
Received April 1, 2020, accepted April 9, 2020, date of publication April 20, 2020, date of current version May 4, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2988735

A Framework for In-Network QoE Monitoring
of Encrypted Video Streaming
IRENA ORSOLIC , (Graduate Student Member, IEEE), AND
LEA SKORIN-KAPOV , (Senior Member, IEEE)
University of Zagreb, Faculty of Electrical Engineering and Computing, 10000 Zagreb, Croatia

Corresponding author: Irena Orsolic (irena.orsolic@fer.hr)

This work was supported in part by the Croatian Science Foundation under Project IP-2019-04-9793 (Q-MERSIVE), and in part by the
QoMoVid Project funded by Ericsson Nikola Tesla, Croatia.

ABSTRACT With the amount of global network traffic steadily increasing, mainly due to video streaming
services, network operators are faced with the challenge of efficiently managing their resources while
meeting customer demands and expectations. A prerequisite for such Quality-of-Experience–driven (QoE)
network traffic management is the monitoring and inference of application-level performance in terms of
video Key Performance Indicators (KPIs) that directly influence end-user QoE. Given the persistent adoption
of end-to-end encryption, operators lack direct insights into video quality metrics such as start-up delays,
resolutions, or stalling events, which are needed to adequately estimate QoE and drive resource management
decisions. Numerous solutions have been proposed to tackle this challenge on individual use-cases, most of
them relying on machine learning (ML) for inferring KPIs from observable traffic patterns and statistics.
In this paper, we summarize the key findings in state-of-the-art research on the topic. Going beyond previous
work, we devise the concept of a generic framework for ML–based QoE/KPI monitoring of HTTP adaptive
streaming (HAS) services, including model training, deployment, and re-evaluation. Components of the
framework are designed in a generic way, independent of a particular streaming service and platform.
The methodology for applying different framework components is discussed across various use-cases.
In particular, we demonstrate framework applicability in a concrete use-case involving the YouTube service
delivered to smartphones via themobile YouTube app, as this presents one of themost prominent examples of
accessing YouTube. We tackle both QoE/KPI estimation on a per-video-session level (utilizing the validated
ITU-T P.1203 QoE model), as well as ‘‘real-time’’ KPI estimation over short time intervals. Obtained results
provide important insights and challenges related to the deployment of a generic in-network QoEmonitoring
framework for encrypted video streams.

INDEX TERMS Quality of Experience (QoE), video streaming, in-network QoE estimation, machine
learning, encrypted traffic.

I. INTRODUCTION
With the rapid growth of global mobile Internet traffic, it has
become critical to manage network traffic flows in such a way
as to provide a satisfactory experience to end users, while
efficiently using limited resources. As a prerequisite, both
network and service providers rely on the understanding and
monitoring of key factors that impact the end users’ perceived
service quality and experience. This has resulted in extensive
Quality of Experience (QoE) related research conducted over
the past decade, with the networking community increasingly
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aiming to introduce QoE-awareness into network manage-
ment cycles [1].

With the massive amounts of traffic passing through global
mobile networks, the greatest share belongs to video content,
mainly originating from popular video streaming services
and social networks, such as YouTube, Netflix, Amazon
Prime, Facebook, and Twitch [2]. According to Cisco’s VNI
white paper, video accounted for 59% of global mobile traf-
fic in 2017, and the share is expected to grow to 79% by
2022 [3]. Newer numbers, published in the EricssonMobility
Report, state that 63% of global mobile traffic was video
in 2019. The same report is slightly more conservative in its
forecasts, predicting the share to grow to 76% by 2025 [4].
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Nevertheless, despite the emergence of new and network-
intensive apps such as VR/AR and cloud gaming, especially
in the context of 5G, video originating from video stream-
ing platforms (either as Video on Demand or live video)
is expected to dominate network traffic in the foreseeable
future.

