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ABSTRACT This paper presents a novel real-time collision-free speed alteration strategy using a danger
index and an elite real-coded genetic algorithm (ERGA) for environments in which humans and robots
coexist or cooperate, in order to guarantee the safety of an operator who works with a collaborative robot.
A danger index based on ellipsoid modeling of the operator and robot describes the degree of safety during
human–robot interactions. The ERGA and a penalty function are used to solve the constrained nonlinear
optimization problem to change the handling speed of the robot. Comparative simulation results show the
superiority of the proposed method by comparing to two existing methods. The applicability of the proposed
method is verified using two experiments involving a 6-DoF industrial manipulator with an EtherCAT
network protocol, an RGB-D sensor and a real-time operation system.

INDEX TERMS Collaborative robot, danger index, ellipsoid modeling, elite real-coded genetic algo-
rithm (ERGA), human-robot coexistence, human-robot cooperation, RGB-D sensor, speed alteration.

I. INTRODUCTION
Many industrial applications require humans and robots to
coexist so that the safety of human operators must be guar-
anteed at all times. The workspaces for robotic manipula-
tors often overlap those for human operators and numerous
conventional methods use barriers to isolate robots and avoid
contact and collisions. Few studies ensure safe and efficient
human-robot collaborations by relaxing the separation of
robot and human workspaces [1], [2].

In such collaborations, the current state of the environ-
ment must be firstly determined. Different types of sen-
sors, such as a floor mat [2] and tactile sensors [3], were
used to dynamically detect a human operator’s activity in an
environment. An RGB-D sensor was affordable and flexible
in terms of installation and allowed a high resolution for
problems that involve computer visions and robotics [4]–[6].
Since the Microsoft Kinect sensor was released, more than
two thousand papers have been published for conferences
or in journals of the IEEE [4]. Flacco and Luca [7] used
the depth information from two Kinect sensors to monitor
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a task that involves collaboration between a human and a
robot. Morato et al. [8] proposed an exteroceptive sensing
framework that uses a multiple Kinect sensor to perform an
assembly task that involves human-robot cooperation.

Studies by Flacco and Luca [7] and Morato et al. [8]
showed that if a human operator is detected inside a robot’s
workspace, a collision is possible, so real-time collision
detection is important for collision-free planning. Many
collision detection algorithms [9] were used in robotics
and for computer-aided design. However, collision detec-
tion may encounter a highly computational complexity for
moving objects. In order to reduce computational complex-
ity, bounding volumes are used to reduce the computa-
tional cost because geometric primitives are used. Ellipsoids
have a simple mathematical representation so they are
used as bounding volumes for the detection of collisions
with natural objects [10]–[13]. Rimon and Boyd [10] used
minimum-volume enclosing ellipsoids to calculate the dis-
tance between a robot and an obstacle. Bablan and Bone [13]
used spheres to represent the distance between a robot and a
human and used this distance to determine a cost function.

The level of danger to human operators in an environ-
ment that involves human-robot must be calculated and this
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measurement is used to formulate a safety-based constraint
for a control strategy. If a human operator moving toward
a working robot is a highly dangerous scenario, the robot
must operate at a lower speed or stop [14]. Many stud-
ies quantitatively defined the safety of human operators in
environments that feature human-robot collaboration. The
potential field approach that was proposed by Khatib [15]
converts the distance between the current position and the
goal position for an end-effector into a vector field to gen-
erate an appropriate control torque, so torque commands
require an exact model of the manipulator and these are
often not available because variations in friction, mass and
inertia may be unknown. Polverini et al. [16] presented a
safety evaluation for human-robot interactions that use a
kinetostatic danger field to capture the configuration and
velocity of the complete robotic manipulator to define a
safety-oriented control strategy. However, thesemethods only
consider current states [15], [16], the algorithms become
trapped in local minima and do not generate a smooth trajec-
tory. Optimized path planning was used by Hwang et al. [12],
using a collision-trend index that is defined by projecting the
ellipsoids onto a Gaussian distribution and a penalty index to
change the robot’s speed along a predefined path. Kulic and
Croft [17] also established a strategy to make human-robot
interaction safer by minimizing the danger criterion, which
is calculated in terms of the relative velocity and the relative
distance between the human worker and robot. Tsai et al. [18]
proposed a safety index that is utilized for the inequality
constraint to ensure the safety of a human worker within a
shared workspace.

Optimization-based path planning problems that involve
an equality or an inequality constraint are defined as con-
strained optimization problems. A genetic algorithm (GA)
with a penalty function has been widely used to solve con-
strained nonlinear optimization problems [19] because a GA
is superior to gradient methods and is simple and easy to
implement [20]. However, a traditional genetic algorithm
uses a binary string to represent a solution such that a
binary-coded GA is not suited to a continuous search space
with high dimensions or to high-precision numerical prob-
lems. A real-coded GA [21] represents the optimization vari-
ables using floating-point numbers. Tsai et al. [22] showed
that an elite GA is superior to a non-elite GA because a
non-elite GA converges prematurely and the solution can be
worse in the next generation. The study [22] proposed an
elite GA that uses a reproduction strategy with an elite policy,
which is more effective for many global problems.

