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ABSTRACT The number of cyber-attacks and data breaches has immensely increased across different
enterprises, companies, and industries as a result of the exploitation of the weaknesses in securing Internet of
Things (IoT) devices. The increasing number of various devices connected to IoT and their different protocols
has led to growing volume of zero-day attacks. Deep learning (DL) has demonstrated its superiority in big
data fields and cyber-security. Recently, DL has been used in cyber-attacks detection because of its capability
of extracting and learning deep features of known attacks and detecting unknown attacks without the need
for manual feature engineering. However, DL cannot be implemented on IoT devices with limited resources
because it requires extensive computation, strong power and storage capabilities. This paper presents a
comprehensive attack detection framework of a distributed, robust, and high detection rate to detect several
IoT cyber-attacks using DL. The proposed framework implements an attack detector on fog nodes because
of its distributed nature, high computational capacity and proximity to edge devices. Six DL models are
compared to identify the DL model with the best performance. All DL models are evaluated using five
different datasets, each of which involves various attacks. Experiments show that the long short-term memory
model outperforms the five other DL models. The proposed framework is effective in terms of response time
and detection accuracy and can detect several types of cyber-attacks with 99.97% detection rate and 99.96%
detection accuracy in binary classification and 99.65% detection accuracy in multi-class classification.

INDEX TERMS Attack detection, cybersecurity, deep learning, fog computing, long short term memory,

Internet of Things.

I. INTRODUCTION

The Internet of Things (IoT) is considered a rapidly devel-
oping paradigm in the history of computing. In the past few
years, IoT has immensely evolved in different technologi-
cal fields. It has converged between hundreds of billions of
devices from different systems (such as smart vehicles, smart
health care, smart grid, smart home, etc.) and the internet [1].
However, this convergence has resulted in many cyber-attacks
on IoT systems because IoT integrates the digital world
with the physical environment [2]. IoT security has become
challenging because of the heterogeneity, large scale, limited
hardware resources, and global accessibility of IoT systems.
Researchers have used machine learning (ML) algorithms
such as decision tree (DT), random forest (RF), support vector
machine (SVM), Bayesian network, and K-Means to detect
network attacks, as proposed in [3], [4]. However, the process
requires manual feature engineering [5]. Obtained features
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such as number of bytes sent and received, connection time,
number of requests, and error count cannot deeply represent
the pattern behavior of attacks. Thus, ML is unsuitable for
detecting cyberattacks and serving as a practical solution in
the industry. The best solution to overcome the limitations
of ML is to use deep learning (DL). DL can represent data
using the multiple processing layers of computational mod-
els. In addition, DL can provide a deep representation of raw
data and predict or classify data more accurately than ML
because of its multilayer structure [6]. However, the direct
implementation of complex DL models on IoT devices is
challenging because of the limited computation, storage, and
energy capabilities of IoT devices. Therefore, using DL for
attack detection in IoT is not a direct way.

DL has been used in many proposed intrusion detection
systems (IDSs) for IoT in [7]-[10], and [11]. DL has a
high detection rate (DR) in recognizing morphing attacks.
On the one hand, DL is a powerful tool used to analyze
huge traffic volumes and accurately distinguish the normal
and abnormal behavior of different systems by extracting
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deep complex patterns from raw data (packets). On the other
hand, the direct implementation of complex DL models on
IoT devices is inappropriate due to the constrained nature
of the IoT devices. Many researchers have used DL to
detect cyber-attacks in IoT [5], [12]. However, no one has
explained the implementation of these computational and
power-intensive models on low capacity sensors. Thanks to
the development of fog computing that can aid the direct
implementation of DL models in IoT devices by processing,
analyzing, and storing large volumes of data on fog nodes
with low latency and high response time [13]. The idea is
to move the implementation of DL from sensors in the edge
layer to the nearest place of data sources, at which point data
analysis takes little time. Fog computing extends traditional
cloud-based services so that they are at the network edge
where data are generated. Furthermore, it provides a dis-
tributed environment, mobility, and scalability [14]. Accord-
ingly, DL can be implemented on the fog layer nodes where
fog computing allows the implementation and execution
of attack detection in a distributed, powerful and scalable
manner.

In the current work, we present a detailed framework of a
distributed and robust attack detection for IoT that is based
on fog computing and DL. The proposed fog-based attack
detection framework takes a very short time to detect attacks
and smaller response time than cloud-based attack detection.
We evaluate six supervised DL models in our experiments
and select the best one. We use four new datasets and one
old dataset to evaluate the performance of the DL models
through extensive experiments. The five datasets involving
different attacks, such as mirai, DDoS, worms, exploits, sybil,
sinkhole, prob, R2L, etc to verify the capability of the pro-
posed framework in detecting several attacks. Based on the
results of extensive experiments, the LSTM model achieves
the best performance in attack detection and accuracy. loT
traffic generated in the edge layer is routed to the fog layer via
smart gateway devices. The detection system implemented
on the fog nodes classifies IoT data to detect attacks. The
detection system is controlled using a cloud service to con-
firm its distributivity, scalability, and rapidity. The proposed
framework consists of four stages. The first stage aims to
train the DL model and tune the hyperparameters to achieve
the best performance. The second stage discusses how to
implement the proposed attack detection framework on fog
nodes and how they communicate and controlled by cloud
service. The third stage discusses the attack detection based
on traffic analysis using the LSTM model. The fourth stage
shows how to monitor, evaluate, and update the LSTM model.
The proposed framework is explained in detail in Section I'V.
The main contributions of this research are summarized as
follows

1) Presentation of detailed framework of a robust and

distributed attack detection for IoT networks.

2) Comparison of six supervised DL models to select the

best model for IoT attack detection based on extensive
experiments.
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3) Evaluation of the performance of six DL models using
four up-to-date IDS datasets and one old dataset.

4) Achievement of the highest DR and lowest false alarm
rate (FAR) in comparison with three other IDSs.

5) Offer of proof that DL has better detection capability
than ML and that it can detect several types of attacks
in IoT through extensive experiments.

The remaining parts of the paper are organized as follows.
Section II reviews the related work that used DL in attack
detection. Section III discusses the architecture and rules of
fog computing in IoT. Section IV shows the stages of the pro-
posed framework in detail. Section V provides an overview of
DL models used in the experiments and the details of the five
datasets. Section VI explains the experiments and evaluation
of results. Section VII presents the conclusion and future
work.

Il. RELATED WORK

This section discusses the state-of-the-art security approaches
that use DL for attack detection in IoT. Furthermore, the capa-
bility of extracting latent features and detecting different
attacks of different DL models under different network envi-
ronments is investigated.

Cyber-attacks have immensely increased in the last
10 years with the rapid growth of IoT devices and applications
[15]. Attackers have utilized cyber-attacks to compromise
thousands of IoT devices that are globally accessible and
unsecured. For instance, in 2016, several websites using DNS
provider “Dyn” were attacked using a DDoS attack. This
attack involved several IoT devices to execute the botnet
malware [15]. Researchers have proposed many security
approaches and frameworks to mitigate specific cyber-attacks
and internal attacks. However, these security approaches are
rapidly compromised by new attacks [16]. Thus, IoT requires
a distributed security solution that can constantly monitor IoT
devices, detect zero-day attacks, and make sound decisions.
Many famous organizations such as Facebook, Yahoo!, Twit-
ter, and YouTube, have developed many applications on the
basis of DL to monitor and analyze huge volumes of data
generated from billions of users [17]. DL has been widely
used with the recent improvement of graphical processing
units (GPUs), the availability of big data used to train DL
Models, and the existence of powerful learning algorithms.
To conclude, DL has demonstrated its superiority in big data
analysis, and extensive research has focused on IoT attack
detection using DL [18].

