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ABSTRACT We propose a hybrid network-based learning framework for speaker-adaptive vocal emotion
conversion, tested on three different datasets (languages), namely, EmoDB (German), IITKGP (Telugu), and
SAVEE (English). The optimized learning model introduced is unique because of its ability to synthesize
emotional speech with an acceptable perceptive quality while preserving speaker characteristics. The
multilingual model is extremely beneficial in scenarios wherein emotional training data from a specific
target speaker are sparsely available. The proposed model uses speaker-normalized mel-generalized cepstral
coefficients for spectral training with data adaptation using the seed data from the target speaker. The funda-
mental frequency (F0) is transformed using a wavelet synchrosqueezed transform prior to mapping to obtain
a sharpened time–frequency representation. Moreover, a feedforward artificial neural network, together with
particle swarm optimization, was used for F0 training. Additionally, static-intensity modification was also
performed for each test utterance. Using the framework, we were able to capture the spectral and pitch
contour variabilities of emotional expression better than with other state-of-the-art methods used in this
study. Considering the overall performance scores across datasets, an average melcepstral distortion (MCD)
of 4.98 and root mean square error (RMSE-F0) of 10.67 were obtained in objective evaluations, and an
average comparative mean opinion score (CMOS) of 3.57 and speaker similarity score of 3.70 were obtained
for the proposed framework. Particularly, the best MCD of 4.09 (EmoDB-happiness) and RMSE-F0 of 9.00
(EmoDB-anger) were obtained, along with the maximumCMOS of 3.7 and speaker similarity of 4.6, thereby
highlighting the effectiveness of the hybrid network model.

INDEX TERMS ANN, CMOS, DNN, emotion, MCD, MGCEP, PSO, RMSE-F0, speaker-adaptation,
speaker similarity score, WSST.

I. INTRODUCTION
Emotions form a salient aspect of human communication
via various modalities. However, speech is the most eas-
ily accessible data, as it contains various cues such as lin-
guistic information, gender and identity of the speaker, and
emotion. Emotions are critical for achieving active dialogue
delivery to maintain efficient socio–cultural relationships and

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

enable better human–machine interaction. Furthermore, emo-
tion/affect synthesis can be applied in various domains such
as storytelling, speech assistance for the disabled [1]–[3],
emotion recognition [4]–[6] and speech-to-speech (S2S)
translations [7].

A major application of expression-synthesis models is
to provide the speech output of text-to-speech synthe-
sis (TTS) systems that have the required modulation and
naturalness. Notably, conversational dialogues frequently
involve instinctive and involuntary code switching between
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languages. Particularly, in multilingual societies such as
India, where languages with several dialects co-exist [8],
it is challenging to develop a unified dialogue system for
S2S translation. Moreover, prosody and spectral-mapping
frameworks trained and tested on multiple languages are,
especially, useful for designing affective S2S systems in
under-resourced languages. Here, the insufficiency of train-
ing data can be alleviated by using unified training mod-
els, and by performing further testing on sparse languages.
Speech emotion can be interpreted from the linguistic data,
prosody, and voice quality [9] of an utterance. The parame-
ters used to categorize emotional expressions are based on
the spectral features analyzed at the segmental level and
prosodic features at the supra-segmental level. Therefore,
an emotion-synthesis framework, essentially, modifies the
spectral and prosodic components extracted from the neutral
speech to those of the target emotion via parameter learning,
generally using aligned parallel data.

Predominantly, the research on the synthesis of expressive
speech has been focused on source-to-target spectral,
or prosodic mapping, or simultaneous modification
of both. Previous approaches were focused on rule-
based [10], diphone concatenation [11] or signal process-
ing techniques [12]–[19]. In most of these approaches,
the feature-transformation scales for suprasegmental prosody
were derived frommonolingual datasets. Although rule-based
approaches are relatively simple and straightforward,
the voice quality and naturalism of emotional expression
is further enhanced using statistical-modelling approaches.
Most experimental frameworks for spectral mapping in
emotional-voice conversion used Gaussian mixture mod-
els (GMM) based spectral mapping [20]–[26]. Nonetheless,
statistical-averaging models such as GMM frequently result
in both the loss of important spectral details and spectral
over-smoothing. Notably, over-smoothing can be reduced via
dynamic feature fusion, incorporation of global variance [27]
into the GMM [28], [29] and the application of partial least
squares [30].

Modern emotion-conversion schemes are generally data
driven, whereas speech-based features must be trained
using machine-learning approaches. Non-linear relationships
between neutral and emotional features are generated using
artificial neural networks (ANNs) and deep neural net-
works (DNNs) [31]–[35]. Spectral modelling uses mostly
non-linear MGCEPs. Recent advances include unsuper-
vised training with conditional restricted Boltzmann machine
(CRBM) [36], pre-training using deep belief networks
(DBNs) [34], modelling the spectrum and prosody simultane-
ously via bidirectional long short-termmemory (LSTM) [37],
end-to-end emotional-speech synthesis using Tacotron [38],
among others.

The supra-segmental elements of speech prosody, such
as fundamental frequency (F0), speech rate, and energy,
have been modelled for expressive-speech synthesis. Among
these, pitch or F0 mapping is of utmost interest for repre-
senting emotional speech, as even the slightest deviations in

prosodic patterns are efficiently captured using the F0 contour
trajectory. Pitch mapping is, generally, performed around
glottal activity regions, which are determined on the basis
of epochs, i.e., the regions of significant excitation of the
vocal tract. Because prosody varies non-uniformly across
an entire utterance, both static and dynamic prosody trans-
formations [13], [15], [39]–[42] were tested in monolin-
gual datasets. However, most of these approaches model
the source and vocal tract independently, thereby failing to
capture the correlation between them. Consequently, the con-
verted speech is frequently distorted.

The F0 features for training are generally extracted using
the STRAIGHT vocoder [43]. However, these features being
lower dimensional, cannot be adequately converted using a
DNN [32] or DBN [34]. Therefore, F0 features are frequently
converted using linear-transformation-based methods, such
as the logarithm Gaussian (LG) method [44]. It has previ-
ously been proved that prosody conversion is enhanced upon
analyzing the sequence information for modelling short- and
long-term dependencies in an utterance [45]. The continuous
wavelet transform (CWT) based decomposition of F0 could
model the prosody more satisfactorily than the LG baseline in
various temporal scales [46]–[48]. A flexible CWTmodelling
scheme, which uses adaptive scales for various levels of hier-
archical prosody, i.e., sentence, phrase, word, and syllable,
was proposed in [49], [50].