Cooperation or collaboration between humans and robots
requires real-time computations and a fast response time.
EtherCAT (Ethernet Control Automation Technology) is an
industrial Ethernet protocol that retains themerits of Ethernet,
such as an industrial field-bus protocol with a 100 Mbps
transfer speed, a short response time, a short cycling time
and accurate time synchronization. EtherCAT also allows
a network to contain several hundreds or thousands of I/O
devices without any hardware modification so that EtherCAT

is widely used for real-time control systems and in industrial
automation domains [23].

Jerk is the time derivative of acceleration and is a feature
of motion control for a robotic manipulator. The amplitude
of the jerk is related to joint wear, trajectory tracking per-
formance and psychological stress in a human operator in an
environment that features collaboration between humans and
machines. Large jerk values increase wear and reduce the life
span of manipulators such that minimum-jerk path planning
is essential for robotics studies. Goor [31] proposed a smooth
path planning method for human-centered and predictable
robots that features a minimum jerk strategy. Chen et al. [32]
proposed multi-level simultaneous minimization at the jerk
level for jerk-bounded roboticmotion that increases the safety
of humans in an environment that involves human-robot inter-
action. Rojas et al. [33] proposed a scheme that generates a
physically and psychologically safe minimum-jerk trajectory
for collaborative assembly stations. This minimum-jerk tra-
jectory mitigates against joint errors, vibration and wear to
robotic manipulators during the trajectory tacking phase and
then increases the degree of confidence for a human operator.

Confidence is significantly different to safety. Even if a
robot moves safely, an operator may not have confidence in
the safety of operations. The authors in [37] showed that a
path planning must generate a collision-free path and avoid
negative emotional responses in a human operator. A sim-
ilar study of human proxemics preference in terms of the
attributes of robots was presented by Bhagya et al. [38].

Motivated by these studies [7], [8], [10], [12], [18],
[21]–[23], [33], [38], this paper proposes a real-time strategy
to change the collision-free speed for robots that work in an
environment where there are humans using ellipsoid model-
ing to ensure the safety guarantee of the human operator, and
determines its effectiveness by simulations and experiments.
A comparison with two current methods [8], [12] shows that
the proposed method allows more effective real-time changes
to the collision-free speed for environments in which humans
and robots coexist using a danger index and a real-time
ERGA, in order to ensure the safety of a human opera-
tor who works with an industrial collaborative robot. The
proposed method may provide useful references for profes-
sionals working in the field of human-robot coexistence or
human-robot collaboration.

The remainder of this paper is organized as follows.
Section II describes the scheme for collision detection using
ellipsoid-based modeling and a danger index quantitatively
measures the degree of safety of human-robot collaboration.
Section III elaborates the proposed speed alteration strategy
which is formulated as a constrained nonlinear optimization
problem to prevent collisions in an environment in which
humans and robots coexist. Section IV describes simulations
that show the effectiveness and the superiority of the proposed
method in comparison with two current methods [8], [12].
Section V details the experimental results that show the prac-
ticability of the proposed method. Section VI concludes this
paper.
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II. HUMAN-ROBOT MODELING AND COLLISION
DETECTIONN
In this section, the shapes of a human and a robot are modeled
using ellipsoids. A danger index with ellipsoids is used to
quantitatively measure the degree of safety for humans to
detect collisions quickly.

A. HUMAN-ROBOT MODELING
Modeling the shape of humans and robots is necessary for fast
and robust 3D collision detection algorithms. Moving objects
increase the computational complexity so ellipsoids are used
to model the shape of humans and robots to rapidly detect a
collision. For robot modeling, any point on the link of robot
is represented by

EX = A0i−1Rot (z, θi)TciEx (1)

where EX = (X ,Y ,Z ) is the position vector for a point
on the ellipsoid for link i with respect to the robot base
coordinate system and Ex is the position vector for an
elliptic equation with a parametric form. The homoge-
neous matrix A0i−1 denotes the relative position of the cen-
ter of link i − 1 with respect to the base frame in the
form:

A0i−1 =


nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

 (2)

where En = (nx , ny, nz), Eo = (ox , oy, oz) and Ea = (ax , ay, az)
respectively represent the normal vector, orientation vec-
tor and approach vector, and Ep = (px , py, pz) denotes the
positions of the end-effector in link i − 1 and Rot (z, θi)
is the rotational transformation through angle θi along the
z axis.

Tci =


1 0 0 Xci
0 1 0 Yci
0 0 1 Zci
0 0 0 1

 (3)

is the translation from joint i to the center (Xci,Yci,Zci) of
link i. From (1), one obtains

Ex =


x
y
z
1

 = T−1ci Rot
−1 (z, θi)A0i−1


X
Y
Z
1

 (4)

so the standard elliptic equation for link i is

F (x, y, z) =
x2

r2xi
+
y2

r2yi
+
z2

r2zi
= 1 (5)

To model a human, an RGB-D sensor is used to acquire
the skeletal joints of a human operator in the 3D space from
Microsoft Kinect sensing framework. Most collisions occur
with the upper part of the human body, so this study only
models the upper part using ellipsoids. To simplify the human

model, the homogeneous transformation and rotational trans-
formation are ignored, so A0i−1 and Rot (z, θi) are both iden-
tity matrices.