Nowadays, most video streaming services implement the
HTTP Adaptive Streaming (HAS) paradigm, commonly in
compliance with standards MPEG-DASH (Dynamic Adap-
tive Streaming over HTTP) [5] and HLS (HTTP Live Stream-
ing) [6]. The main idea behind HAS is to enable dynamic
adaptation of video quality (e.g., in terms of bitrate and
resolution) according to variable network conditions, so as
to primarily avoid playback stalling and ensure a smooth
playout experience. This is achieved by storing short chunks
of video content on the server, available in different quality
levels, and running an adaptation algorithm on the client side
responsible for estimating network conditions and requesting
each video chunk accordingly. The aforementioned standards
define methods and formats, while each compliant service,
on top of that, defines its own adaptation algorithm – chunk
size, the amount of data that is kept in the buffer, etc. Vari-
ous employed adaptation strategies have been analysed over
the past years [7]–[10], but we note that these findings are
susceptible to change and may become outdated, as service
providers change their deployed strategies with newer service
versions available on the market.

Up until recently, Web encryption efforts were mostly
focused on highly sensitive information. Today, with the
rise of privacy awareness, we are witnessing encryption in
all major video streaming services as well. For example,
Google reports that, as of late 2019, all YouTube content
is delivered via HTTPS [11]. While YouTube uses mostly
UDP/QUIC [12], which was designed to be secure and incor-
porates TLS by default, services such as Netflix, Twitch,
and Facebook Watch use TCP/TLS. However, it is worth
mentioning that there are standardization efforts within IETF
for a new version of HTTP, HTTP/3, that is aimed to resolve
the issues of HTTP/2 by employing QUIC, making the Web
inherently secure [13].

Due to the adoption of traffic encryption and the dynamics
introduced by HAS, it is becoming increasingly challenging
for network operators to monitor service performance at the
application level, which is crucial when aiming to estimate
end users’ QoE. The challenge is further complicated by the
wide variety of services accessed from different platforms,
apps, via different access networks, using different protocols,
etc. (Figure 1). As HAS dominates global Internet traffic,
there is a lot of interest from the industry to tackle these
challenges. In available literature, a number of solutions have
been proposed and validated on isolated use-cases, that infer
application performance in terms of Key Performance Indi-
cators (KPIs) or overall QoE, solely based on the analysis of
encrypted network traffic (Section II). We give a generalized
view of these approaches in Figure 2 (adapted from [14]).
All solutions require the instrumentation of some sort of

FIGURE 1. An example of the variety of use-cases that may differ in terms
of service implementation, and thus in network traffic patterns for video
delivery platforms. Consequently, the estimation of QoE/KPIs for these
use-cases may need to be addressed separately.

FIGURE 2. Generic service QoE/KPI monitoring approach in the context of
traffic encryption (adapted from [14]).

measurement tools used to collect relevant application- and
network-layer data. Based on collected data, models that
map traffic patterns to QoE/KPIs are built analytically or
using machine learning (ML) techniques. In-network mea-
surements (e.g., radio stats, flow data) can be provided in real
time to deployed models to calculate desired QoE/KPI met-
rics. A network operator can thus monitor QoE impairments,
generate alerts regarding severe issues, aggregate QoE data
to create trending reports, and finally use collected data for
deriving the root causes of QoE degradations. At the same
time, new application-level ground truth data can be collected
to re-evaluate models over time and detect the need for a
model update. Such updates may be necessary in response to
changes such as those related to Over The Top (OTT) service
quality adaptation logic, or changes in underlying protocols
(e.g., move from TCP/TLS to UDP/QUIC).

In this paper, we consolidate ideas presented in related
work that proposed solutions for ML–based in-network
QoE/KPI estimation for HAS, and we build upon them in
multiple aspects. The contributions of this paper are summa-
rized as follows:
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• We give an overview of state-of-the-art monitoring
approaches, key challenges, and opportunities for future
research.

• We propose a generic, flexible, and extensible frame-
work for in-network QoE/KPI monitoring of encrypted
video streams, consisting of components related to
model training, deployment, and re-evaluation. Frame-
work applicability is discussed and demonstrated in a
case study involvingmultiple YouTube video on demand
datasets and trained models.

• Building on previous work, we present a novel method-
ology for real-time KPI estimation model training, and
compare models of different complexities.

• We further present a methodology for session-level
QoE/KPI estimation model training relying on sim-
ple packet-size–based features applicable for any HAS
use-case, regardless of used protocols and streaming
algorithm.

• Finally, we investigate and outline a number of related
challenges to be addressed by the research commu-
nity: training of platform-agnostic models, aggregation
of real-time predictions as additional session-level fea-
tures, detection of model under-performance, and ses-
sion delimitation (as a prerequisite for session-level
QoE/KPI estimation).