An IDS for In-vehicle network security based on deep
neural networks (DNNs) was proposed in [7]. They used
a pre-trained unsupervised deep belief network model to
initialize the parameters of the DL network and extract the
features from in-vehicular network packets. These packets
were generated by simulating In-vehicle network commu-
nication. The deep belief network model, combined with a
conventional stochastic gradient descent method, was used
for classification. The proposed IDS can respond to real-time
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TABLE 1. Comparison between different Intrusion detection approaches.

DL Model Highest Implementation
Ref Name Attacks Detected Datasets Used Accuracy Layer Strategy
packets generated .
[7] DBN CAN network attacks using OCTANE 98% edge layer centralized
eavesdropping and outperforms mobile edge
[8] DBN . . 10 datasets other ML models . centralized
jamming attacks by 6% computing
[11] CNN android malware three datasets 89.7% mobile devices centralized
[19] RNN botnet attack two datasets 96.8% desktop computers centralized
[5] LSTM V:;Irfrrrill?tlllilct;iisoifs Ztltr:glizs two datasets 99.91% fog layer distributed
[12] AEs network malware two datasets 83.3% desktop computers centralized
[21] ELM DoS, botnets one dataset 99% cloud and edge layers | distributed
[22] ngﬁd network malware one dataset 99.83% desktop with GPU centralized

attacks with 98% detection accuracy on average, and the
DL model outperforms traditional ML models. Another DL-
based security model was developed to detect malicious
applications at the edge of a cellular network using mobile
edge computing [8]. The proposed model consisted of two
components, namely, feature preprocessing and malicious
application detection engines. For the malicious application
detection engine, a deep belief network was used for unsuper-
vised feature learning, and a softmax function was utilized for
prediction. The proposed model was implemented on 10 dif-
ferent datasets and the result showed that its detection accu-
racy was higher than that of softmax regression, SVM, DT
and RF. Another study detected Android malware by auto-
matically extracting convolutional neural features from raw
opcode sequences [11]. After the conversion of a sequence
of opcode instructions into one-hot vectors, it was fed to the
embedding layer. The output from the embedding layer was
fed to one or more convolutional layers to extract feature vec-
tors. The feature vectors were passed to a multilayer percep-
tron (MLP) network for classification. The proposed model
achieved higher detection performance with small datasets
than other state-of-the-art models. Whereas, it achieved a
lower detection performance with large datasets.

Reference [19] used a recurrent neural network (RNN) DL
model to detect botnet behavior. The authors discussed the
ability of the RNN to evaluate network traffic behavior by
detecting botnet attacks by using LSTM. The behavior of
connections between devices was used by the LSTM detec-
tion model to detect botnets. Two different datasets were
used for training and testing the detection model, and another
unseen dataset was utilized to evaluate the performance of
LSTM with different connection states. LSTM was capable
of detecting different botnet behavior. Another research [5],
[20] conducted attack detection on fog-to-things using an
LSTM-based deep network. The authors introduced a dis-
tributed approach using fog nodes, each of which received
initialization and update parameters from the coordinating
node. Each fog node trained the LSTM model on the basis
of the parameters received from the coordinating node then
sent the weights and bias values back to the coordinating
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node. Subsequently, the aggregated parameters were calcu-
lated and returned to the fog nodes. The proposed model
proved that DL models outperform traditional ML models.
The authors demonstrated that distributed attack detection is
more efficient and scalable than a centralized approach. Deep
autoencoders, which is unsupervised DL model that has
been used by some researchers to build feature learning for
detection models. The authors in [12] used autoencoders for
unsupervised feature learning to detect network-based mal-
ware. Autoencoders were fed by the features acquired from
cybersecurity phenomena. Latent features generated from
autoencoders enhanced the DR of different classifiers, such
as Gaussian Naive Bayes, SVM, and Xgboost. Some studies
have combined different DL models to provide an ensemble
learning method for learning and detection enhancement.
A distributed attack detection scheme has been proposed in
[21]. It used extreme learning machine (ELM) classifier to
classify network traffic at the edge computing layer. Fur-
thermore, it moved all extensive resources operations such
as model training and construction to the cloud layer using
HPC cluster. The proposed scheme carried out model training
used anonymized data collected from edge layer devices.
Then, the training model used by classifiers on edge servers.
The experiments demonstrated that the proposed scheme
achieved high accuracy in scanning, communication, and
infected hosts scenarios with 99%, 74%, and 95% respec-
tively. A malware detection method using CNN and LSTM
was presented in [22]. The proposed method converted the
opcode sequence of a malware file into grayscale images, and
CNN and LSTM learned from these images. This method out-
performed other ML methods, such as SVM, RF and, linear
k-nearest neighbor (KNN). All mentioned related works are
summarized in Table 1.

IlIl. FOG COMPUTING ARCHITECTURE AND ITS ROLE IN
loT

In typical IoT architecture, smart gateway devices are used
to route data from the edge layer to upper layers (e.g., fog
and cloud). Data analysis requires considerable time and
experiences some delays because the cloud is so far from the
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FIGURE 1. Fog computing architecture for loT systems.

edge layer [23]. Thus, this process is unsuitable for sensitive
data that require a fast response. Fog computing is intro-
duced to tackle these challenges by extending the cloud to
be close to the data sources. Fog computing was proposed
by CISCO in 2012 to solve the challenges of cloud com-
puting [24]. Fig.1 shows the architecture of fog computing
in IoT systems, which is divided into three layers, namely,
edge, fog, and cloud layers. The edge layer combines bil-
lions of heterogeneous IoT devices such as sensors, vehicles,
security cameras, smart wearable devices, smart machines
and smart home appliances. This layer generates large data
size from different places and applications. The fog layer
is the intermediate layer between the edge and cloud layer.
The fog layer is divided into many connected domains, and
each domain contains virtualized fog servers, routers, simple
data centers, applications, and services. The upper layer is
the cloud layer, which is the core layer comprising high-
performance servers and storage devices. The deployment of
DL on fog nodes is useful for IoT, in several ways, including
the following: sensitive data analysis close to IoT devices
that generate data, the latency between data sources and data
analysis devices can be reduced, network bandwidth can be
minimized, the data to be sent to the cloud and the data to
be processed on fog nodes can be processed, and mobility
services can be supported [25]. Authors in [26], proposed a
fog vehicle computing (FVC), which is a fog model that uses
the available unused resources of vehicles to create temporary
fog computing resources for data processing. The proposed
model used a pool of parking vehicles at a shopping mall
for computing power. The authors explained the allocation
of appropriate computation and storage resources through a
policy management layer. Moreover, a decision-making pro-
cess was introduced to perform the required services on the
available resources. Cisco, IDC FutureScape state that 40%
of the data generated by IoT devices are analyzed on devices
near the IoT devices [27]. Fog nodes have been widely used
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FIGURE 2. Proposed framework stages for attack detection in loT
networks.

in several technologies, such as 5G and many fog-to-things
applications, because of the increasing computational and
communication capabilities of their hardware [28].