B. COLLISION DETECTION USING A DANGER INDEX
The links for a human operator and a robotic manipulator
are modeled as ellipsoids using (5). These ellipsoids are
used to determine possible intersections to detect a colli-
sion. The complexity of collision detection increases expo-
nentially with the number of ellipsoids. Hwang et al. [12]
proposed a fast method to detect a collision between ellip-
soids using a geometric transformation, which maintains rel-
ative geometric equivalence and reduces the computational
complexity of determining the overlap between two ellip-
soids. This method deforms an ellipsoid into a point between
two ellipsoids using an algebraic transformation. Collisions
between ellipsoids are more simply detected by determining
whether the point, (0,0,0), is located outside or inside the
ellipsoid. The algorithm to detect a collision between the
links of a human operator and a robotic manipulator is written
as:

if Fij
(
x ′, y′, z′

)
≤ 1, then one collision occurs (6)

where x ′ = 0, y′ = 0, z′ = 0; 1 ≤ i ≤ n; 1 ≤ j ≤
m.Fij

(
x ′, y′, z′

)
is the transformed ellipsoid for link i of the

robot with respect to the coordinate frame for link j of the
human.

The danger index (DI) is the reciprocal of formula (6) and
gives a quantitative value for the degree of safety for a human
operator.

DI
(
Ex ′
) ∣∣x ′=0,y′=0,z′=0 = 1

Fij (x ′, y′, z′)
(7)

If a collision occurs, the danger index is greater than or equal
to 1.

III. STRATEGY TO CHANGE SPEED AND DETERMINING
THE OPTIMAL SPEED
This section details the proposed strategy to change the speed,
which is formulated as a constrained nonlinear optimization
problem for an environment in which humans and robots
collaborate. The ERGA and a penalty function are used to
solve this optimization problem to guarantee the safety of a
human operator.

A. SPEED ALTERATION STRATEGY
In a dynamic environment, path planning is decomposed into
two sub-problems, as proposed by Kant and Zucker [24].
The path of the robot is planned to allow it to avoid static
obstacles and the velocity of the robot is planned to avoid
uncontrollable moving obstacles. In some circumstances, it is
not possible to change the speed of the human operator but
it is easy to change the velocity of the robot. The proposed
strategy changes the speed of the robot to prevent collisions
using a danger index. The robot is assumed to move along
a preprogrammed path at a variable speed. If a collision is
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predicted, the robot slows or waits to reduce the likelihood of
injury. The preprogrammed speed of robot is defined as:

Vpreprog

=

√(
Rx_g − Rx_i

)2
+
(
Ry_g − Ry_i

)2
+
(
Rz_g − Rz_i

)2
T

(8)

where T denotes the total elapsed time and the triple pairs;
(Rx_g, Ry_gRz_g) and (Rx_i, Ry_i, Rz_i) respectively represent
the goal and initial positions of the end-effector of the robot
along the x, y and z axes. Information about the human
operator and robotic manipulator is estimated to predict a col-
lision using a constant velocity model to estimate the center
positions of the ellipsoids. The pose of the ellipsoid centers is
transformed from current and previous sensor measurements
and is used to compute the velocity of the moving ellipsoids
in the k-th sampling instant as:

EV (k) =
EP (k)− EP (k − 1)

1t
(9)

where EP (k) and EP (k − 1) are the current pose and the pre-
vious pose of the ellipsoid center and 1t is the sampling
interval. Using the current pose EP (k) and velocity EV (k),
the estimated pose of ellipsoid is calculated by

EP (k + 1) = EP (k)+ EV (k)×1t (10)

Remark 1: The preprogrammed speed in (8) is calculated
using Hwang’s method [25], but other motion planning meth-
ods are possible [26]. Indeed, (9) is a simple method to
estimate the pose using the method in another study [18].
The method in (9) is used for this study to determine a one-
step-ahead pose prediction. Measurement noise is eliminated
or reduced by a subtraction operation. The experimental
results confirm that estimating the pose one-step-ahead is
effective, so measurement noise does not affect the predic-
tion. However, if the signals from the RGB-D sensor are
significantly corrupted with measurement noise, a Kalman
filter [8] filters noise such that (9) is used to calculate a future
one-step-ahead pose estimate more accurately.

The speeds of the robot end-effector and tool center point
can be changed. A system that guarantees the safety of a
human operator in an environment in which humans and
robots collaborate must comply with ISO 10218-1 safety
standards, which specify the maximum speed of a robot that
allows safe working during collaboration with a robot. This
speed cannot exceed 250mm · s−1. The optimal speed of
the manipulator is determined by minimizing the following
objective function:

fobj (Vselect (k)) = P
(
Vselect (k)− Vpreprog

)2
/V 2

preprog

+D (Vselect (k)−Vselect (k−1))2 /V 2
preprog

s.t.DIij
(
EX (k + 1)

)
< 1

s.t. |Vselect (k)| ≤ 250 mm · s−1 (11)

where DIij
(
EX (k + 1)

)
is the danger index between link i of

the robot and link j of the human operator at sampling instant

k + 1; Vpreprog and Vselect are the preprogrammed speed and
selected speed of the robot, respectively; P is a parameter that
allows the selected speed to approach the preprogrammed
speed and D is a smoothing parameter that decreases the
variation in the selected speed to allow the robot arm to
move smoothly. This objective function (11) constitutes a
constrained nonlinear optimization problem, which ensures
that the danger index has a value of less than 1, so the velocity
of the end-effector of the manipulator that avoids a collision
is planned by minimizing the objective function.