The remainder of the paper is organized as follows.
A detailed overview of related work is presented in Section II,
with selected studies compared in terms of their objectives,
datasets, and key findings. Section III presents a generic
conceptual QoE/KPI monitoring framework, and discusses
key components related to model training, deployment,
and re-evaluation. In Section IV we present our collected
YouTube datasets (comprised of both application and net-
work layer data), and highlight specific research questions
which we aimed to answer with each of the datasets. Our
real-time KPI estimation model training methodology and
results in terms of model performance are given in Section V.
Section VI focuses on session-level QoE/KPI estimation and
related questions. A discussion of open research challenges
and concluding remarks are given in Section VII.

II. BACKGROUND AND RELATED WORK
Prior to the widespread use of traffic encryption, in-network
QoE monitoring solutions relied on deep packet inspec-
tion (DPI) for extracting information about video quality
(e.g., streamed resolution, codecs, bitrate) [28], [29].With the
adoption of encryption, such solutions were for the most part
no longer viable, which opened up new research questions
related to in-network QoE estimation based on the analysis
of encrypted video traffic.

On a high level, two different approaches have been pro-
posed to tackle this problem: session-modeling–based (SM)
and machine-learning–based (ML). SM–based solutions
require knowledge about the streaming protocol and rely on
session reconstruction for the inference of QoE–influencing
KPIs. Mangla et al. present such a solution called eMIMIC

in [30], highlighting the performance it achieves in com-
parison to ML–based solutions. The solution is based on
reconstructing the chunk–based delivery sequence of a video
session from packet traces, and then the use of this sequence
to model a video session and estimate average bitrate,
re-buffering ratio, bitrate switches, and start-up-time. The
presented system would need to be adapted to work with
QUIC traffic, potentially reducing chunk-detection perfor-
mance which the system is based upon. Although in [31]
Krishnamoorthi et al. do not estimate QoE/KPIs as such, but
rather try to predict buffer conditions by emulating the client
buffer, parts of the approach can be applied for this prob-
lem as well. However, given the problem dimensionality –
resulting from a large variety of devices, platforms, streaming
services, apps from which the content is accessed, different
network types, and different protocols – finding analytical
solutions for a wide range of potential use-cases becomes
extremely complex. Moreover, service providers may change
the streaming protocol, be it in terms of adaptation strategy,
used network protocols or something else, potentially leading
to the need for network operators to adapt their QoE/KPI
estimaton models. For such reasons, numerous recent studies
have turned to utilizing ML techniques for QoE/KPI esti-
mation, arguing that such approaches are potentially more
flexible and sustainable in the long run [8], [14], [15], [17],
[19], [21], [25], [27].

In both SM and ML approaches, application-level
ground-truth data needs to be collected for the learning phase.
This can be relatively easy for some services and platforms
(such as YouTube viewed on a desktop device or an Android
phone), but more difficult for others. Most related work
is focused on YouTube, partially due to application-layer
data being easily obtainable. Earlier video streaming per-
formance measurement apps, such as first versions of the
YoMoApp [32] and YouQ [8], relied on the YouTube IFrame
API for embedding YouTube videos and extracting per-
formance data. For Android, there is an alternative in the
form of the YouTube Android API, which however does not
report on all relevant application events [24]. As studies have
shown that thesemeasurement apps do not necessarily behave
in the same way as the official native YouTube app [24],
new approaches have been proposed that extract data from
YouTube’s Stats for Nerds window, available both in the
browser and in the app [24], [33]. A similar performance
report window is available for Twitch and Netflix, but only
when viewed in the browser. While in SM–based approaches,
collecting a smaller dataset for determining the streaming
protocol is usually sufficient, in ML–based approaches, col-
lecting a large and varied (in terms of application-layer per-
formance) dataset is crucial. This is why most recent papers
report on their data collection automation efforts, employing
frameworks such as Selenium [21].

ML–based QoE/KPI estimation solutions proposed in lit-
erature are fairly similar in their core idea (Figure 3). Once
the dataset is collected, network traffic features are extracted
from the network traffic trace, and corresponding desired
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FIGURE 3. Generic approach for ML–based QoE/KPI estimation model
training.