Today, security approaches can be implemented near
the edge layer using distributed fog nodes to analyze net-
work traffic and rapidly detect attacks. In the current work,
we present a DL-based distributed attack detection frame-
work for IoT with low latency, geographical distributability,
scalability, and high-speed response, by using the advantages
of fog computing.

IV. PROPOSED ATTACK DETECTION FRAMEWORK
Gartner, Inc. expected that 5.8 billion IoT devices will be in
use by 2020 [29]. These numerous IoT devices located at dif-
ferent geographical areas generate massive amounts of data
that require rapid analysis to detect attacks. Thus, centralized
attack detection unsuitable for IoT security monitoring. The
proposed framework based on LSTM DL model implemented
on distributed fog nodes, and is controlled and updated via the
service located in the cloud computing layer. The proposed
framework consists of four main stages, namely, DL model
training and testing, framework deployment, traffic analy-
sis and attack detection, and performance monitoring and
updating. The stages of the proposed framework are shown
in Fig. 2.

1) DL MODEL TRAINING AND TESTING

The selection of an appropriate DL model plays a key role
in the proposed framework’s detection accuracy and effi-
ciency. The DL model should be as good as the data used
to train it. This stage aims to determine the best DL model
and train it with IoT data in cloud layer to enhance the
performance of the selected DL model in detecting various
attacks. To determine the best DL model that fulfills the
requirements of the proposed framework, we conduct sev-
eral experiments using six different supervised DL models
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with five different datasets, as discussed in details in section
V. The LSTM DL model achieves the highest DR as well
as small FAR. As we mentioned before, all IoT packets
exchanged between IoT devices or routed to upper layers
(fog layer and cloud layer) go through smart IoT gateway.
A tcpdump is a network sniffer and packet analyzer tool used
to capture packets that received or sent over the network in the
edge layer. The tcpdump tool run on the smart IoT gateway
to collect raw network traffic (packets) from IoT network in
Pcap file format. A network traffic flow analyzer tool called
“CICFLOWMETER” used to convert the raw network traffic
to CSV format with more than 80 network traffic features
[30]. CICFLOWMETER offers more flexibility in terms of
choosing the features you want to calculate.

This stage is composed of several steps, the first of which
involves training the LSTM model with the available IoT
datasets in the CSV file format that collected from the pre-
vious step. The training of LSTM model is carried out in the
cloud layer to make it goes faster. We use Amazon Elastic
Compute Cloud (Amazon EC2) virtual server instance on
which we can run Keras for learning and testing LSTM
model. Amazon built the DL Amazon Machine Image (AMI)
AmazonLinux-2.0 for DL on EC2 instances with popular DL
framework and also contains the anaconda platform. Amazon
Web Services DL AMI are built to build, train and debug
DL models in EC2 with popular frameworks such as Keras,
TensorFlow, PyTorch and more. We can copy the CSV file
collected at the edge layer by smart [oT gateways to the AWS
instance using scp command by using the keypair and the Ip
address of the AWS EC2 instance as follows : scp -i keras-
aws-keypair.pem -r src ec2-user @54.180.78.7:/

Then, we run the LSTM model for model training and
testing. We use the sigmoid activation function in binary
class classification and softmax in multi-class classification.
The LSTM network used in the proposed framework has
one input layer with 128 cells and one output layer with
(m) cells based on the number of classes and has three
hidden layers with (256) cells each. We use an adaptive
learning rate method called “Adam”™ as an optimizer that
computes individual learning rates for different parameters
and achieves good results fast. It combines the advantages
of Adaptive Gradient Algorithm (AdaGrad) and Root Mean
Square Propagation (RMSProp). Then, the hyperparameters,
which affect the performance of the DL model, are tuned.
Hyperparameters values such as epoch number, learning rate,
and patch size are set before start model training. We use
many values for the DL model’s hyperparameters to achieve
the best performance. After training, the performance of the
trained LSTM model is evaluated on unseen data based on
evaluation metrics discussed in section VI. Thus, we use
different training and testing datasets using train and test split
method. We split the datasets into two parts, namely, training
and testing parts. The size of the training dataset is 70% of the
entire dataset size, and the remaining 30% is used for testing.
If the evaluation result is not good, the hyperparameters are
tuned, or the LSTM model becomes deeper until the best
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performance is achieved. Our experiments conclude that,
LSTM has the highest performance that outperform all other
DL model in terms of DR, FAR, accuracy, recall, F1-Measure
and precision.

2) FRAMEWORK DEPLOYMENT
The second stage of the proposed framework involves imple-
menting the framework in fog nodes. Fig. 3, shows the
architecture of the proposed framework, which comprises
the cloud, fog, and edge layers. The edge layer contains bil-
lions of IoT devices with limited resources, such as sensors,
actuators and security cameras. These devices generate huge
volumes of unstructured data that are difficult to analyze
it at the edge layer. The edge layer includes smart homes,
oil rigs, smart power grids, smart cars, and planes. All data
generated from edge layer devices are routed to the fog layer,
enterprise data center and cloud via a smart IoT gateway.
The second layer is the fog layer that contains thousands of
servers, routers, and controllers owned by an Internet service
provider. These devices are more powerful than edge devices.
Fog devices can run processes that require high memory,
computational power, storage, and energy. Furthermore, fog
nodes are distributed at different geographical areas that exist
at service provider (SP) networks and near to the edge layer
than to the cloud layer. It has multiple interfaces and services
to communicate with different protocols and applications.
Distributed data analytics at the fog layer allows data process-
ing before transmitting them into the cloud. Moreover, it min-
imizes bandwidth, reduces latency, and rapidly response to
critical actions that make the system resilient. The top layer
is the cloud layer that delivers computing services over the
internet and provides flexible, reliable, and scalable resources
to cloud users. Cloud computing allows data transfer, stor-
age, and analysis through the internet. IoT experiences high
latency during data transfer or data analysis in the cloud,
especially on real-time applications, such as smart vehicles.
To implement the proposed framework in IoT networks,
we assume that a clustering algorithm such as in [31] is
used to group fog nodes into clusters as shown in Fig. 3,
the fog layer is divided into N clusters. This clustering
algorithm designed for the distributed discovery of clus-
ters of wireless nodes based on physical network topology
features. This clustering algorithm work without need any
information about the expected number of clusters and it
assumes a zero or low mobility for participating nodes that
make it appropriate for our framework. It identifies clus-
ters based on some parameters such as the density of the
network graph, the preferential attachment, and the interac-
tions among nodes. Clustering fog nodes applied to balance
network load, increase network scalability and secure the
exchanged traffic between clusters and cloud. One cluster
can handle, process and analyze data from different IoT edge
networks; for instance, clusterl in Fig. 3 analyzes data from
a wireless sensor network and smart home network. Every
cluster has cluster members, one Cluster Head (CH) and one
backup cluster head (BCH) that elected by cluster members.
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CHs are responsible for process incoming and outgoing traf-
fic that are generated to or from their cluster members. More-
over, CHs are the links between the cloud service and clusters
members. All the attack detection updates from cloud service
propagated to cluster members via CHs as shown in Fig. 3 by
black arrows come from the cloud layer to CH and from CH to
cluster members. All data exchanged between CHs and cloud
service encrypted using Triple Data Encryption Standard
(3DES). We assume that the paths between smart IoT gateway
devices and fog nodes are secured which encrypt data before
transmission. In case of CH failure, BCH becomes the CH
and a cluster member becomes BCH. Smart gateways work as
sink nodes, they collect the traffic exchanged in the network
and forward it to the nearest fog node. Fog nodes receive
network traffic forwarded from several IoT smart gateways
and store it in different files. A service in the backgroup on
fog nodes work to read and process data from the files. The
data processing is extracting the features of each packet in
the network traffic, then feed them to the LSTM classifier to
detect attacks.