B. DETERMINING THE OPTIMAL VELOCITY USING AN
ERGA
The proposed optimal speed that avoids collisions is formu-
lated as a nonlinear constraint problem with inequality con-
straints. A penalty function is used to ensure compliance with
the two inequality constraints. Fobj (Vselect (k)) is defined
as the sum of the objective function fobj (Vselect (k)) and
the penalty term, which depends on the constraint violation
DIij(EX (k + 1)), as shown in (12). If the constrained condition
is greater than or equal to 1, the danger index has a constant
value. If the constrained condition is less than 1, the danger
index is zero. The optimization algorithm is reformulated as:

Fobj(Vselect (k)) = fobj(Vselect (k))+ R∗DI
2
ij

where

DI ij =

{
DIij(EX (k + 1)), if DIij(EX (k + 1)) ≥ 1
0, if DIij(EX (k + 1)) < 1

(12)

where R is a positive and real penalty parameter.
The ERGA is then used to solve the constrained nonlinear

function in (11) for two constrained conditions: (i) the danger
index must be less than unity to avoid collisions between the
industrial robotic manipulator and human operator and (ii)
the speed of the industrial robotic manipulator must not
exceed 250 mm · s−1 to comply with the ISO 10218-1 safety
standard. The optimization strategy minimizes the objective
function (11) and the selected speed to approaches the pre-
programmed speed to reduce variations between the current
and neighboring speeds. The optimal speed alteration algo-
rithm is described as follows; two individuals in the current
population with lower fitness values are chosen as the elite,
the crossover operation is selected using a uniform arithmeti-
cal scheme, and the mutation operation is random.

Fig. 1 shows the pseudo-code of the ERGA for the
proposed speed alteration strategy. If a human operator is
detected by the Kinect vision sensor, the danger index for
each joint of the human and robot is calculated using the ellip-
soids that are generated by modeling. The ERGA features an
initialization phase, elite selection, crossover, mutation and
calculates the fitness of the penalty function. The algorithm
is terminated when the 100th generation is completed because
the objective function usually converges to its minimum after
the five generations, so 100 generations are sufficient for the
proposed algorithm to converge to the optimal velocity at the
sampling instant, as shown in Figs. 11 (c) and (d). The optimal
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FIGURE 1. Pseudo code for the ERGA for the proposed speed alteration
strategy.

output for the ERGA is sent to control the velocity of the
robot’s end-effector. Furthermore, if the human operator is
not in the workspace, the robot moves at the preprogrammed
speed.

IV. SIMULATIONS AND DISCUSSION
A rigid 6-DoF industrial robotic manipulator, which is called
RA605 and is made by the HIWIN Company, is used to
determine the effectiveness of the proposed strategy for an
environment that contains humans and robots. As shown
in Fig. 2, each link of the robot and the upper human body
is modeled by ellipsoids. In the simulation, the right hand
of the human operator is placed into the scheduled path of
the robot manipulator and the hand collides with the robot
(marked with red color). The radius of the ellipsoids for the
right hand and the end-effector is 50 mm.

A. VALIDATION OF THE PROPOSED SPEED ALTERNATION
METHOD USING ERGA
For the first simulation, the preprogrammed velocity of the
manipulator is positive, as shown in Figs. 2(a)-(c), and the
robot moves from its initial pose (x, y, z, Yaw, Pitch, Roll) =
(368 mm, 0 mm, 668.5 mm, 0◦, 0◦, 180◦) to its goal pose(x, y,
z, Yaw, Pitch, Roll) = (368 mm, 120 mm, 668.5 mm, 0◦, 0◦,
180◦) at the preprogrammed velocity Vpreprog = 50mm · s−1

over the total elapsed time of T=2.4 s and the sampling time
1t = 0.1s. Fig. 3(a) shows the positions of the end-effector
when the robot moves along the positive direction of the y
axis. Fig. 3(b) shows the positions of the human right hand as
it initially moves from (x, y, z)= (400mm, 140mm, 620mm)
to (x, y, z) = (400 mm, 140 mm, 700 mm) at a velocity
of 100 mm · s−1 from the beginning to the 9th sampling
instants. From the 10th to 12th sampling instants, the right
hand remains at the same position for 3 sampling instants
and then moves back to the initial position from (x, y, z) =
(400mm, 140mm, 700 mm) to (x, y, z) = (400 mm, 140 mm,
620 mm) at a velocity of −100mm · s−1 between the 12th

and 20th sampling instants. The operator’s right hand stops at

FIGURE 2. Illustration of a human working with a robot manipulator, and
human-robot modeling using a set of ellipsoids. (a-c): Positive
preprogrammed velocity of the robot along the y axis. (d-f): Negative
preprogrammed velocity of the robot along the y axis.

the original position after the 20th sampling instant. The first
simulation does not use the proposed method. In Figs. 4(a)
and 4(b), one collision occurs, so the danger index is greater
than 1 if the speed is not reduced.

The proposed speed strategy is then applied to avoid colli-
sions. The ERGA is used to solve the constrained nonlinear
function as in (12), where the initial population is set to 50 and
the respective probabilities of crossover and mutation are
0.8 and 0.1. The algorithm is simulated using the MATLAB
program. The speed of the robot is controlled using the pro-
posed method to avoid collisions. The values for the velocity
parameter (P), the smoothing parameter (D) and the penalty
parameter (R) for the objective function are assigned using
the following three simulations.