Only a few adaptation strategies have been tested
extensively by emotion-synthesis researchers. Most of
these strategies were based on a hidden Markov model
using a constrained structural maximum a posteriori lin-
ear regression (CSMAPLR) adaptation [51] or training
a speaker-dependent model by adapting from speaker-
independent average models [52]. In addition, the method
in [52] used a segment of duration as short as 5 min of the
emotional data from the target speaker and could produce an
appreciable perception of the synthesized emotion, however
compromising on the speech quality. CSMAPLR considers
the linguistic information from the regression tree, thereby
distinguishing it from other adaptation approaches. The con-
tinuous control of emotional intensity was accomplished by
using the combination of a three-layer adaptive neuro-fuzzy
inference system and a Fujisaki model for extracting the
F0 contour [53]; the method was tested for monolingual data
in the Japanese language.

Modern techniques applied in emotion conversion include
unsupervised style transfer using generative adversarial net-
works (GANs) [54], i-vector probabilistic linear discriminant
analysis based emotion conversion with non-parallel train-
ing [55], sequence-to-sequence F0 modelling and conver-
sion using linguistic conditioning on syllable position [56],
and cross-wavelet transform based methods for F0 mod-
elling using combined variational autoencoder GANs [57].
Recently, efforts have been invested in integrating an
emotion-conversion module into the convolutional neu-
ral network based TTS to improve its naturalism. All
these models are data intensive and introduce linguistic
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information combined with emotional prosody to simulate
affect.

The current emotion-conversion frameworks use learn-
ing mainly from multiple aspects that are speaker- or text-
dependent. Among the current methods for vocal-emotion
conversion, monolingual training is frequently performed
from a single-speaker perspective. However, the learning
attained from such monolingual approaches is not suitable
for applications in multi-speaker or multilingual scenarios.
Most modelling techniques are data intensive, and, there-
fore, several hours of training are required to devise an
appropriate transformation function for the selected fea-
ture. The adaptation techniques presented in the literature
frequently utilize the transplant of emotions to a neutral
average model. Frequently, linguistic conditioning is used
to attain a reasonable perceptive quality of the converted
speech. The unavailability of a large amount of labelled
emotional data, need for complex computations, and lack
of mature algorithms for sparse-language feature modelling
are the main challenges encountered in emotion-synthesis
systems.

This study aims to address some of the aforementioned
challenges by proposing an adaptation model for emo-
tion conversion; the model was tested on three languages:
German, Telugu, and English. During the experimentation,
instead of achieving technical prowess, we primarily aimed
at synthesizing basic emotions with an acceptable perceptive
quality by using as less training data as possible. Accord-
ingly, a framework was established for spectral, F0, and
intensity modelling in multiple languages by using less
training data and computational overheads. Spectral map-
ping for MGCEPs was executed using a DNN with speaker
adaptation. The framework, which used sparse training data
from the target speaker for mapping, achieved appreciable
perceptive quality of the synthesized speech. Because the
extracted F0 features are discrete and single dimensional,
it is challenging to model the temporal inflexions in F0.
Wavelet synchrosqueezed transform (WSST) decomposition
of F0 is utilized in our work as it bypasses the uncertainty in
time-frequency representation by reassigning coefficients to
provide a sharpened and complete representation.Multi-layer
ANN modelling with particle-swarm-optimized weights and
biases was performed for WSST-F0 mapping. To the best
of our knowledge, the usage of improved resolution wavelet
synchrosqueezing and PSO–ANN (PSO: particle swarm opti-
mization) for F0 modelling in this study is the first of its kind
in emotion-conversion approaches.

The following are the major contributions of this work:
• AnMLPDNN-based speech-emotion-conversionmodel
with speaker-adaptive training for MGCEP mapping
was designed and implemented

• The WSST decomposition for F0 was implemented and
subjected to dimension reduction using principal com-
ponent analysis (PCA)

• The PCA-reduced WSST-F0 was transformed using a
particle-swarm-optimized multilayer feedforward ANN

• The intensity of the converted speech samples was mod-
ified to improve the perception of the expression

• The performance of the proposed framework was evalu-
ated both objectively and subjectively

• The efficacy of the proposed model was compared with
that of the state-of-the-art methods

The study is organized as follows. Section II details the
mathematical theory on which the framework is based, while
Section III describes the high-level architecture of the pro-
posed framework. The standard datasets used in this study
are provided in Section IV. Furthermore, Section V provides
the implementation details of the proposed framework, and
Section VI details the evaluation criteria and comparison
with other methods. Section VII discusses the results, and
Section VIII presents the conclusion with insights for pos-
sible extension of the work.

The following section describes the mathematical theory
applied in the proposed framework.

II. MATHEMATICAL BACKGROUND
The proposed method uses a hybrid network model with
two kinds of neural network architectures for parameter
mapping viz. multi-layer perceptron (MLP) DNN mapping
for spectral MGCEP and multi-layer ANN with PSO for
F0 mapping. Multi-layer perceptron (MLP) DNNs are typ-
ical deep-learning models, and they are used for function
approximation, with a deeper architecture and regularization
compared to ANN. The major decisions involved in select-
ing an appropriate deep-learning configuration for parameter
mapping are with respect to the network architecture, i.e., the
number of layers, type of connections, and neurons per hid-
den layer. The technical details regarding the implementation
of DNNs are described in Section. V. For basic theory regard-
ing ANNs and MLP DNNs, kindly refer to [58]–[63].

For a convenient and crisp representation, the MLP DNN
structure used in the context of this work is designated sim-
ply as ‘DNN’ throughout the paper. The proposed model
further uses WSST decomposition followed by mapping
using PSO-ANN for F0 mapping. The following subsec-
tions describe the mathematical background behind WSST
and PSO.