3) TRAFFIC ANALYSIS AND ATTACK DETECTION

After implementing the attack detection on the fog nodes in
all clusters, it starts to receive network traffic routed from IoT
smart gateway devices from different networks. The proposed
attack detection handles raw network data, classifies traffic
into two classes (normal or attack), and recognizes the type
of attack on the basis of the dataset used in the training stage.
Every cluster member saves the ID of its head node, and
the CH knows the number of cluster members that form its
cluster and their IDs. In the case of attack detection at any fog
cluster member, by using the ID of the head node, complete
information about the detected attack (attack type, attack
source, protocol, duration, etc...) is propagated from cluster
members to the CH that work as information aggregator, then
it is propagated from the CH to the cloud service as shown
in figure 3 by red arrows. The information goes from cluster
members to CHs and then to the cloud service. The cloud
service raises an alarm and logs all the information from
CHs to be used by a network administrator in evaluating and
updating the performance of the attack detection and taking
the appropriate decisions.

4) PERFORMANCE MONITORING AND UPDATING

The DL model ability to detect attacks diminished over
time. So, the performance of the attack detection is tested and
updated to verify the capability of the detection engine or the
DL model. We measured the capability of the DL model
on the basis of two parameters, namely, the DR and FAR.
At different times in the month, new data is collected from the
edge layer devices and uploaded to the Amazon EC2 server
after converting it to CSV file format using CICFLOWME-
TER tool as mentioned in section IV-.1. The collected data
may have a huge volume of data, we can select samples
of the collected data to test the performance of the running
DL model. The evaluation metrics such as DR, and FAR are
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Algorithm 1 Performance Monitoring and Updating
1: Input: Detection Rate (DR) and False Alarm Rate (FAR)
values.
2: Output: Replace or keep current DL model.
3: Collect new data from edge layer devices as discussed in
section I'V-.1.
4: Test the performance of current attack detection every
month.
5: Evaluate the current detection model with samples of new
data.
6: if (DR_Test < DR_Train) or (FAR_Test > FAR_Train)
then
7:  Performance degraded
8:  Train current model with new data or combine new and
old data.
9:  Hyper-parameters tuning.
10:  Evaluate the performance of current model with new
data.
11:  Deploy updated and current model and monitor them
in parallel.
12:  if Updated model outperform current model then

13: Replace current model with updated model

14:  else

15: Keep current model

16:  end if

17: else

18:  if Performance Improved then

19: Investigate changes in new data

20:  else

21: Go to step 8

22:  end if

23: else

24:  Keep monitoring current attack detection perfor-
mance.

25: end if

calculated in the testing process using samples of the newly
collected data. We compare the evaluation metrics values in
the testing process with values in the training phase (phase 1).
The evaluation metrics show whether the performance of the
detection model degrades, improves or becomes stable. If the
DR value in the testing process (DR_Test)is less than the DR
value in the training stage (DR_Train), or the FAR in the
testing process (FAR_Test) is greater than FAR value in the
training process (FAR_Train), the performance of the model
degraded. If DR and FAR values not changed, the system
is stable. For degrading or stable performance, we train the
model using new data and tune hyper-parameters to increase
the model detection capability. Two methods are used for
the new data during model update. The model is trained by
using only new data or by combining samples of the new
with old training data. Finally, the updated model is evaluated,
and the current model is replaced with the updated model.
‘We monitor the updated and current model at appropriate time
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FIGURE 3. Architecture of the proposed Fog-based attack detection framework.

intervals. Doing so enables us to completely update the attack
detection on all fog nodes or maintain the function of the
existing model. Algorithm 1 shows the steps in monitoring
and updating the performance of the proposed attack detec-
tion.

V. OVERVIEW OF DL MODELS AND DATASETS USED IN
THE EXPERIMENTS

DL is a subset of ML, and DL is biologically inspired by
the human brain and neurons [18]. DL consists of super-
vised learning (discriminative learning), unsupervised learn-
ing (generative learning), and hybrid learning. In this section,
we introduce an overview of different discriminative learning
models used in the experiments. Artificial neural networks
(ANNSs) are divided into three classes, namely, MLP, CNN
and RNN. These classes have flexible architectures and have
proven their success in various problems. We use LSTM, bidi-
rectional LSTM (BiLSTM), and gated recurrent unit (GRU)
as the representative of RNNs. We select DNN as the rep-
resentative of MLPs. CNN-LSTM is selected to represent
hybrid network models.
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A. RNN

RNN is a supervised DL model that is designed to handle
the sequential data of some applications, such as speech
recognition, machine translation, music generation, and sen-
timent analysis. RNN used to detect botnet behavior in [19]
and proposed to build an intelligent network attack detec-
tion method in [32] which outperformed SVM. RNN can
be considered a group of cells in which each cell performs
the same operation on every element in the sequence. In the
architecture of unrolled RNN, each cell has input X and
output Y and three weight matrices, namely, U, W, and V
for the inputs, hidden states, and outputs respectively. U, W
and V matrices have the same values in all time steps for
different inputs. Thus, the total number of variables is reduced
and RNN performs faster than other DL models. We denote
the input sequence as X = (xp, X1, X2, ..., X;), the hidden
vector as H = (hg, h1, ha, ..., hy), and the output sequence
as Y = (yo,¥1,Y2, --.,yn)- The output sequence values are
calculated as follows:

hy = o(Ux; + Why 1 + by) (D
yr = Vi + by )
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where ¢ is a nonlinearity activation function, x; is the input
value at time t, s;_; is the hidden state of (t-1), and b;, and
by are the bias values. RNN uses backpropagation through
time to calculate the weights of RNN to minimize the error in
the network output compared to expected output. RNN suf-
fers from drawbacks; for example, it cannot memorize long
sequences and it is prone to vanishing and exploding gradient
problems [33]. Furthermore, it only uses the information that
is earlier in the sequence to make a prediction but not use
information later in the sequence. Thus, RNN variants such
as GRU and LSTM, have been proposed to overcome these
problems.