The value of the penalty parameter (R) is chosen by sim-
ulations using a fixed value for the velocity parameter (P)
and the smoothing parameter (D) of 1. For values of R of 1,
10, and 100, Fig. 5(a) shows that R is too small to allow the
penalty function to have any significance. For a value for R
of 10, the danger index remains less than 1 if the speed of the
robot is changed. The result for a higher R value (R = 100)
is similar to that for R = 10. In Fig. 5(b), the velocity profile
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FIGURE 3. Time evolutions of the first simulation scenario with the
positive preprogrammed velocity of the manipulator. (a) The position of
the end-effector for the robot. (b) The position of the right hand for
human.

FIGURE 4. Simulation results without the proposed method. (a) The
danger index. (b) The selected velocity.

for R = 10 is smoother than that for R = 100, so the value of
R is set to 10 to avoid collisions.
The value of the velocity parameter (P) is selected using

simulations with a penalty parameter (R) and a smoothing
parameter (D) have respective fixed values of 10 and 1. For
value of P of 1, 10 and 100, Fig. 6(a) shows that P is too large
so the penalty function has no effect and a collision occurs
(the danger index is more than 1) for a value of P of 100.
However, the velocity profile is smoother for lower values of
P(= 1) in Fig. 6(b). A P value of 1 ensures a smooth and safe
path.

The value of the smoothing parameter (D) is chosen
using simulations with respective fixed values for the penalty
parameter (R) and the velocity parameter (P) of 10 and 1. Let
D be set to 1, 10 and 100, and Fig. 7(a) shows that if the

FIGURE 5. Simulation results for a specific penalty parameter (R). (a) The
danger index. (b) The selected velocity.

FIGURE 6. Simulation results for a specific penalty parameter (P). (a) The
danger index. (b) The selected velocity.

value of D is too large, the penalty function has no effect.
Obviously, the danger index is larger than 1 if D is 100.
Fig. 7(b) illustrates that the velocity profile is smoother as
the value of D increases, but a longer run time is required for
the robot to reach the goal position.

These results show that the parameter set, P = 1, D = 1
and R = 10, allows collision-free and smooth path planning.
The evolutions of the resultant danger index for the proposed
approach are shown in Fig. 8(a), which shows that the danger
index is not greater than 1 such that the proposed method pre-
vents collisions between the human operator and the robotic
manipulator. Fig. 8 (b) shows the changes to the velocity
profile for the robot that prevent collisions with the human
operator. To allow the robotic manipulator to reach its goal
pose, the danger index gradually increases from 0.7596 to
0.994 during the 20th to the 29th sampling instants so that after
20th sampling instant, the operator’s right hand stays at the
same position (x, y, z) = (400 mm, 140 mm, 620 mm), near
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FIGURE 7. Simulation results for a specific smoothing parameter (D).
(a) The danger index. (b) The selected velocity.

FIGURE 8. Comparison of the proposed method with Hwang’s method
and Morato’s method with the positive preprogrammed velocity of the
manipulator. (a) The danger index. (b) The selected velocity.

the goal pose (x, y, z, Yaw, Pitch, Roll)= (368 mm, 120 mm,
668.5 mm, 0◦, 0◦, 180◦) for the robotic manipulator. At the
29th sample, the manipulator safely achieves its target pose
using the proposed method.

B. COMPARATIVE SIMULATIONS
Two simulations will show the superiority of the proposed
method over to two existing methods [8], [12]. The objective

FIGURE 9. Enlarged results in Fig. 8. (a) The danger index. (b) The selected
velocity. (c) The jerk. (d) The mean and standard deviation (SD) of jerk.

function for Hwang’s method in [12] is described as

fobj (Vselect (k)) =
∑
i

∑
j

Pij(k)

+

∑
i

∑
j

(
Pij(k)− Pij(k − 1)

)
+
∣∣Vselect (k)− Vpreprog∣∣ /Vpreprog (13)

where Pij(k)i s the collision-trend index between link i of the
robot and link j of the human operator at sampling instant k
and the second term of (13) is used to force the robot to move
at the selected speed to reduce the sum of the collision-trend
index. Finally, Vpreprog and Vselect are the preprogrammed
speed and the selected speed for the robot, respectively.

The proposed method is also compared with the bi-modal
control strategy of Marato et al. [8]. The bi-modal control
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TABLE 1. Comparison of the standard deviation (SD) for the proposed
method and Hwang’s and Morato’s methods in terms of jerk.

strategy moves the manipulator at a specified speed if the rel-
ative distance between it and an operator exceeds a threshold
distance; otherwise, the manipulator is stopped.

The first simulation compares the proposed method,
Hwang’s and Morato’s methods using simulations settings
that are identical to those described in Section 4.A. Fig. 9(a)
shows that the danger index for the proposed method is lower
than that for Hwang’s method, so the proposed method is
safer than Hwang’s method. Fig. 9(b) shows that the proposed
method produces smoother selected velocities than Hwang’s
and Marato’s methods do.