KPI/QoE metrics are calculated based on application-level
performance data. The combined data is fed toML algorithms
for the purpose of training models that are then able to
estimate KPIs/QoE based only on network traffic features.
Published papers for the most part differ in terms of: data
collection methods, specified features and targets, objectives,
and use-cases used for validation. We provide an overview of
recent studies on ML–based in-network QoE/KPI estimation
for HAS in reverse chronological order in Table 1. The table
summarizes the main objectives of these studies (such as
session-level vs. real-time QoE/KPI estimation, addressed
use-cases, target variables), information on used datasets
(e.g., collected in a lab WiFi network vs. mobile network,
number of videos in the dataset), and key findings.

While all of the listed papers presented either a novel
methodology or addressed new use-cases at the time they
were published, the aim of this paper is to bring together these
different methods under a joint framework, covering all key
steps in designing and deploying a solution for in-network
QoEmonitoring. We propose a conceptual generic and exten-
sible framework for model training, model deployment, and
re-evaluation. Through the description of the framework,
we address questions related to actual deployment and utiliza-
tion of models. The framework is defined in a way that allows
different levels of automation, ranging from fully automated,
in case data collection is also done in an automated manner,
to partially automated, if some kind of expert intervention is
necessary, such as starting a new measurement campaign to
re-evaluate existing models. We validate individual compo-
nents of the framework on use-cases concerning YouTube
video on demand, and address timely challenges related
to session-level QoE/KPI and real-time KPI classification,
going beyond related work in terms of addressing additional
questions relevant for practical applications, thus making
connections between otherwise fragmented research.

III. FRAMEWORK OVERVIEW
In this section, we present the concept of a generic and
flexible framework for in-network ML–based HAS QoE/KPI
monitoring. The idea behind the framework is to integrate
and automate the process of QoE/KPI estimation model
training, in-network model utilization, detection of model
under-performance in light of service behavior changes, and
consequent model adaptation.

The framework consists of three main functional compo-
nents: (1)Model training, (2)Model deployment (in-network

QoE/KPI estimation), and (3)Model re-evaluation and adap-
tation (Figure 4). Additionally, theConfiguration and orches-
tration component provides an interface for an expert to
specify parameters to be used for each use-case (e.g., for
on-demand YouTube streaming, run real-time video resolu-
tion prediction based on a decision tree model trained on the
top 10 features selected using the SFS algorithm from a spec-
ified feature set). We note that this section describes possible
configuration options of the conceptual framework, while
parameters that work best in practice for a specific service
need to be determined experimentally. However, the follow-
ing sections describe the implementation of the framework,
validated in the case of YouTube, and serve as guidelines that
can be applied to other services as well.

A. MODEL TRAINING
The Model training component takes network- (flow and,
if available, radio) and application-level data as input. First,
it extracts network-level features and ground-truth labels,
according to the specification for the service in question.
The exact features and labels to be extracted are specified by
an expert through the Configuration and orchestration com-
ponent, separately for real-time and session-level QoE/KPI
estimation. The component itself can be used for the training
of both types of models, with what is utilized in practice
depending on the configuration. Extracted features and labels
are fed to the feature selection algorithm, to eliminate irrel-
evant features and reduce complexity of the models. The
algorithm and algorithm parameters that are to be used in
this step are specified through the Configuration and orches-
tration component. Finally, the models are trained using the
algorithm and parameters selected in the configuration.

Collected data, that is used as input to the model train-
ing component, may vary across different services, but
also across different use-cases concerning a single ser-
vice (e.g., different apps used for accessing the content).
The approach we describe in later text is applicable for
any use-case, regardless of network-level differences, as it
relies solely on packet size information. However, additional
information used as predictors, such as TCP-data (where
applicable), context-data, or radio-data available to network
operators may improve model performance. Ground-truth
application-level data extraction is more challenging in the
sense that data is not always obtainable. For example,
YouTube offers video performance metrics in their Stats for
Nerds window, both on desktop and mobile devices (in the
browser and in the official app), but a similar overlay offered
by Twitch is only accessible in the browser (both desktop and
mobile) and not in the app.