B. LSTM

LSTM is a variant of RNN that designed to deal with vanish-
ing and exploding gradient problems. LSTM was introduced
by Hochreiter and Schmidhuber in 1997 [34]. LSTM can
learn from long dependencies. The LSTM cell has three gates,
namely, forget, input, and output gates that control and protect
cell states. The Input gate, forget gate, output gate and state
of the memory cell are calculated as follows:

ir = o(Wihy—1 + Wix; + by) 3
St = o(Wrh—1 + Wrx; + by) 4
or = o(WoX; + Woli—1 + bo) 5
h; = o, tanh(c;) 6)
¢t = frer—1 + i tanh(Wexy + Wehy—q) @)

where i, f;, 0, ¢; are input, forget, output gates, and cell state
respectively. o is the sigmoid function, b is the bias, x; is the
value of input layer at time t, /4, is the hidden state of the cell at
time t and W is the weight values. Stochastic gradient descent
(SGD) is an optimization method that commonly used in
DL to get the minimum loss function that used to update
the weights of the neural network through backpropagation
using learning rate . SGD updates the current weight w using
gradient d(L)/d(W) multiplied by «

a(L)
a(wy)

Authors in [9] used LSTM to detect and classify permission-
based android malware which achieved the highest accuracy
using real-world Android malware test dataset. In our pro-
posed framework, we use LSTM in attack detection. The per-
formance of the LSTM model discussed in details in section
VL

®

Wil =Wy —

C. BiLSTM

Bidirectional LSTM proposed in [35] to extract spatial fea-
tures and bidirectional temporal dependencies from historical
data. BILSTM is developed for speech recognition, handwrit-
ten recognition, and protein structure prediction. It obtains the
best benefits from an input sequence on the basis of previous
and future sequences. It duplicates the first recurrent layer in
the network and places them together. The input sequence fed
to the first layer as it is and a reverse copy of the input is fed
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to the second layer. The first and second recurrent layers are
connected to the same output layer.

D. GRU

In 2014, Cho presented GRU based on the LSTM network
model with few parameters [36]. GRU used in polyphonic
music modeling, speech signal modeling, and handwriting
recognition. GRU has a simpler structure and fewer cell com-
ponents than LSTM. It resists the vanishing gradient problem
and trains faster because of its small number of computations.
GRU has two gates, namely, update (z) and reset gates (r). The
update gate and reset gate are calculated as follows:

7z = o(Wehi—1 + Wex + b2) 9
rr = o(Wrhy— + Wix; + brr) (10)
¢y = tanh(Wyx; + Wy(hy—1 O ry) + bh) (11)
h =EZ®c)® (1 -2 &h-1) (12)

where z;, ¢, ¢; and h; are update, reset, cell state and hidden
state of the cell. x; represents the input at time t, W rep-
resents the weight values, and b represents the bias values.
GRU outperforms LSTM in some cases, especially on small
datasets [37]. However, LSTM or GRU can’t be used for
specific tasks. GRU is faster than LSTM in training and can
generalize using few data. LSTM requires voluminous data
during training and consumes more time than GRU, but it
provides better performance in large-scale tasks. GRU used
to detect attacks in automated process control systems in [38].

E. CNN

CNNs have shown remarkable performance in object recog-
nition in images [39]. Convolutional, pooling and fully con-
nected layers are stacked with each other to create the CNN
architecture. The first layer in CNN is the convolutional layer,
which uses multiple equal size filters to convolute input data
parameters. If we have a two-dimensional image, I, and a
two-dimensional smoothing kernel, K, the convoluted image
would be calculated as follows:

SG.j) =YY Im,mK(Gi—m.J—n) (13)
m n

The pooling layer conducts down sampling for the representa-
tion of spatial dimensions (width, height) through max pool-
ing or average pooling operations and reduce the number of
parameters and therefore, overfitting. CNN uses “‘dropout™
to reduce overfitting. CNN achieves high performance in
learning from raw data but require a high volume of train-
ing data. CNNs require high computational resources during
network training because they perform huge computations.
Thus, the implementation of CNNs on devices with limited
resources (sensors, smart devices) is challenging. As men-
tioned in the related work section, CNN used in [22] to detect
malware by converting the opcode to grayscale images.

F. CNN-LSTM
CNN-LSTM is a hybrid DL model designed for visual
time series predictions and textual generation from images
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sequences, such as activity recognition and video descrip-
tion. The CNN-LSTM architecture combines CNN layers
for feature extraction from inputs and LSTM layers for time
sequence prediction. CNN-LSTM has achieved improve-
ments in speech recognition on DNN. It used in visual recog-
nition and description in [40].

G. DATASETS DESCRIPTIONS

Most researchers have used the KDDCUP99 dataset for
training and evaluating their proposed models. We use five
datasets to train and evaluate six supervised DL models
in binary and multi-class classifications. We use two new
IoT datasets (RPL-NIDS-2017 and N_BaloT-2018) to detect
IoT attacks and other datasets (UNSW-NB-2015, CICIDS-
2017 and NSL-KDD) to detect conventional attacks. The
datasets have been chosen based on the novelty and diversity
of attack they have. We select them to prove that the proposed
framework able to detect conventional attacks like U2R, R2L,
FTP, Worms, Port Scan, etc. besides the IoT attacks. Further-
more, we need to prove that the adoption of DL in attack
detection in IoT is a successful idea and powerful tool.

The first data set is UNSW-NB15 for IDSs [41]. This
dataset created at the Cyber Range Lab of the Australian
Cyber Security Center. It has nine attack categories, namely,
fuzzers, analysis, backdoor, DoS, exploits, generic, recon-
naissance, shellcode and worms. The dataset is expressed in
CSV format and contains a total of 47 features (state, dura-
tion, protocol, service, etc.). We use the dataset file named
(UNSW-NB15-1.csv) because DL models require a large
volume of data for training. This dataset has 700,000 records,
and we split the dataset into 490,000 samples for training
and 210,000 samples for validation. The dataset has the
following distribution: 677,763 normal traffic, 7,522 generic
packets, 5,409 exploits, 5,050 fuzzers, 1,759 reconnaissance,
1,167 DoS, 533 backdoor, 526 analysis, 223 shellcode and
48 worms. All categorical features are encoded into discrete
features, and the entire data set is normalized using scikit-
learn by rescaling each row to have a length of 1. In our
experiment, we train the model for binary and multi-class
classifications. For binary classification, we use the dataset
in two classes (normal and attack). For multi-class classi-
fication, we use the dataset in ten classes (normal, fuzzers,
analysis, backdoor, doS, exploits, generic, reconnaissance,
shellcode, and worms).

The second dataset is CICIDS-2017 for ID evaluation
[42]. This dataset was created at the Canadian Institute for
Cybersecurity (CIC), University of New Brunswick, Canada.
The dataset contains benign and up-to-date common attacks
such as Web-based, brute force, DoS, DDoS, infiltration,
heart-bleed, bot and scan attacks. CICFlowMeter is used
for network traffic analysis to generate the CSV files from
PCAP traffic files. The CICFlowMeter is a software that
available to public on the website of CIC. The CSV files
contain 80 network traffic features and labels. The dataset
is built on the basis of abstract behavior of 25 users with
different protocols, such as the HTTP, FTP, SSH, and email
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protocols. To train the DL models, we combine four CSV
files containing normal traffic, DDoS, portscan, web, SSH,
and FTP attacks. The combined dataset has 745,423 records
(packets), and we split the dataset into 521,796 samples for
training and 223,627 samples for validation. The dataset has
the following distribution: 459,199 normal, 123,534 DDoS,
147,329 portscan, 7,935 FTP-Patator, 5,897 SSH-Patator,
1,507 web attack-brute force, and 22 web attack-SQL-
injection. In the experiment, we train the model for binary and
multi-class classifications. For binary classification, we use
the dataset in two classes (normal vs attack). For multi-class
classification, we use the dataset in seven classes (normal,
DDoS, FTP-patator, SSH-patator, web attack-brute force,
exploits and web attack-SQL-injection).