A. WAVELET SYNCHROSQUEEZED TRANSFORM
Synchrosqueezing is a term used in auditory analysis. It was
devised for the decomposition of signals with time-varying
characteristics. It belongs to the category of time–frequency
reassignment (TFR) algorithms. Compared with classical
TFR techniques, synchrosqueezing efficiently reconstructs
the components that constitute the time-domain signal. Thus,
synchrosqueezing can be used as a substitute to empirical
mode decomposition techniques [64]. The concept of WSST
has been used for epoch extraction from the emotional speech
because of its sharpness in instantaneous frequency represen-
tation [65]. In addition, synchrosqueezing successfully rep-
resents the rapidly varying pitch in emotional speech, which
forms the basis of this study.
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Basically, synchrosqueezing aims to acuminate the
time-frequency representation given by R(t, ω) by allot-
ting its value to a distinct point (t1, ω1) in the same plane
which is ascertained using the local behaviour of R(t, ω).
The synchrosqueezed transform operates on the CWT of a
signal (1) [66]

Wx(a, b) =
∫
x(t)a−1/29(

t − b
a

)dt (1)

where 9 represents mother wavelet, and a and b represent
scale and translation factors of the wavelet, respectively. The
instantaneous frequency can be extracted from this signal.
According to the observations in [67], although Wx(a, b) is
spread-out in a, its oscillatory behaviour is insensitive to the
value of a. This means that if we take any wavelet9 which is
concentrated only on positive axis in frequency, i.e.9(ξ ) = 0
for all ξ < 0, then, by Plancherel’s theorem [64],

Wx(a, b) =
1
2π

∫
x(ξ )a0.59(aξ )eibξdξ (2)

If 9(ξ ) is concentrated around ξ = ω0, then Wx(a, b) will
be around a = ω0

ω
. For any a and b for which Wx(a, b) 6= 0,

the instantaneous frequency can be estimated as in (3) [68]:

ωx(a, b) = −i(Wx(a, b))−1
∂

∂b
Wx(a, b) (3)

where ω and a are binned. Therefore,

ω(a, b) = ωx(a, b) (4)

Practically, because a, b and ω are discrete,Wx(a, b) is com-
puted purely at distinct scales ak where

ak − ak−1 = (1a)k (5)

The synchrosqueezed transform is evaluated only at the
center frequencies, ωc, of consecutive bins, i.e., [ωc −
0.51ω,ωc + 0.51ω] where 1ω = ωc − ωc−1. The wavelet
synchrosqueezed transform can be estimated as in [64]:

Tx(ωc, b)= (1ω)−1
∑

ak :|ω(ak ,b)−ωc|≤0.51ω

Wx(ak , b)a
−3/2
k (1ak )

(6)

Reconstruction can be performed by taking the inverse trans-
form of Tx . Starting from (7),∫
∞

0
Wx(a, b)a−3/2da=

1
2π

∫
∞

−∞

∫
∞

0
x(ξ )9(aξ )eibξa−1dadξ

(7)

Rearranging the terms and re-writing (7)∫
∞

0
9(ξ )

dξ
ξ

1
2π

∫
∞

0
x(ξ )eibξdξ (8)

Considering

Cψ = 0.5
∫
∞

0
9(ξ )

dξ
ξ

(9)

Since x is real,

x(ξ ) = x(−ξ ) (10)

x(b) = Re
[∫
∞

0
Wx(a, b)a−3/2da/Cψ

]
(11)

By linear approximation [68],

x(b) ≈ Re

[∑
c

Tx(ωc, b)1ω/Cψ

]
(12)

B. PARTICLE SWARM OPTIMIZATION
PSO aims to make a connection between evolutionary-
computation and genetic-algorithm perspectives. Its main
attraction is its simplified concept and ease of implementa-
tion, requiring no expensive computing capabilities. It is fre-
quently used for optimizing continuous non-linear functions.
The idea was derived from natural bird flocking, wherein
an optimal distance is ensured among neighbours to avoid
collision. Each particle in PSO is initialized with a position
and velocity. In addition, the velocity of nearest neighbour
is also set to the velocity of the considered particle to create
synchronized motion. A stochastic variable is added to the
selected velocity at every iteration to create the required
variability in the system. Each particle can be regarded as an
optimized solution to the problem of determining the flight
behaviour [69]. ConsideringN particles inD dimensions with
the optimum position represented as pi, i = {1, 2, . . .N },
the optimal position of an entire population is given as pg. The
velocity vi and position pi are dynamically updated by the
expressions in (13) and (14) [70]:

vid (t + 1) = wvid (t)+ a1r1(pid (t)− xid (t))

+ a2r2(pgd (t)− xgd (t)) (13)

xid (t + 1) = xid (t)+ vid (t + 1) (14)

where t denotes the number of iterations, d = {1, 2, . . .D},
w the inertia weight, i the particle number, a1, a2 the accel-
eration coefficients and r1, r2 uniformly distributed random
numbers.

The convergence of the algorithm is estimated using the
values of the control parameters. The fitness values correlate
with the value of the objective function, and they can be
used to measure the position and update a particle. Finally,
the position of each particle should converge to the optimal
particle position of the entire population. The advantage of
adopting the PSO algorithm instead of traditional algorithms
is that possible solutions will navigate the problem hyper-
space quickly toward achieving the global optimum [71].
Therefore, the training provides optimum weights with the
lowest possible output deviation. For further details regarding
PSO, kindly refer to [71]–[74].

III. PROPOSED FRAMEWORK
The model proposed in this paper has the following main
stages:

1) Feature extraction, normalization and dimension
reduction

2) Feature mapping
3) Testing and resynthesis
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FIGURE 1. High-level architecture of the proposed DNN + WSST-ANN-PSO + Int framework for emotion conversion.

The architecture of the proposed model is depicted in Fig. 1,
which is divided into training and testing phases. The training
phase involves the extraction, speaker-wise normalization,
and mapping strategy devised for the features considered.
The testing phase depicted in Fig. 1 contains unseen neu-
tral utterance from the target speaker being passed through
conversion function and further feature reconstruction and
speech resynthesis. The proposed framework is named the
DNN + WSST-ANN-PSO + Int model.

Each module is described in the following subsections.

A. FEATURE EXTRACTION, NORMALIZATION
AND DIMENSION REDUCTION
The features extracted for processing are MGCEPs, F0, and
intensity from parallel neutral and target emotional utter-
ances. MGCEPs are extracted from the spectral representa-
tion, and F0 is extracted for every 5 ms. Intensity is extracted
at the utterance level. All these features are time-aligned
via dynamic time warping before processing. The features
are further preprocessed as required to nullify the emotional
variabilities. All the features are mean-and-variance normal-
ized speaker-wise to retain the emotional characteristics and
reduce the speaker-induced variabilities as much as possible
during the emotional utterance by various speakers.

F0 features are decomposed using WSST to yield
WSST-F0. Without disturbing the time resolution of the rep-
resentation, WSST is utilized to reassign the signal energy
in the frequency domain by using a phase transform. The
time resolution must be preserved to perfectly reconstruct
the signal. In addition, the instantaneous frequency infor-
mation is captured in this representation using an analytic
wavelet. Because the resultingWSST-F0 is high dimensional,
the dimensionality is reduced using PCA. Therefore, the new
WSST-F0 with reduced dimensions is utilized for F0 map-
ping. Normalized intensities across the entire utterance are
used for the mapping.