The exact features and labels to be extracted from collected
data depend on the purpose and desired goals. If the goal is
to manage the network traffic in real-time, ground-truth data
used for training should reflect the conditions that need to be
detected (e.g., detecting that multiple users in a network seg-
ment experienced a stalling moments ago requires a model to
be trained on short time-windows of network traffic labelled
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TABLE 1. Overview of selected recent studies addressing machine-learning–based in-network QoE/KPI estimation for adaptive video streaming.
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FIGURE 4. Conceptual framework for in-network ML–based QoE/KPI monitoring of HTTP adaptive streaming.

with stalling information). If the goal is to plan and dimension
the network to meet users’ expectations on a larger scale,
estimating QoE on a session-level might be more appropriate.
A challenge also lies in identifying network-level features
that correlate with these application-level events. Related
work on QoE/KPI estimation, discussed in the previous
section, provides information on possible network-level met-
rics that have proven to be promising on selected use-cases.

Popular ML frameworks offer a lot of valuable ready-
to-use tools for feature selection and model training. In our
work, we relied on the wrapper approach, using sequential
feature selection to select relevant features. This method
enables the selection of features that work well together,
as opposed to methods that evaluate each feature separately
(discussed further in SectionV). Formodel training, we found
thatmodels trained using tree-based algorithms, such asDeci-
sion Tree or Random Forest, in most cases performed best
for this purpose [8], [15], [17], [19], [21], [25], [34]. We also
argue that using more lightweight models (such as decision
trees instead of random forests) may be better in actual
in-network applications, as they may require significantly
less resources, while potentially only slightly sacrificing the
performance.

B. MODEL DEPLOYMENT AND QoE/KPI
ESTIMATION COMPONENT
The purpose of the QoE/KPI estimation component is to
be deployed in the network, and output QoE/KPI estimates
on session-level and/or in real-time, based on the network-
and context-data input. We note that by ‘real-time’ we are
referring to estimations made across a chosen time interval.

While models can be trained to make estimates on a
per-second time frame, an operator may decide that mak-
ing estimations for 5-, 10-, or 20-second intervals may be
sufficient. As opposed to QoE/KPI estimations made on
a per-session level, such approaches may be utilized for
real-time resource allocation and optimization mechanisms.

We assume that the data serving as input for this component
has previously been filtered, i.e., we do not explicitly portray
traffic classification and the separation of flows correspond-
ing to different users. The component only receives relevant
filtered information corresponding to both uplink and down-
link data (e.g., packet sizes, timestamps).

The component can continuously track real-time features,
output real-time KPI outputs, and detect session starts or
ends, to be used for session-level QoE/KPI classification.
In our prototype implementation, various network traffic
statistics are tracked in 1 s windows for this purpose, but
different precisions and additional features may be used as
well. Real-time KPIs estimated based on the deployed model
can be used as final outputs in this step to take desired actions,
such as traffic rerouting or resource reallocation.

Once a session start is detected by the Session delimitation
module, the Session-level feature extraction module starts
aggregating session-level traffic features. As soon as the ses-
sion end is detected, calculated features can be forwarded to
the Session-level QoE/KPI classification module, which out-
puts classes of interest, as defined by the model specification.
We note that some statistics of the network traffic cannot be
calculated in this way (such as median, which requires full
state). If such features are necessary, the traffic information
needs to be buffered for the whole session. Additionally,
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TABLE 2. Summary of measurement campaigns.

if for a certain use-case both real-time and session-level
QoE/KPI estimation is employed, session-level features can
be enriched with real-time KPI estimates, for potentially
better performing session-level estimation. However, in that
case, models need to be trained with those estimates in mind.
This idea is briefly explored in Section VI-E, but is omitted
in Figure 4 for the sake of simplicity and cleanliness.

C. MODEL RE-EVALUATION AND
ADAPTATION COMPONENT
The most intuitive way to check if the QoE/KPI estimation
component is up-to-date is to check if its performance is com-
parable to the performance achieved during the model train-
ing phase. This requires a data collection campaign, to obtain
a dataset labelled with ground-truth. TheModel re-evaluation
and adaptation component initiates a smaller-scale periodical
data collection campaign, tests the models and reports on
results. The periodicity of re-evaluation is defined in the
configuration, and will depend on the observations regarding
a certain service. The component can also be configured
to automatically start a larger measurement campaign for
the purpose of training new models, when such action is
required, i.e., if the model is performing worse than the
defined threshold.