The third dataset is RPL-NIDS17 for IDS in RPL-
based 6LoWPAN networks [43]. This dataset is devel-
oped by collecting traces after simulating different rout-
ing attacks against RPL routing protocol. The dataset has
21 features such as control_packet_type, source_id, des-
tination_id, app_layer_arrival_time and so on, as well as
1 label. The dataset is created with and without feature
encoding, and we use the dataset with feature encod-
ing for training and testing. For binary classification,
the training dataset has 116,679 records of normal traf-
fic and 33,337 records of attacks. The testing dataset has
59,560 records of normal traffic and 16,971 records of
attacks. For multi-class classification, the dataset has seven
classes of attacks (clone-ID, hello flooding, local repair,
selective forwarding, sinkhole, sinkhole and blackhole, and
sybil) and normal records. The training dataset is dis-
tributed as follows: 116,679 normal, 4,405 clone ID attack,
4,822 hello flooding, 4,822 local repair, 4,822 selective for-
warding, 4,822 sinkhole, 4,822 sinkhole and blackhole, and
4,822 sybil. The testing dataset is distributed as follows:
59,560 normal, 2,225 clone ID attack, 2,408 hello flooding,
2,450 local repair, 2,424 selective forwarding, 2,495 sinkhole,
2,485 sinkhole and blackhole, and 2,484 of sybil.

The fourth dataset is the N_BaloT dataset developed for
detecting IoT botnet attacks using anomaly detection tech-
niques [44]. The dataset contains real traffic collected from
nine commercial IoT devices including Danmini doorbell,
Ecobee thermostat, and Provision PT-737E security cam-
era. The authors compromised the IoT devices used in their
testbed using Mirai and BASHLITE botnet attacks. The
dataset contains five attacks of BASHLITE (scan, junk, UDP,
TCP, and COMBO) and five attacks of Mirai (scan, Ack, Syn,
UDP, UDPplain). To prove that the proposed framework can
efficiently detect multiple attacks in several datasets espe-
cially in IoT datasets, we evaluate our proposed approach
with five attacks of Mirai on a Danmini doorbell. The dataset
is expressed in CSV format and has 115 numerical features.
The dataset is distributed as follows: 49,548 normal traffic,
102,194 Ack, 107,685 scan, 122,573 syn, 237,665 UDP, and
81,982 UDPplain attacks. The N_BaloT dataset is used for
binary and multi-class classification. For binary classifica-
tion, we use the dataset in two classes (normal vs attack) with
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49,548 records for normal traffic and 652,099 for attacks. For
multi-class classification, we use the dataset in six classes
(normal, scan, Ack, Syn, UDP, UDPplain).

The fifth dataset is the NSL-KDD dataset, which is a
refined version of the KDD CUP 99 dataset [45]. The NSL-
KDD dataset is widely used in research to evaluate dif-
ferent IDSs. Although, the NSL-KDD dataset has inherent
disadvantages, we use it to compare our proposed attack
detection framework with state-of-the-art IDSs. The NSL-
KDD dataset is available in multiple formats, such as TXT
and ARFF formats for training and testing files. We used
the CSV file format for training and testing datasets. Each
record in the dataset has 41 attributes, including duration,
protocol_type, service, flag, src_bytes, and dst_bytes. The
dataset has five categories, namely, DoS, user to root (U2R),
remote to local (R2L), probe attacks, and normal category.
The 42nd column in the dataset contains the data about the
five classes categorized as normal or one of the classes of
four attacks. The dataset has 125,973 records for training and
22,544 records for testing. The training dataset is distributed
as follows: 67,343 normal traffic, 45,927 DoS, 11,656 probe,
995 R2I and 52 U2R. The testing dataset is distributed as
follows: 9,711 normal, 7,458 DoS, 2,754 probe, 2,421 R2L,
and 200 U2R. In our experiment, we train the model for
binary and multi-class classifications. For binary classifica-
tion, we use the dataset in two classes (normal and attack). For
multi-class classification, we use the dataset in five classes
(normal, DoS, probe, U2R and R2L).

VI. EXPERIMENTS AND RESULT EVALUATION

All DL models used in our experiments are implemented
using Keras on TensorFlow. Keras is a high-level API
for building and training DL models. All the experiments
are conducted on a personal computer with Intel Core i5-
7400 CPU @ 3.00 GHz, 8 GB memory, and CPU-enabled
TensorFlow on 64-bit Windows 10. We implement several
types of supervised DL models such as GRU, LSTM, CNN,
CNN-LSTM, and DNN. All these models can extract deep
features from the raw data fed to them. The features extracted
by the DL models are compared with the test features in
the detection phase. To prove the efficiency of the proposed
fog-based attack detection framework in terms of response
time, we calculate the response time of the proposed attack
detection in fog-based and cloud-based. We calculate DR and
FAR as evaluation metrics for evaluating the DL. models. Fur-
thermore, precision, recall, F1-Measure and detection time
have been used for performance evaluation and comparison.
DR refers to the proportion of the total number of correct
classifications. FAR refers to the proportion of normal events
incorrectly classified as malicious. Accuracy is the percent-
age of correctly classified samples over the total number of
samples. Precision is the ratio of correctly predicted posi-
tive observations to the total predicted positive observations.
Recall calculates the number of positive samples classified
as positives. Fl-score is the weighted average of precision
and recall. Detection time is the time for classifying one
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packet as normal or an attack. The DL model can be trained
offline at a cloud server using GPU to accelerate the training,
although the training time is not important. In our experi-
ment, we calculate the average detection time by running the
detection 100 times and calculating the average time. The
following equations shows the mathematical representation
of the evaluation metrics.

TP+ TN

ACC = )

TP+ TN + FP + FN

FP TP

FAR= ——— DR= ———

FP+ TN TP + FN
.. TP

Precision = ——, Recall = ——,
TP + FP TP + FN

Precision % Recall
F1 — Measure = 2 %

Precision + Recall

To get the best-trained models in binary classification,
weuse 0.1,0.01 and 0.001 for learning rate, 32, 64 and 128 for
batch size, 100 for epoch number, and Adam optimization
algorithm for all DL models. We got the best results using
0.01 for learning rate, 64 for batch size, and Adam as an opti-
mization algorithm. DNN has an input layer with 1024 cells,
and five hidden layers with 512 cells each using ReLU acti-
vation function, and one output layer with one cell using
sigmoid activation function. LSTM has an input layer with
128 cells, and three hidden layers with 256 cells each, and one
output layer with one cell using sigmoid activation function.
Bi-LSTM has an input layer with 128 cells, and three hidden
layers with 128 cells each, and one output layer with one cell
using sigmoid activation function. GRU has an input layer
with 64 cells, and three hidden layers with 64 cells each,
and one output layer with one cell using sigmoid activation
function. CNN has three convolutional layers with 64 filters
each using ReLU activation function, three pooling layers,
and one output layer with one cell using sigmoid activation
function. CNN-LSTM has three convolutional layers with
64 filters each using ReL.U activation function, three pooling
layers, one LSTM layer with 256 cells, and one output layer
with one cell using sigmoid activation function. In multi-class
classification, the DL models have the same configuration
in binary classification but the output layer has number of
cells equal to the number of classes, and softmax activation
function used instead of the sigmoid. We use dropout to
prevent overfitting.

