV_3 are shown
in Table.3. The accuracies of the LBP, LPQ, Gabor, SIFT,
FGM, BGM, and IB0 are 90.82% ± 0.92%, 91.25% ±
0.82%, 92.03%±0.82%, 95.58%±0.60%, 92.68%±0.81%,
94.68% ± 0.63%, and 90.89% ± 0.89%, respectively. The
SIFT has the highest accuracy and robustness among the

FIGURE 8. The computational complexity of the different methods.

seven methods. The IBGM obtains the highest overall accu-
racy (96.58%) and the lowest standard deviation (0.34%).
The shape-based methods (FGM, BGM, and IBGM) have
higher performance than the texture-based methods (LBP,
LPQ, and Gabor). It is likely that occlusion have a smaller
impact on the shape than the texture.

C. PERFORMANCE EVALUATION FOR THE THV
The performance results for the THV are shown in Fig.(7).
The accuracies of the LBP, LPQ, Gabor, SIFT, FGM,
BGM, IB0, and IBGM are 91.62% ± 0.96%, 91.98% ±
0.86%, 93.03%±0.78%, 96.32%±0.42%, 93.67%±0.60%,
95.11% ± 0.57%, 90.32% ± 1.39% and 97.14% ± 0.29%.
Because the texture features (LBP, LPQ, andGabor) extracted
from normal hand vein images and tattooed hand vein images
exhibit large differences, the recognition performance is low
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for the THV. Moreover, the tattooed stickers may occlude
the no-vein area; thus, the global feature extraction algo-
rithms (shape-based methods) are less affected by occlu-
sion. As illustrated in Fig.(7), the shape-based methods
(FGM, BGM, and IBGM) have higher accuracy than the
texture-basedmethods (LBP, LPQ, andGabor). The proposed
IBGM has the lowest EER (0.0343, red dot in Fig.7b) and the
highest accuracy, indicating that the IBGM is well suited for
occluded vein recognition.

D. COMPUTATIONAL COMPLEXITY
The computational complexity of the different methods and
the runtimes for the THV are shown in Fig.8. The algorithms
are tested using MATLAB 2019a on a PC with Windows 10,
Core i5 CPU (3.4 GHz), and 16G Ram. In terms of feature
extraction time and matching time, the proposed IBGM (331
ms, 171 ms) is as fast as the BGM (357 ms, 166 ms) and
faster than FGM (561 ms, 867 ms). The result demonstrates
that eliminating repetitive computation of edge matching in
the graph matching module improves the algorithm’s effi-
ciency even though the edge attributes are added. Moreover,
Gabor (8 directions, 5 scales) is a multi-scale algorithm, and
the number of features is high because not feature reduc-
tion was performed. SIFT has poor real-time performance.
Thus, the feature extraction time and matching time of Gabor
(740 ms, 263 ms) and SIFT (623 ms, 732 ms) methods are
longer than those of the proposed IBGM. Only the LBP
(134 ms, 93 ms), LPQ (207 ms, 90 ms), and IB0 (201ms,
106ms) are faster than the IBGM, but the proposed method
provides better recognition performance (Fig.7). Over-
all, the extraction and matching times of the IBGM are
acceptable.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed the IBGMmethod by adding edge
attributes to the graph registration and matching to improve
the method’s discriminative power in the presence of occlu-
sion of dorsal hand veins. We established the NHV, AOVs,
and THV, which were used to evaluate the performance of the
proposed method. In comparison with seven other commonly
used recognition methods, the IBGM provided the highest
accuracy and the lowest EER for all databases. The extraction
andmatching times of the IBGMwere acceptable. The results
demonstrate the superior performance and robustness of the
proposed IBGM.

In a future study, we will further improve the algorithm by
focusing on two directions. (1) We will improve the recogni-
tion performance for the THV, and (2) we will collect more
tattooed vein images and other occluded images to expand the
database of occluded images.
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