B. FEATURE MAPPING
The proposed hybrid modelling framework uses a combina-
tion of a DNN and an ANN for performing feature map-
ping and emotional-voice transformation. Spectral mapping
is accomplished using an MLP DNN with 10 hidden layers.
The aim of performing feature mapping from multiple speak-
ers is to convert the spectral and prosody characteristics from
the source to the target without compromising the identifia-
bility of the target speaker. To achieve that aim, an adaptation
strategy is used, wherein limited seed data from the target
speaker (approximately 1 min) are used for model adaptation
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after the first stage of training. The training is repeated using
the adaptation data for the features considered.

The PCA-reduced WSST-F0 is fed to a two-layer shallow
ANN based on conjugate gradient learning. Instead of opting
for straightforward training using the ANN, the weights and
biases are further optimized using PSO to yield a simplified
and robust conversion function.

Intensity mapping is performed by considering the static
intensities across the entire utterance. The scale factor is
derived as follows:

Scalefactor=
Average intensity of target emotion

Average intensity of neutral
(15)

C. TESTING AND RE-SYNTHESIS
For testing, the leave-one-speaker-out cross-validation strat-
egy was applied to each dataset. The unseen neutral utter-
ance was provided for the feature-extraction stage to separate
the MGCEPs, F0, and intensity. After feature preprocess-
ing, as depicted in Fig. 1, the parameters were fed to the
conversion function obtained from the training phase. The
conversion-function block in Fig. 1 encompasses separate
mapping functions for for MGCEP, WSST-F0 and inten-
sity. The parameters were denormalized and reconstructed
before being resynthesized. Notably, after the conversion,
the reduced WSST-F0 must be reconstructed to the orig-
inal dimension prior to performing feature reconstruction.
An approximate reconstructionwas performed using the PCA
principle as follows:

WSST − F0orig. = PCAred × (E)T + µ (16)

where WSST − F0orig. denotes the original dimension
WSST-F0, PCAred , the PCA scores, E , the Eigen vectors and
µ represents the mean vector for training data corresponding
to the target emotion.

Emotional speech was synthesized using the modified
spectral and F0 features by employing the STRAIGHT
vocoder. Furthermore, the intensity of the resynthesized utter-
ance was modified using the scale factors obtained in (15) for
each dataset.

IV. EXPERIMENTAL DATA SOURCE
To develop an integrated framework for speaker-adaptive
vocal-emotion conversion, the selected data must capture the
emotional rendering by various speakers. Table 1 lists the
datasets used in this work.

The datasets listed in the table were considered because
they contain multiple utterances from speakers of both gen-
ders for three emotions, namely, anger, fear, and happiness.
Furthermore, training and testing in feature-mapping experi-
ments require parallel neutral data in the datasets. In addition,
multilingual testing requires the selection of languages that
vary with respect to their phonetic content and variabilities
in emotional expression. All the recordings in the train-
ing dataset and resynthesized emotional speech data were
saved in the ‘‘*.wav’’ format as monochannel sound files at
the sampling rate of 16 kHz. For the SAVEE dataset [77],

TABLE 1. Experimental datasets.: The total number of speakers, as well as
the training and testing utterances across all the datasets, are provided.

the original recording, which was sampled at 44.1 kHz, was
resampled to 16 kHz to maintain uniformity throughout the
experimentation.

Although the datasets listed in Table. 1 also contain emo-
tional utterances representing other archetypal emotions,
such as disgust, surprise, and boredom, this study primarily
focused on the synthesis of the three basic emotions, namely,
anger, fear, and happiness. This is because these emotions
frequently arise in conversations and can be perceived more
satisfactorily in listening tests with converted utterances.
In addition, the emotions considered reflect the shifts in the
manner of emotional rendering by multiple male and female
speakers.

V. EXPERIMENTAL SET-UP
The framework proposed uses three methods of param-
eter mapping: DNN with speaker adaptation; F0 with
WSST-ANN-PSO and static-intensity mapping, respectively,
for spectral MGCEPs and F0; and intensity. The exper-
iments were conducted using 1000 utterances from all
the datasets, as listed in Table. 1. The feature data were
speaker-normalized before being fed to the respective training
networks. For performing speaker-wise mean–variance nor-
malization, we normalized the MGCEP and F0 features cor-
responding to each emotion from each speaker with respect to
the mean and variance for the neutral utterance from the same
speaker. This resulted in a balanced representation of the
feature space data by averaging out speaker-specific traits and
retaining only emotion- specific traits. Both male and female
speakers were trained separately, and the results projected
represent the average from both the genders. The testing was
conducted using the leave-one-speaker-out cross-validation
strategy. The training was speaker-adaptive and used the seed
adaptation data of less than 1min for themodelling. Themean
duration of utterances and the total amount of sound data used
from each dataset are provided in Table. 2.

The parameters that must be optimized for spectral
training are DNN hyperparameters. For spectral training,
25-dimension MGCEPs were extracted by using the analysis

74632 VOLUME 8, 2020



S. Vekkot et al.: Emotional Voice Conversion Using a Hybrid Framework

TABLE 2. Mean Duration of utterance(s) and the amount of speech data
used for emotions in each dataset.

frame length of 25 ms and a frame shift of 10 ms. In addi-
tion, a DNN with 10 hidden layers was used; it contained
50 neurons per hidden layer. The ReLu activation function
was applied to each layer, except the output layer. However,
a linear activation function was used at the output layer.
An Adam optimizer was used to control the learning-rate
parameter in the network. The DNNs were optimized using
stochastic gradient descent with MSE as the loss function.
The number of epochs was set to 250, with a minibatch
size of 30. For regularization, a 20% drop-out was added
in the hidden layers. The data were split into training and
test sets at the ratio of 80:20. The early stopping criterion
was set to 10 epochs; i.e., if the validation MSE did not
improve within 10 epochs, the training stopped. In addition,
the learning rate was set to 0.002 for the initial 10 epochs and
0.001 for the succeeding epochs with a momentum of 0.9.
During speaker adaptation as well, the momentum was set to
0.9 and the learning rate to 0.001.