We train and evaluate every DL model for binary and
multi-class classifications with five datasets. Each dataset
comprises different attacks with different patterns and is
used to evaluate the capability of DL models of detect-
ing different patterns from raw data. The DL model with
the best performance across all datasets is then identified.
Table 2 shows the evaluation metric values for all DL mod-
els and their performance in binary classification. For the
UNSW-NBI15 dataset, LSTM achieves the highest accu-
racy (99.96%), DR (99.97%), precision (99.98%), recall
(99.97%), and F1-Measure (99.98%). The performance of Bi-
LSTM is close to that of LSTM, whereas the CNN-LSTM
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FIGURE 4. LSTM performance with UNSW-NB15 dataset in binary
classification a) accuracy performance b) loss performance.
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FIGURE 5. LSTM performance with UNSW-NB15 dataset in multi-class
classificationa) a) accuracy performance b) loss performance.

achieves the lowest FAR and accuracy. The Bi-LSTM out-
performs the GRU, CNN, and CNN-LSTM models. For
the CICIDS-2017 dataset, the LSTM model achieves the
highest accuracy (99.37%), precision (99.28%), F1-Measure
(99.49%), and FAR (1.15%), among all the models, and the
DNN model achieves the lowest performance. The Bi-LSTM
model ranks second after the LSTM model and outperforms
DNN, GRU, CNN, and CNN-LSTM. For the RPLNIDS-
2017 dataset, LSTM is superior to all other DL models in
terms of accuracy (98.15%), DR (99.07%), recall (99.07%),
and F1-Measure (99.12%), whereas the CNN model achieves
the lowest FAR (11.38%) and highest precision (99.2%).
CNN-LSTM achieves the lowest performance and least accu-
racy, precision, and F1-Measure. N_BaloT evaluation results
show that LSTM is the best in terms of (99.81%), and lowest
FAR (0.1), and highest accuracy (99.85%). Whilst, DNN
provides the lowest performance. LSTM achieves detection
accuracy (99.34%), and FAR (0.1) in the NSL-KDD dataset.
LSTM is superior and outperforms all other DL models used
in the experiments for binary classifications using the five
datasets. GRU consumes less detection time than LSTM
because it has fewer parameters and computations but LSTM
outperform GRU in DR, FAR and detection accuracy.

Fig.4 and 5 show the performance of LSTM for the
UNSWNBIS5 dataset in the training and validation phases in
terms of accuracy and loss values. For binary classification,
Fig.4 (a) shows the increase in the training and validation
accuracy with the increase of epochs to reach the best accu-
racy after 100 epochs with a 64 batch size. Fig.4 (b) shows
the decrease in training and validation losses that converged
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FIGURE 7. Performance comparison between LSTM and modified ML
models proposed in [46] on UNSW-NB15 dataset.

after 100 epochs with a 64 batch size. For multi-class classi-
fication, Fig.5 (a, b) show the accuracy and loss performance
of LSTM with UNSW-NB15. Its accuracy reaches its maxi-
mum (98.82%) at 50 epochs, and its loss values to reach its
minimum (0.0288) at 50 epochs.

For multi-class classification, every dataset has different
numbers and types of attacks. For example, the CICIDS-
2017 dataset has seven traffic categories with one normal cat-
egory and six categories of attacks, and UNSW-NB 15 has ten
traffic categories one normal and nine categories of attacks.
An imbalance of classes that is reflected on the perfor-
mance of different DL models. Considering space limitation,
we present the performance metrics of one dataset (CICIDS-
2017) in detail for multi-class classification. Table 3 shows
the values of precision, recall, and F1-Measure for every
DL model used in the experiments. LSTM is superior to
the other DL models in terms of overall performance for all
classes. Fig.6 shows the accuracies of the DL models with
five datasets in multi-class classification and it illustrates that
LSTM is superior to all other DL models.

Fig.7 illustrates the comparison of the LSTM DL model
and modified ML models proposed in [46] for the UNSW-
NB15 dataset. The proposed ML algorithms are deep feature
embedding learning with gradient boosting tree, KNN, DT,
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TABLE 2. Evaluation metrics of DL models with the five datasets in binary classification.

DataSet Name DL Model Accuracy (%) | Precision (%) | Recall (%) | F1-Measure (%) | FAR (%) | DR (%) | Time (msec)
DNN 99.67 99.79 99.87 99.83 6.23 99.87 0.1240
LSTM 99.96 99.96 99.97 99.98 4.02 99.97 0.2364
UNSW-NB15 Bi-LSTM 99.67 99.82 99.83 99.83 5.35 99.83 0.8245
Dataset GRU 99.58 99.79 99.77 99.78 6.21 99.77 0.1250
CNN 99.66 99.86 99.78 99.82 4.24 99.78 0.3212
CNN-LSTM 98.95 99.96 98.97 99.46 1.20 98.97 0.4866
DNN 98.95 98.57 99.73 99.15 2.29 99.73 0.1064
LSTM 99.37 99.28 99.67 99.49 1.15 99.67 0.0954
CICIDS-2017 Bi-LSTM 99.35 99.22 99.77 99.48 1.25 99.77 0.4110
Dataset GRU 99.35 99.21 99.73 99.47 1.26 99.73 0.0487
CNN 99.08 98.61 99.92 99.26 2.25 99.92 0.2380
CNN-LSTM 98.88 98.41 99.8 99.1 2.57 99.8 0.5494
DNN 98.01 98.97 98.88 98.93 13.31 98.88 0.0857
LSTM 98.15 98.99 99.07 99.12 12.25 99.07 0.2746
RPLNIDS-2017 | Bi-LSTM 98.01 98.97 98.88 98.93 13.31 98.88 0.5915
Dataset GRU 98.01 98.97 98.88 98.92 13.08 98.88 0.1425
CNN 97.94 99.02 98.74 98.88 11.38 98.74 0.2965
CNN-LSTM 97.01 97.73 98.92 98.40 29.78 98.92 0.4924
DNN 98.9 91.88 92.43 92.15 0.6 92.43 0.1570
LSTM 99.85 98.64 99.81 99.12 0.1 99.81 0.1425
N_BaloT-2018 | Bi-LSTM 99.81 97.32 99.8 98.63 0.2 99.8 0.3198
Dataset GRU 99.57 96.36 98.28 97.31 0.31 98.28 0.1230
CNN 99.41 97.83 94.97 96.38 0.18 94.97 0.1834
CNN-LSTM 99.39 99.19 93.64 96.34 0.7 93.64 0.3394
DNN 98.24 98.96 98.63 98.29 10.2 98.63 0.1991
LSTM 99.34 99.18 99.59 99.39 0.1 99.59 0.2531
NSL-KDD Bi-LSTM 99.07 98.61 99.68 99.14 1.6 99.68 0.5510
Dataset GRU 98.85 98.56 99.31 98.93 1.6 99.31 0.1784
CNN 99.03 99.16 99.51 99.13 0.3 99.51 0.3942
CNN-LSTM 96.07 94.19 99.77 96.43 7.03 98.77 0.4986
TABLE 3. Performance of DL models with CICIDS-2017 dataset in multi-class classification.
Attacks DNN LSTM Bi-LSTM
P(%) | R(%) | FI-M (%) | P(%) | R(%) | F1-M (%) | P (%) | R (%) | F1-M (%)
Benign 98.41 99.71 99.06 99.48 | 99.15 99.31 99.04 | 99.24 99.14
DDoS 99.18 57.77 73.01 98.89 | 98.94 98.91 99.49 97.16 98.31
FTP-Patator 84.38 | 56.41 67.62 91.05 | 99.14 94.93 93.84 | 98.94 96.32
Port-Scan 47.66 | 74.78 58.21 99.42 | 99.91 99.66 99.21 99.97 99.59
SSH-Patator 39.31 29.27 33.56 100 70.68 82.82 93.73 | 79.03 85.75
Brute-Force 30.23 4.12 7.26 4474 | 84.65 58.54 44.81 85.77 58.86
SQL-Injection 0 0 0 11.11 2.56 4.28 0 0 0
GRU CNN CNN-LSTM
P(%) | R(%) | FI-M (%) | P(%) | R(%) | FI-M (%) | P (%) | R (%) | F1-M (%)
Benign 99.81 98.86 99.33 95.78 | 99.94 97.82 74.5 99.89 85.35
DDoS 99.06 | 98.94 99 99.96 | 98.68 99.32 99.77 98.93 99.35
FTP-Patator 89.13 | 99.79 94.16 99.76 | 84.58 91.54 96.42 49.2 65.16
Port-Scan 99.79 | 99.93 99.86 99.96 | 91.28 95.42 91 0.57 1.13
SSH-Patator 74.04 | 98.76 84.63 98.57 | 50.64 66.91 99.56 | 50.98 67.43
Brute-Force 43.8 84.65 57.73 26.14 3.16 5.64 0 0 0
SQL-Injection 0 0 0 0 0 0 0 0 0
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TABLE 4. Table-comparison.