The previous study [27] defines the properties of
smoothness in terms of speed, acceleration and jerk.
Figs. 9(c) and (d) depict the simulation results from the 15th

to 20th sampling instants. The mean value for jerk for the
proposed method is -267.307 and its standard deviation is
216.218. The respective values for Hwang’s method are -
287.956 and 436.477 and those for Morato’s method are
833.333 and 2041.241. Fig. 9(d) and Table 1 show that the
standard deviations for jerk for Hwang’s and Morato’s meth-
ods are respectively 201.87% and 944.07% of that for the
proposed method. The results for mean and standard devi-
ation of the jerk show that the proposed method outperforms
Hwang’s and Morato’s methods [27]. The life span of a
manipulator is increased because the speed alteration method
avoids damage to the robot motors, reduces mechanical wear
on the robot joints and increases confidence for human-robot
collaboration and accuracy.

The second simulation specifies parameter settings of
P = 1, D = 1 and R = 10 for the objective function. The
preprogrammed velocity for the robot is negative as shown
in Fig. 2(d)-(f). The robot moves from its initial pose (x, y,
z, Yaw, Pitch, Roll) = (368 mm, 0 mm, 668.5 mm, 0◦, 0◦,
180◦) to its goal pose (x, y, z, Yaw, Pitch, Roll) = (368 mm,
-120 mm, 668.5 mm, 0◦, 0◦, 180◦) at a preprogrammed
velocity of −50mm · s−1 for a total elapsed time of T=2.4 s
and a sampling time interval of1t = 0.1 s is used. Fig. 10(a)
shows the positions of the end-effector when the robot moves
backwards along the y axis. Fig. 10(b) shows the positions
of the human right hand as it initially moves from (x, y, z)
= (400 mm, −140 mm, 620 mm) to (x, y, z) = (400 mm,
−140 mm, 700 mm) at a velocity of 100 mm · s−1 from the
beginning to the 9th sample. During the 10th to 12th samples,
the right hand remains in the same position for the three
sampling instants and then returns to its initial position from

FIGURE 10. Time evolutions of the second simulation scenario with the
negative preprogrammed velocity of the manipulator. (a) The positions of
the end-effector for the robot. (b) The positions of the right hand for the
human operator.

(x, y, z) = (400 mm, −140 mm, 700 mm) to (x, y, z) =
(400mm,−140mm, 620mm) at a velocity of−100 mm · s−1

between the 12 th and 20 th sampling instants. Finally,
the operator’s right hand stops in its original position after
the 20 th sampling instant.

Fig. 11(a) shows that the danger indexes, whose values are
close to unity, are respectively 0.9979, 0.9997 and 0.995. All
danger indexes in Fig. 11 are less than unity, so a human
operator’s safety is guaranteed and there are no collisions.
Fig. 11(b) shows that the selected velocity for the proposed
method is close to the programmed speed of −50mm · s−1.
The selected velocity for Hwang’s method [12] is the max-
imum speed. The velocity obtained for Hwang’s method
changes abruptly to −250 mm · s−1 at the ninth sampling
instant, and abruptly again to 250 mm · s−1 at the tenth sam-
pling instant. For the proposed method, the selected velocity
is −49.88 mm · s−1 at the same 9 th sample and this jumps to
−10.79 mm · s−1 at the 10 th sample.

Figs. 11(e) and (f) show the simulation results from
the 8th to 22th sampling instants. The mean jerk for the
proposed method is -1.533 and the standard deviation is
1462.905. The respective values for Hwang’s method are
0 and 56694.670 and for the Morato’s method are 0 and
3273.268. Fig. 11 (f) shows that the respective standard devi-
ation of jerk for Hwang’s and Morato’s methods is 3875.49%
and 223.75% of that for the proposed method.

The simulation results in Figs. 8, 9, 11 and Table 1 show
that the proposed method is superior to the bi-modal control
strategy and Hwang’s method in that it allows smoother speed
changes, produces less jerk, allows safer working when there
are short distances between humans and robots [34]–[36] and
faster movement from the initial pose to the destination pose.
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FIGURE 11. Comparison of the proposed method, Hwang’s and Morato’s
methods for a negative preprogrammed velocity for the manipulator.
(a) The danger index. (b) The selected velocities. (c) Generation
evolutions for the selected velocities searched by the ERGA in the first
sampling interval. (d) Generation evolutions of the objective values in
part (c). (e)The jerk. (f) The mean and standard deviation (SD) for jerk.

FIGURE 12. Control architecture of the experimental 6-DoF robotic
manipulator.

FIGURE 13. Experimental platform.

V. EXPERIMENTAL RESULTS AND DISCUSSION
Experiments using an EtherCAT-based six-degrees-of free-
dom (6-DoF) industrial robotic manipulator show the prac-
ticability of the proposed method. Figs. 12 and 13 show the
experimental setup, which uses a 6-DoF industrial robotic
manipulator (HIWIN Inc., RA605) with 6 motor drives
(Panasonic Inc., A6SF), an industrial computer controller
(NEXCOM Inc., 3600E) with a real-time operation system
(IntervalZero Inc., RTX64) and an RGB-D sensor (Microsoft
Inc., Kinect v1). The control kernel interacts directly with
the 6 motor drives via the EtherCAT protocol. The Integrated
development environment withMicrosoft Visual Studio C# is
used to code the application programming interface.