For F0 mapping from the neutral to the target emo-
tion, the parameters were tuned in the manner described
herein. For F0 feature extraction, 25-ms analysis frames
with 5-ms frame shift were employed using a robust algo-
rithm for pitch tracking [78], with frequencies varying from
50 to 500 Hz. For wavelet decomposition and ANN map-
ping, the F0 contour must be continuous. However, because
we consider entire utterances for training, the voiced and
unvoiced parts must be separated from each other, following
which the F0 values are estimated for all the voiced parts in
each utterance. Because F0 is zero for the unvoiced speech,
the unvoiced portions in the F0 contour are filled via lin-
ear interpolation to reduce the discontinuities in the contour
while performing ANN mapping. Furthermore, WSST-based
transformation and PCA-based dimension reduction were
used prior to performing the F0 mapping. WSST was eval-
uated using the analytic Morlet wavelet at 10 voices/octave.
In addition, PCA was applied to the higher-dimensional
WSST-F0 to identify the principal components. Because the
primary aim of our experiments was to generate the map-
ping of an acceptable quality by using minimum computa-
tional overhead, the dimension was reduced to 12. Moreover,
it was observed that a further increase in the dimension did

not significantly affect the root mean square error (RMSE).
On the basis of the dimension fixed, ANN mapping using a
two-hidden-layer neural net with scaled conjugate gradient
training was applied toWSST-F0. The number of neurons per
hidden layer was empirically set to 30. The Tanh activation
function was used in both the hidden layers.

F0 mapping was achieved using a multilayer ANN coupled
with PSO for the further optimization of the weights and
biases. The F0 feature vector was split into training, valida-
tion, and test sets in the proportion: 70%, 15%, and 15%,
respectively. For the feedforward ANN training, to counter
the overfitting to the training data, six validation checks were
conducted at every epoch. In addition, MSE was used for
scrutinizing the validation error.

The training continued until the validation error decreased
continuously. The instance wherein the MSE reached the
minimum point of decrease and further started increasing
was regarded as the stopping criterion for the training. The
best validation performance obtained for each emotion is
depicted in Fig. 2. A similar mode of training was conducted
for all the datasets, and the epochs corresponding to the best
validation was used as the stopping criteria for countering the
overfitting.

VI. PERFORMANCE EVALUATION METRICS AND
COMPARISON WITH STATE-OF-THE-ART METHODS
To estimate the emotion-conversion efficiency for the
datasets, several objective measures were adopted; they are
discussed in Subsection. VI-A. Because emotional expres-
sion is highly subjective, the objective evaluations were
reiterated via subjective measures as well, as described in
Subsection. VI-B.

A. OBJECTIVE METRICS
The objective measures used for evaluating the feature-
mapping effectiveness are melcepstral distortion (MCD)
for spectral-conversion efficiency, root MSE for F0 map-
ping (RMSE-F0), and perceptual evaluation of speech qual-
ity (PESQ) for evaluating the overall quality of the converted
speech.

1) MELCEPSTRAL DISTORTION
MCD was used to assess the spectral-conversion effi-
ciency [23], [33], [34], [37], [49], [50], [52], [57]. It is cal-
culated as follows

MCD =
10

ln(10)

√√√√2
D∑
i=1

(mti − m
c
i )
2 (17)

where mti denotes the i
th frame melcepstral coefficient of the

target and mci that of the converted utterance; in addition, D
denotes the melcepstrum dimension.

2) ROOT MEAN SQUARE ERROR
RMSE is an established metric used [33], [34], [37], [49],
[50], [52], [57] to evaluate the proximity of predicted values
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FIGURE 2. Best validation performance obtained and the number of epochs taken to achieve the best MSE for training of
WSST-F0 with ANN-PSO. For illustration, the MSE values during training in the EmoDB dataset are plotted in the figure.

by a mapping algorithm to those of the target, given as

RMSE =

√∑N
i=1(F0conv(i)− F0tar (i))2

N
(18)

where F0conv denotes the F0 of the re-synthesized emotional
utterance and F0tar that of the target emotion. In addition,
N denotes the number of samples considered for conversion
in each dataset.

3) PERCEPTUAL EVALUATION OF SPEECH QUALITY
PESQ is an objective measure to evaluate the perceptual qual-
ity of the enhanced speech. The International Telecommu-
nications Union Standardization Sector has accepted PESQ
as recommendation P.862 [79]–[81]. Because the proposed
framework generates emotional speech via resynthesis after
decomposition using WSST and subsequent PCA, the qual-
ity of the converted speech must be maintained post con-
version so that the speech is not degraded upon using the
mapping algorithm. Moreover, PESQ is used to measure the

degradation in the voice quality of the synthesized speech
post conversion with respect to the target clean speech in
emotional environments [82], [83]. However, the PESQ val-
ues reported are MOS-LQO scores calculated to objectively
predict the quality of synthesized speech for a listening-only
test situation [79]. Thus, the PESQ scores can be directly
correlated with that obtained from listening tests.

B. SUBJECTIVE MEASURES
The converted expressive speech is evaluated using
objective-evaluation metrics, as discussed in Section VII-A.
Nevertheless, as emotion is, to a considerable extent, sub-
jective, the objective-evaluation results must be emphasized
further using the aspect of human perception. Accordingly,
a subjective evaluation was performed using the comparison
mean opinion score (CMOS) of the evaluation measures,
and speaker similarity. CMOS/MOS tests have been used
for drawing similarities between the synthesized and tar-
get emotions [13], [15], [17], [33], [57], [84]–[86], while
speaker-similarity scores provide the extent to which the
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TABLE 3. Ranking scale used for perception test (CMOS).

TABLE 4. Ranking scale used for speaker similarity test.

identity of a speaker is preserved after conversion. The rank-
ing scales used for estimating CMOS and speaker similarity
are explained in Tables. 3 and 4, respectively.

C. COMPARISON WITH STATE-OF-THE-ART METHODS
To analyze the capability of the proposed framework in
mapping the three prominent features relevant to emotional
expression, it was compared with different variations of the
current methods in the literature, termed ‘‘baselines’’ in this
study. In each comparison, the parameters for the training
were the same as those used in the experiments. Inten-
sity mapping was performed using the static utterance-level
scale factors provided in (15), whereas one of the other
parameter-mapping methods, for either spectrum or F0, was
varied. Therefore, the following two categories of mapping
methods were used in this study to compare the efficiency
of the emotion conversion with that of the proposed DNN +
WSST-ANN-PSO + Int framework, which are as follows:
• Spectral mapping baseline: The baseline used for
spectral mapping is DNN without any speaker adap-
tation. Instead of using seed adaptation data from the
target speaker, the speaker-normalized MGCEPs were
used for conversion function training. Subsequently,
F0 mapping was performed using the proposed WSST-
ANN-PSO algorithm. Therefore, this method is termed
as DNN w/o speaker adaptation + WSST-ANN-PSO +
Int hereinafter.