Proposed Framework

Proposed attack detection in [5]

Architecture distributed distributed
DL model Training at cloud layer at fog layer
Layers used for implementintation | fog and cloud layers fog layer
Number of DL models used six DL models one DL model

Number of datasets used five datasets

one dataset

Detection Accuracy

99.85 % in binary classification
99.65% in multi-class classification

99.2 % in binary classification
98.27% in multiclass classification

Scalability scalable

limited scalability

®|Precision o Recall % F1-Measure

E 99.96
99,97
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FIGURE 8. Performance comparison between LSTM and ML algorithms
used in [42] on CICIDS-2017 dataset.

LG, NB and SVM. Fig.7 shows that LSTM is clearly better
than all ML algorithms in terms of accuracy, precision, and
recall. Fig.8 shows another comparison between LSTM and
the KNN, RF, ID3 and quadratic discriminant analysis (QDA)
for the CICIDS-2017 dataset used in [42]. The proposed
attack detection outperforms all ML algorithms in terms of
precision, recall, and F1-score.

The proposed attack detection is similar to the proposed
attack detection in [20] but with some differences. Table 4
illustrates the differences and similarities, of both attack
detection frameworks. The proposed attack detection is
trained at the cloud layer and implemented in the fog layer,
whereas the other attack detection is trained and run in the
fog layer. We use six DL models, whereas the other attack
detection uses only one DL model. We use five datasets
in training and testing the DL models, whereas the other
model use only one dataset. Our proposed attack detection
achieves high DR in binary and multi-class classification. Our
proposed framework is also more scalable than other attack
detection.

To compare the efficiency of the proposed fog-based attack
detection system in terms of response time, we implement
the proposed attack detection framework in fog-based and
cloud-based architecture as shown in Fig.9. We use Cooja
simulator [47] to simulate the wireless sensor network (WSN)

VOLUME 8, 2020

_ \(/ 7'\/*\ /,,,\(/*' S \/ﬂ\

Ve N \
A A
=

/
,>" Amazon Machine Imageon |
( EC2 Instance

>,

(
\ EC2 Instance \
AR
. S AL %

| EB
= o

" N/
Amazon Machine Imageon |

Cloud-based Architecture Fog-based Architecture

FIGURE 9. Experiment different scenarios.

mCloud-based = Fog-based

s
i
i

AVERAG E LATENCY (MSEC)

1 3 5 B8 10
NETWORK BANDWIDTH (MB/S)

FIGURE 10. Average response time for fog-based and cloud-based
detection.

motes to represent the IoT edge layer and use CONTIKI-NG
[48] platform to implement IoT WSN motes. The fog layer
nodes implemented using two computers to represent the fog
layer nodes, they connected with the simulated edge sensors.
In the cloud-based architecture, we implement the attack
detection framework in the cloud using Amazon EC2 virtual
server instance. We measure the response time 10 times and
calculate the average value for different network speeds.
As shown in Fig.10, the response time of the proposed fog-
based architecture is less than the cloud-based since the fog
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nodes is closer to the edge layer and can detect attack with
low latency.

LSTM can learn from long sequences and bridge inputs
with long time gaps by using the forget gate to store infor-
mation about the previous state of the network. Thus, LSTM
can use historical data from previous network traffic to detect
attacks, such as DoS and DDoS, for a long time period. The
data generated from IoT devices are unstructured, and LSTM
can learn effectively from unstructured data and extract deep
insights. Moreover, the performance of LSTM increases with
the increase of training data volume because data are the
heart and soul of DL. These conditions lead to the superiority
of LSTM to the rest of the DL models. The deep structure,
feature hierarchy, and the huge number of weights and vari-
ables calculated by DL models make them better than ML
algorithms.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an attack detection frame-
work based on LSTM DL model that used for IoT traffic
classification. In the proposed framework, the edge layer
traffic collected and sent to the cloud layer to train the LSTM
model. Then, the trained model installed on the fog layer
nodes as a detection engine to detect attacks. Fog computing
provides a distributed environment with many fog nodes
near to IoT devices in the edge layer. Thus, we implement
the detection system on the fog nodes to analyze the data
close to the edge layer to minimize latency. We monitor
the performance of the LSTM model and update it using
a cloud service. The experiments have shown the success
of the DL models to be adopted to Cybersecurity to detect
several attacks with high detection and accuracy rates. It is
also demonstrated that the DL models can detect conventional
and Cyber-attacks existed in different datasets. We conclude
that the LSTM model is superior to all other supervised
DL models used in the experiment because it has forget
gate to store the previous state information and can learn
from long sequences. This proposed framework overcomes
the problems of how to implement the heavy DL detection
system directly on limited capacity IoT devices, detect several
attacks with high detection rate and high accuracy rates, and
how to monitor the detection system and update it to detect
new attacks. However, it has a drawback in labeling the data
that collected in the edge layer to train the LSTM model in
the cloud may be difficult. In the future, we will compare
the proposed attack detection with unsupervised DL models
and reinforcement learning using a distributed computing
environment like Apache Spark with different datasets.
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