To show the effectiveness and applicability of the pro-
posed ERGA, two experiments used a population of 100,
a crossover probability of 0.8, and a probability of mutation
of 0.1. Below were the parameter settings: the sampling time
1t = 0.1 s, the penalty parameter R = 10, the velocity
parameter P = 1 and the smoothing parameter D = 1.
The proposed method was implemented on an i5-CPU indus-
trial computer with a 2.7 GHz clock rate to perform online
computations on images that are captured at 10 frames per
second (FPS).
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FIGURE 14. Still images of a human operator interacting with an
industrial manipulator for experiment 1. (a) The initial pose of the robot.
(b)The right hand of the human moves up to the robot. (c) The right hand
of the human in the planned path of the robot. (d) The right hand of the
human moves away from the robot.

A. EXPERIMENT 1
Figs. 14(a) and (b) show the experimental scenario in which
a human operator walked close to a RA605 manipulator and
the right hand of the human operator moved up to the manip-
ulator. In Fig. 14(c), the right hand of the human operator
entered the planned path of the manipulator for a period of
time. In Fig. 14(d), the right handmoved away from the robot.
Fig. 15(b) depicts the paths of the right hand, as captured
by the Kinect vision sensor. In Fig. 15(a), the robot moved
from the initial pose (x, y, z, Yaw, Pitch, Roll) = (368 mm,
100 mm, 668.5 mm, 0◦, 0◦, 180◦) to the goal pose (x, y, z,
Yaw, Pitch, Roll) = (368 mm, −100 mm, 668.5 mm, 0◦, 0◦,
180◦) at a preprogrammed velocity Vpreprog = −50mm · s−1

and Vpreprog = 50mm · s−1,and repeatedly moved forward
and backward from the initial pose to the goal.

From the start-up to the 42th sampling instant, the human
operator was outside the detection range of the Kinect sen-
sor. The control method was not activated, so the selected
speed was the same as preprogrammed velocity, as shown
in Fig. 16(b), and the danger index was equal to zero
in Fig. 16(a). Fig. 16(b) shows the changes in speed and
direction for the proposed method. After the 42th sample,
the human operator was within the detection range of the
vision sensor and the proposed method was activated such
that the danger index was not equal to zero. The danger
index increased when the human operator walked close to

FIGURE 15. The experimental scenario in the experiment 1. (a) The
positions of the end-effector. (b) The position of the right hand of the
human.

the robot. If the danger index was less than 1, the proposed
method successfully planned the velocity of the robot, such
as at the 80th sample. At the 151th sample, if the proposed
method was not used, the robot moved with a preprogrammed
velocity of 50 mm · s−1. One collision then occurred because
the danger index was 1.419. Using the proposed approach,
the velocity was decreased to -5.9mm·s−1 so the collisionwas
avoided and the profiles of the danger index were less than 1.
The danger index was 0.8657 at the 151th sample. After the
151th sampling instant, the smoothing parameters ensure that
the selected speed smoothly approached the preprogrammed
velocity. The results show that the proposed method success-
fully plans a smoother velocity for the robot and ensures the
safety of the human because there are no collisions when the
human and robot collaborate.
Remark 2: To stop the robot and avoid a collision with the

human, a preprogrammed speed of 0 can be used. The optimal
output for the ERGA stops the robot if the selected velocity
is 0.

B. EXPERIMENT 2
An object pick and place task is shown in
Figs. 17(a), (b) and (e). There is a RGD-D sensor behind
the robot, an electric gripper on the end-effector of robot
and an object on the table to be grabbed into the basket.
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FIGURE 16. Comparison of time evolutions using the proposed method
and without using the proposed method for experiment 1. (a) The danger
index. (b) The selected velocity.

Figs. 17(c) and (d) show a collision scenario for this pick
and place task as the human operator walked to the robot
and the hand of the human operator was close to the basket
(in the pre-planned path of the robot) for a period time. The
hand of the human then moved away from the robot before
the robot placed the object. Fig. 17(f) shows the human
operator picking up the basket after the robot finished its
task. Fig. 18(a) shows the robot moving from the initial
position (x, y, z) = (594.5 mm, -266 mm, 404.9 mm) to
the intermediate position (x, y, z) = (594.5 mm, −266 mm,
105 mm), (x, y, z)= (594.5 mm,−266 mm, 404.9 mm), (x, y,
z)= (594.5 mm, 174 mm, 404.9 mm), (x, y, z)= (594.5 mm,
174 mm, 105 mm), and then the goal position (x, y, z) =
(594.5mm, 174mm, 404.9mm) at a preprogrammed velocity
of Vpreprog = -100 mm · s−1, Vpreprog = 0 mm · s−1 and
Vpreprog = 100 mm · s−1 for the pick and place task. From the
32th to 36th sampling instant, the robot grabbed the object
using an electric gripper. At the 141th sample, the robot placed
the object into the basket. Fig. 18(b) shows the path of the
human hand as captured by the vision sensor.