After selecting the spectral-mapping method, we selected
several methods to compare their F0-mapping performance
with that of the selected method. Here, the spectral mapping
was kept fixed as DNN, and different variations were tested in
terms of F0 mapping, which are described below. No param-
eter was optimized for any of the contemporary methods.
• F0 mapping baselines: Three variations of state-of-
the-art methodswere comparedwith the proposedmodel
in terms of the F0-mapping performance, as illustrated
below. In methods 1 and 2, CWT decomposition was
used in emotion-conversion experiments, as it facilitates

the capturing of the hierarchical information in an utter-
ance at the sentence-, word-, phrase-, and syllable lev-
els [49], [50]. We used the following different variations
of mapping methods for performing comparison after
CWT decomposition.
1) DNN + CWT-NMF + Int: A DNN with speaker

adaptation was used to implement the spectral con-
versionmethod; however, for F0mapping, nonneg-
ative matrix factorization (NMF) was used for the
transformation of 30-scale CWT-F0, as in [49].

2) DNN + CWT-ANN + Int: This model is closely
related to that proposed in [34]. However, the dif-
ference from the method discussed in [34] is that
instead of pretraining using a DBN, a DNN with
speaker adaptation was used to convert the spectral
MGCEP. A feedforward ANN without PSO was
utilized to modify the 30-scale CWT-F0.

Although CWT-based methods can capture hierarchi-
cal information, WSST-based transformation provides a
sharpened F0 representation bymeans of reduced energy
smearing, which is especially useful for spectral recon-
struction. To analyze the strength of WSST-F0 irrespec-
tive of the mapping technique employed, NMF-based
mapping was performed after WSST de-composition
instead of using the state-of-the-art CWT. Therefore,
a mapping method was created and tested as the follow-
ing method 3: resume
1) DNN +WSST-NMF + Int: This model uses the

DNN with speaker adaptation to convert MGCEPs
and NMF is used to transform 30-scale WSST-F0
features.

VII. RESULTS AND DISCUSSION
Evaluation of proposed framework alongwith comparison
with other feature mapping methods was performed using
the performance criteria discussed in Section. VI; details are
provided in the following subsections.

A. OBJECTIVE EVALUATION AND ANALYSIS
To analyze the strength of the proposed model for emo-
tion conversion, objective comparisons were performed using
standard metrics. The proposed DNN + WSST-ANN-PSO +
Int framework was compared with all the other methods,
discussed in Subsection. VI-C. The first level of comparison
was performed using spectral evaluation as the criterion.
Here, the proposed model for spectral mapping, i.e., the DNN
with speaker adaptation, was compared with that without
speaker adaptation using MCD as the performance measure.
The results of this comparison are presented in Table. 5.
In Table. 5, across all datasets, lower distortion is obtained for
DNNmapping with speaker adaptation than without utilizing
an adaptation mechanism, using the same method for F0 and
intensity modification in both cases. AverageMCD for all the
emotions considered across datasets was 4.98.
The utilization of seed data for speaker-specific modelling

helps preserve target speaker characteristics considerably
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TABLE 5. Mel Cepstral Distortion - DNN w/o and with speaker
adaptation.

better than a generalized speaker normalization mechanism.
Whereas the proposed mapping method performs equally
well across all datasets, the performance improvement scores
show maximum enhancement in the SAVEE dataset, where
the available training data is lower than those in the other
two datasets used in the experiments. This decrease in
data requirements indicates applications in low resource
mapping wherein labeled data accessible from a particular
language/speaker is limited.

The efficacy in terms of F0 mapping was com-
pared with that of three state-of-the-art mapping meth-
ods: DNN+CWT-NMF+Int, DNN+CWT-ANN+Int and
DNN+WSST-NMF+Int. The results obtained are illustrated
in Fig. 3. In the figure, the lowest F0-RMSE is obtained
for the proposed model across all datasets. An RMSE value
as low as nine is obtained for conversion to anger, and
conversions to fear and happiness also shows a comparable
performance. The average RMSEs obtained by the proposed
mapping technique across datasets for each emotion are 10.65
(anger), 11.00 (fear), and 10.37 (happiness). Across datasets,
a mean RMSE-F0 of 10.67 was obtained. CWT-based meth-
ods yield higher RMSEs than those with WSST, with the
CWT-NMF combination giving the highest RMSE in all
cases.

Whereas CWT provides a better time-frequency localiza-
tion ability, the usage of finite duration analysis windows
limits the time-frequency resolution and leads to spectral
energy smearing, thereby producing artefacts in the represen-
tations. By applying the WSST, the readability of the trans-
form is enhanced as instantaneous frequency is computed.
Further, the frequency reassignment in the WSST improves
the sharpness of the representation. Here, the reduced spec-
tral smearing leads to a crisper time-frequency picture by
removing high frequency noise contamination, if any, in the
signal. Therefore, a well-defined representation is obtained
for each frame in the event of rapid pitch variations, which
can enhance mapping for better prediction of F0. The reduced
RMSE in both WSST-based F0 mapping cases can be
attributed to this.

Albeit both WSST-based methods show a comparable per-
formance in most cases, the optimization strategy applied to

the ANN weights further improved the RMSE. The conver-
gence of the ANN-PSO combination was found to be more
efficient than that of the ANN alone. In addition, the RMSE
generated was lower than that without optimization. The
advantage of using PSO is that the convergence to the best
solution is guaranteed rather than the algorithm becoming
trapped in a not so optimal local solution based on the trial
and error strategy used in conventional ANN training.

Although comparable RMSE values are obtained for the
proposed framework in the EmoDB and IITKGP datasets,
a greater improvement in performance is observed in
EmoDB, substantiated by the increased reduction in RMSE
(almost to half that of the baseline CWT). In the SAVEE
dataset, the optimized algorithm performed better for fear
than for anger and happiness. Thus, the optimized pitch map-
ping algorithm performs better even for unbalanced datasets,
such as EmoDB and SAVEE. In fact, the reduction in RMSE
ismore prominent in EmoDB than in its balanced counterpart,
the IITKGP dataset.

The effectiveness of the proposed algorithm for F0 map-
ping was already demonstrated by the reduced RMSE val-
ues for all the datasets considered for mapping. Further, for
visualization purposes, a regression analysis was conducted
to compare the ANN mapping methods after WSST-F0 and
CWT-F0 decomposition, respectively. As a representative
sample, the F0 regression plots for EmoDB are provided
in Fig. 4.

Similar results were obtained for the regression perfor-
mance in all datasets, keeping the same mapping schemes for
spectral and intensity features. The difference in performance
is most evident for fear in EmoDB, as seen in Fig. 4(c)-(d).
Whereas CWT-ANN mapping gives an overall R value

of 0.698, WSST-ANN-PSO gives an R value of 0.925 for
the same experimental conditions. Furthermore, the method
performs equally well for happiness, as is evident in Fig. 4(f).
In fact, the R value for happiness is even better than that for
other emotions (overall R = 0.945).
Fig. 4 shows that the data are more focused and sharply

coinciding with the regression line in the proposed method
and are more scattered and spread out of the line in the CWT
mapping methods. Additionally, it is observed that fear was
the most difficult emotion to map using CWT-ANN-based
training.

To evaluate the perceptive quality objectively, the signal
PESQ scores were computed post conversion. The results
are provided in Fig. 5. It is clear that a higher PESQ value
is obtained for WSST-ANN-PSO-based conversion in all
datasets. A higher PESQ value is obtained for anger and
fear, with a maximum perception quality of 3.8 for fear
in IITKGP. Almost consistent PESQ scores are obtained
for happiness by both WSST-based methods. The better
perception quality can be attributed to the reduced energy
smearing in WSST transformation combined with optimized
parameter mapping. Across datasets, PESQ values for the
proposed method are almost consistent for anger. The con-
sistency across dataset PESQ scores is reflected in all emo-
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FIGURE 3. Comparison of RMSE- F0 (Hz) for conversion from neutral utterance to anger, fear and
happiness. The baselines are represented as DNN+CWT-NMF+Int, DNN+CWT-ANN+Int,
DNN+WSST-NMF+Int. a, f and h prefixes denote anger, fear and happiness respectively.

tions, except fear. For fear, higher scores are obtained in
IITKGP.

The MCD, F0-RMSE, and PESQ values as obtained above
highlight the effectiveness of the DNN+WSST-ANN-PSO+

Int framework for emotion conversion in all datasets. In the
multiple conversion experiments, it was found that spectral
mapping captures the variations in the low frequency region
more effectively for all emotions. In addition, the variations
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FIGURE 4. Regression performance with respect to F0 mapping: (a)-(b) depict F0 regression plot for anger,
(c)-(d) that for fear, (e)-(f) for happiness in DNN+CWT-ANN+Int without parameter optimization of neural
network and DNN+WSST-ANN-PSO+Int based mapping respectively. For illustration purpose, training/test
data from EmoDB has been used for the plots.
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FIGURE 5. Comparison of PESQ scores between proposed framework and state-of-the-art
baselines: (a) gives the scores obtained for anger, (b) for fear and (c) for happiness across all
datasets. The baselines are represented as DNN+CWT-NMF+Int, DNN+CWT-ANN+Int,
DNN+WSST-NMF+Int. a, f and h prefixes denote anger, fear and happiness respectively.

in higher formant regions for anger and happiness are well
portrayed in IITKGP. Further, for illustration purposes and to
obtain a visual perspective of the pitch and spectral mapping
achieved by the proposed scheme, Fig. 6 is plotted with a
single utterance from each of the datasets. In this figure,
the pitch contour more closely follows the target for all emo-
tions in IITKGP. In EmoDB, the duration of the utterances is

longer and there are more breaks between them. The initial
inflexions in happiness where there is an onset of a breathy
voice quality (marked in red) are not clearly captured by the
proposed method. This is interesting, because the F0 regres-
sion plot showed a better mapping performance in the case
of happiness. Because F0 mapping is performed by taking
instantaneous values and subsequently conducting interpola-
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FIGURE 6. Pitch contours and spectrograms of neutral, converted and target speech utterances. Fig. (a)-(c) represent anger, fear and happiness
conversion in EmoDB for German utterance ‘Der Lappen liegt auf dem Eisschrank’, (d)-(f) represent that for IITKGP for the Telugu utterance ‘Talli
tandrilenu goruavinchi vellanu’ and (g)-(i) represent that for SAVEE for the utterance ‘She had your dark suit in greasy wash water all year’ in
English respectively.

74640 VOLUME 8, 2020



S. Vekkot et al.: Emotional Voice Conversion Using a Hybrid Framework

FIGURE 6. (Continued.) Pitch contours and spectrograms of neutral, converted and target speech utterances. Fig. (a)-(c) represent anger, fear
and happiness conversion in EmoDB for German utterance ‘Der Lappen liegt auf dem Eisschrank’, (d)-(f) represent that for IITKGP for the
Telugu utterance ‘Talli tandrilenu goruavinchi vellanu’ and (g)-(i) represent that for SAVEE for the utterance ‘She had your dark suit in greasy
wash water all year’ in English respectively.

tion, the silences and breathy voice quality are not considered
for modification. In SAVEE, the variations in pitch contour
are more effectively captured for fear. This is also evident
in Fig. 3(b) where the RMSE values are comparatively lower
for fear than for the other two emotions. Similar trends were
obtained for other utterances also across datasets.

It is worthwhile to note that the happiness contour is most
effectively mapped in IITKGP, although the F0-RMSE values
are comparable for all three datasets, as shown in Fig. 3.
Observation of the overall manner in which happiness is
expressed in training samples from the IITKGP dataset
shows that the breathy voice quality is less prominent and
a ‘‘pleasant’’ feel is provided to the Telugu utterances.
The method can be further refined by adding voice qual-
ity parameters, such as jitter and shimmer, to the mapping
strategy.

B. SUBJECTIVE EVALUATION AND ANALYSIS
The strength of the DNN + WSST-ANN-PSO + Int frame-
work for emotion conversion was evaluated through objec-
tive comparison metrics, as discussed above. Additionally,
testing of the framework in terms of the perceptive quality
of emotional expression was required. Ten listeners in the
20–30 year-old age group participated in perception tests
using utterances selected randomly from each dataset. A total
of 72 utterances were selected for testing (4 methods ×
3 emotions × 3 datasets) × 2 (male/female). Because the
German language was not familiar to listeners in the exper-
iment site, for EmoDB alone the evaluation was conducted
in two different phases, that is, with in-house non-native,
as well as native German listeners. The factors considered in
the evaluation were the CMOS and speaker similarity. At the
beginning of each test, the utterance corresponding to target
emotion is played, followed by utterances with synthesized
emotion, in random order. The listeners were asked to score
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TABLE 6. Subjective comparison between individual and combined parameter mapping across datasets.

the synthesized utterance simultaneously in terms of two
measures, similarity to target (CMOS evaluation) and speaker
(speaker similarity scoring).