Figs. 19 (a) and (b) show that the human operator was
outside the detection range of the vision sensor from the
beginning until the 87th sampling instant and the control

FIGURE 17. Still images of the human operator interacting with the
industrial manipulator in the pick and place task for experiment 2. (a) The
initial position of the robot. (b) The robot grabbing the object. (c) The
intermediate position of the robot. (d) The right hand of the human in the
planned path of the robot. (e) The robot placing the object. (f) The human
operator picking the basket.

approach was not used so the selected speed remained as the
preprogrammed velocity and the danger indexwas zero. After
the 87th sampling instant, the human operator was within the
detection range of the vision sensor and the proposed method
was used so that the danger index increased when the human
operator walked to the robot. At the 105th sample, the robot
moved at a preprogrammed velocity of 100 mm · s−1 without
the proposedmethod. One collision occurred since the danger
index was 1.094. Using the proposed approach, the velocity
was reduced to 30 mm · s−1 such that no collision occurred
and the profiles for the danger index were less than 1. The
danger index was 0.744 at the 105th sampling instant, and,
afterward, the proposed method allowed collision-free and
smooth changes in speed. The experimental results show that
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FIGURE 18. Time evolutions for experiment 2. (a) The position of the
end-effector. (b)The position of the right hand of the human.

the proposed method plans a collision-free and smooth speed
for the pick and place task that involves a human.

The computation time for the proposed method was about
0.085 s, so a control action was initiated within the sampling
interval of 0.1 s via the EtherCAT network. A study by
Zhang et al [28] showed that a human’s reaction time is 0.25 s,
so the machine must capture images at more than 4 FPS to
detect reactions to a robot’s action. The proposed method
is 2.5 times faster than the reaction time of a human. The
sampling rate for the proposed method was 10 FPS and the
EtherCAT control network had a 100Mbps transfer speed and
short response time and short cycling time so the proposed
one-step-ahead prediction scheme using the real-time opera-
tion system, RTX, was sufficient to detect human reactions,
in order to avoid collisions.

C. USERS’ EVALUATION
A questionnaire (‘‘Did you feel comfortable?’’) was used to
measure the emotional responses of those who participated
in both experiments. To avoid harm to the participants,
all were informed about the details of the experiment
before it began. The participants were aged between 30 and
50 years (M = 41.2, SD = 6.5). Comfort level was recorded
using a 5-point Likert scale (1 = very uncomfortable,
2 = uncomfortable, 3= neutral, 4 = comfortable, and
5 = very comfortable) for all the 20 participants. The inter-
view determined the participants’ reaction to interaction
with and without the proposed method. The psychological

FIGURE 19. Comparative time evolutions of the experimental results with
the proposed method and without the proposed method for the pick and
place task in the experiment 2. (a) The danger index. (b) The selected
velocity.

FIGURE 20. Comfort level evolutions with the proposed method and
without the proposed method. (a) Experiment 1. (b) Experiment 2.

evaluations are summarized in Figs. 20 (a) and (b), showing
that the proposed method gives a superior level of comfort.

This experiment was also used to show the practi-
cability of the proposed approach in terms of human
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FIGURE 21. The mean and standard deviation of human-robot proxemics
distance with the proposed method and without the proposed method in
the experiments.

robot-proxemics. The mean and standard deviation values
for human-robot proxemics distance for all 20 participants
are shown in Fig. 21, where the proposed method produced
the lowest mean value, which shows that participants were
willing to walk close to a robot if a robot had reliable
collision-free path planning for human-robot interactions.
The t-test statistic was then employed to evaluate the sig-
nificance of the effects on human-robot proxemics distance
with the proposed method and the robot without the proposed
method. From the t-test results, the p-values for Experi-
ments 1 and 2 are 1.07 × 10−19 and 5.24 × 10−21, respec-
tively. The results for the emotional responses and human
robot-proxemics of participants in these experiments show
that the proposed method is reliable.

This experiment also revealed that occlusion is a com-
mon problem for vision-based methods. The use of multiple
vision sensors in the workspace minimizes this problem.
If there is insufficient information from one camera about
a human operator, another camera can be used to capture
information that is occluded. Some studies [7], [8], [39] used
multiple RGB-D vision sensors to address the problem of
occlusion. However, the use of the multiple vision sensors
results in data fusion problems and camera calibration prob-
lems [29], [43], [44]. A Kalman filter method [40] was used
to address the problem of fusion for multiple RGB-D sensors
for a system that tracks a human skeleton and Wu et al. [41]
proposed a toolkit for tracking occluded human joints that
merges the field of view of multiple RGB-D sensors and uses
geometric calibration and affine transformation.

VI. CONCLUSION
The paper has presented a collision-free speed alteration
strategy for environments in which humans and robots coex-
ist. The danger index uses ellipsoids to model the robot
and human operator, in order to measure the safety of a
human operator during human-robot interactions. The elite
real-coded genetic algorithm (ERGA) with a penalty function

is used to solve a constrained nonlinear optimization prob-
lem in real time. The simulation results show that the
proposed method prevents better collisions between a col-
laborative robot and a human operator than two existing
methods [8], [12] do. The experiments using a 6-DOF indus-
trial manipulator with the EtherCAT protocol and an RGB-D
sensor has demonstrated the effectiveness and practicability
of the proposed method.

Although the proposed method has planned one-
dimensional moving paths, it can be easily extended to non-
linear movements by following many piecewise linear paths
similarly to another study [30], in which a nonlinear smooth
path is interpolated or synthesized using many piecewise lin-
ear paths. Future studies will involve more advanced scenar-
ios to change the velocity and direction along a fully nonlinear
path. In practical terms, a slower velocity (250 mm · s−1)
reduces the productivity for a task that involves human–robot
collaboration [42] so the algorithm will be extended to less
constrained conditions to increase productivity. To get rid
of the speed limitation (250 mm · s−1), the proposed speed
alteration strategy with the braking time capabilities of robot
remains an important and challenging direction for future
work.
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