Because the proposed framework involves mapping of
spectral, F0, and intensity features for emotion conversion,
the individual contribution of spectral and F0 features in
terms of objective evaluation criteria was already discussed.
Since emotion is also subject to the listener’s perception,
the same emotions needed to be studied separately in terms
of subjective evaluation. The first step in perception test-
ing involved an investigation to determine the contribu-
tion of these features in expression mapping individually.
For this purpose, a listening test was conducted using the
same strategy as discussed above. Eighteen utterances from
male and female speakers were considered, making a total
of 36 utterances for testing (2 methods × 3 emotions ×
3 datasets)× 2 (male/female). A comparison was made of the
utterances synthesized by means of individual methods, viz.
DNN+ Int,WSST-ANN-PSO+ Int and the proposed DNN+
WSST-ANN-PSO + Int for mapping of features viz.
MGCEP + Int, F0 + Int and the combined MGCEP + F0 +
Int respectively. The results are recorded in Table. 6.
In Table. 6, rather than single parameter mapping, the mod-

ification of both spectral and F0 parameters and subsequent
resynthesis yield a better CMOS and speaker similarity. For
German utterances, native speakers gave slightly lower scores
for happiness in terms of both CMOS and speaker similarity.
Further, although almost identical CMOS scores are obtained
for individual mapping of MGCEP or F0, the speaker simi-
larity scores are slightly better for MGCEP mapping. This
enhancement in similarity can be attributed to the utilization
of speaker adaptation seed data for DNN-based feature map-
ping. The speaker identity is learned from the adaptation data
provided for spectral mapping.

Since it was already established that the combinedmapping
of spectral, F0, and intensity parameters yields a better per-
ceptive quality, an overall CMOS and speaker similarity scor-
ing and comparison with various methods were conducted;
the results are illustrated in Figs. 7 and 8.

The CMOS scores show that the proposedmodel surpassed
the other methods in terms of similarity with the target for all
emotions considered across all datasets. A comparison among
different emotions shows that the maximum agreement in
perceptive quality was obtained for fear in EmoDB. Compa-
rable scores for anger were obtained for both EmoDB and
IITKGP. However, for happiness, the scores for the Telugu
dataset were slightly better. This may be because the voice
quality for happiness was captured better in Telugu.

In Fig. 7(a), the mean value (marked as ‘‘x’’) is higher
for the WSST-based methods. Additionally, the distribution
tends more toward the upper quartile in the proposed frame-
work across datasets. In the case of the German language
samples, native listeners gave better scores for fear than
for the other emotions. For happiness, a lower CMOS was
recorded by native listeners. Overall, the listeners noted a
closer similarity between the converted and target utterances
for both WSST-based mapping methods than for that uti-
lizing CWT. Thus, using the proposed mapping framework,
an average CMOS value of 3.58 (anger), 3.78 (fear), and 3.35
(happiness) were obtained across datasets. Because the data
are skewed, whiskers are not visible in cases where the lower
quartile coincides with theminimum value or where the upper
quartile falls into the maximum.

In Fig. 7(b), a similar trend can be observed for fear.
In particular, considering the IITKGP dataset, although the
maximum values are the same for both WSST-based meth-
ods, the distribution tends more toward the upper quartile in
WSST-ANN-PSOmapping; the opposite tendency is seen for
WSST-NMF. In Fig. 7(c), slightly higher CMOS scores are
obtained for happiness in IITKGP, but the inter-quartile range
is smaller in EmoDB for the proposed technique. Although
SAVEE shows almost consistent scores for the proposed
method across all emotions, the distribution moves totally
toward the upper quartile in fear, which shows agreement with
the higher CMOS for fear.

Higher speaker similarity scores were also obtained using
the proposed model, as is evident in Fig. 8. A compar-
ison of the datasets used for experimentation shows that
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FIGURE 7. Comparison of CMOS scores between proposed framework and state-of-the-art baselines: (a) gives the scores obtained
for anger, (b) for fear and (c) for happiness across all datasets. The baselines are represented as DNN+CWT-NMF+Int,
DNN+CWT-ANN+Int, DNN+WSST-NMF+Int. a, f and h prefixes denote anger, fear and happiness respectively.
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FIGURE 8. Comparison of speaker similarity scores between proposed framework and state-of-the-art baselines: (a) gives the scores
obtained for anger, (b) for fear and (c) for happiness across all datasets. The baselines are represented as DNN+CWT-NMF+Int,
DNN+CWT-ANN+Int, DNN+WSST-NMF+Int. a, f and h prefixes denote anger, fear and happiness respectively.
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the maximum speaker similarity for the proposed method is
obtained in IITKGP (anger) and EmoDB and IITKGP yield
identical similarity scores for the other emotions. Addition-
ally, native listeners gave slightly lower speaker similarity
scores for the proposed model for both anger and happiness,
although they were still higher than the corresponding val-
ues for the other methods. The scores are slightly lower in
SAVEE, as the adaptation data are slightly fewer owing to the
reduced size of the dataset. However, an average similarity
score above 3 is obtained for all the emotions using the pro-
posed framework. Considering the values for each emotion
across datasets, average speaker similarity scores of 3.95
(anger), 3.78 (fear), and 3.38 (happiness) were obtained
across datasets. Additionally, an overall average CMOS value
of 3.57, and a speaker similarity score of 3.70 was obtained
across datasets.

The listeners recorded slightly lower scores for SAVEE
and expressed concern that speaker identity is comparatively
difficult to establish, because all the speakers are males with
approximately the same type of voice and accent. Further,
the degree of acceptance in representing happiness by mul-
tiple speakers and datasets was average.

VIII. CONCLUSION AND FUTURE SCOPE
A hybrid network model for speaker-adaptive emotion con-
version with combined spectral, F0, and intensity mapping
was proposed in this work. The proposed method, in a com-
parative evaluation with state-of-the-art methods, yielded an
enhanced performance according to all objective and subjec-
tive evaluation criteria. It was also found that, rather than
individual parameter mapping, combined mapping of F0 and
spectrum yielded better results in all the datasets considered
in this work. Throughout the experimentation, effort was
invested in preserving speaker identity as much as possible
while deriving an acceptable transformation for anger, fear,
and happiness. The combinedDNN+WSST-ANN-PSO+ Int
mapping scheme can be extended to other languages, where
speaker resources for expression training are limited.

The requirement of parallel neutral-target data was one
of the challenges faced in this work. The method can be
extended to include non-parallel source-target training data
which can cater even for low-resource languages. Addition-
ally, because simulated emotions are used for feature training,
recognition of the appropriate emotion from the dataset itself
is challenging. In such cases, where listening tests are highly
subjective and tedious to conduct, the development of an
automated evaluation system for CMOS testing could lead to
better reliability in scores with minimal manual labor. In the
future, by utilizing the learning gained from the multilingual
experiments, the framework can be extended to conversa-
tional dialogue systems in multiple languages.
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