IV. DATASETS AND ADDRESSED RESEARCH TOPICS
To validate individual components of the framework, we used
YouTube data collected across three measurement cam-
paigns.1 While a number of large scale studies have con-
ductedmeasurements using fixed network access and desktop
browsers [15], [17], [19], [21], [25], less focus has been on
measurement campaigns conducted on mobile devices [20],
[23], [24], and in particular using the native YouTube app. All
three of our campaigns were conducted in a lab environ-
ment with emulated network conditions, in order to induce
QoE degradations and provide a variety of examples to ML
algorithms to learn from and incorporate that knowledge into
trained models.

The laboratory environment is depicted in Figure 5.
A smartphone playing YouTube videos using the official
app is connected to the Internet through a router whose traf-
fic is routed through the IMUNES2 node, where bandwidth

1Select datasets are available at https://muexlab.fer.hr/muexlab/research/
datasets.

2http://imunes.net/

FIGURE 5. Laboratory setup for data collection.

limitations are imposed. All the traffic passing through the
router is replicated with an Albedo Net.Shark3 portable TAP
device and captured using tcpdump.4 In this environment,
IMUNES (a freely available general purpose IP network
emulation/simulation tool) was scripted to imitate 4G5 [35]
and 3G6 [36] bandwidth, as provided in publicly available
measurement logs, and limit the bandwidth to fixed values.
In our previous work, we also performed measurements in
operational mobile networks [23], [24], but collecting a var-
ied dataset is of utter importance to train robust models, and
is much easier to obtain in the lab environment. For obtain-
ing the ground-truth application-level data, we recorded the
screen while YouTube’s Stats for Nerds window was enabled
and displayed, and extracted the performance data using
Optical Character Recognition (OCR). We note that there
is a simpler approach able to directly extract text from
Stats for Nerds [33], but is currently not applicable for
the iOS platform. Table 2 summarizes the details on three
aforementioned measurement campaigns. The total number
of videos across all three datasets is roughly 1000. While
automation frameworks such as Selenium have enabled large
scalemeasurements presented in relatedwork [15], [17], [19],
[21], [25], these can only be applied if viewing content in
the browser. We are aware of mobile automation frameworks
such as Appium7 and plan to employ these in the future.

3http://www.albedotelecom.com/pages/fieldtools/src/netshark.php
4https://www.tcpdump.org/
5http://users.ugent.be/~jvdrhoof/dataset-4g/
6http://home.ifi.uio.no/paalh/dataset/hsdpa-tcp-logs/
7http://appium.io/
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In the following sections of the paper, we validate sepa-
rate parts of the framework. Here we provide a summary of
addressed research topics and used datasets, and map them to
the sections of the paper:

1) Real-time KPI classification model training and vali-
dation.Wepresent a methodology devised for real-time
KPI classification, and validate it using the dataset
And19 for the classification of video resolution and
bitrate. (Section V)

2) Session-level QoE/KPI classification model training
and validation.We present a methodology devised for
session-level QoE/KPI classification, and validate it
separately using datasets And19 and iOS19 for the
classification of MOS (Mean Opinion Score), video
resolution, and bitrate. (Section VI-B)

3) Session delimitation. A prerequisite for session-level
QoE/KPI classification is detecting session start and
end times. We present our preliminary work addressing
this problem in Section VI-A, using dataset And19 in
the analysis.

4) Model generalization. Given the variety of possible
service usage scenarios, trainingmodels able to address
QoE/KPI estimation for multiple use-cases is of great
value. We present our results in that direction in
Section VI-C, using datasets And19 and iOS19.

5) Model re-evaluation. To emphasize the need for peri-
odic model re-evaluation and adaptation, we test the
models trained on dataset And18 on dataset And19.
The results are presented in Section VI-D.

6) Hybrid approach.We test to what extent we can utilize
knowledge about real-time KPI predictions to poten-
tially improve session-level QoE prediction. The used
dataset in this case is And19.

V. REAL-TIME KPI MONITORING
A. METHODOLOGY
Based on ideas presented in related work on buffer estimation
and stalling prediction [22], [25], [37], we defined a network
traffic feature set containing 228 features. These features
include various network-level statistics calculated using only
the IP addresses and packet sizes from the traffic trace,
making the methodology applicable for various services,
platforms, protocols, etc. The core idea is to train models
that estimate KPIs for each second of the video streaming
session, based on network traffic features calculated on the
traffic exchanged during that second, but also wider time-
windows, including traffic exchanged in intervals preceding
the observed 1 s interval. We cast the problem of KPI estima-
tion as a classification problem, described further on.

The description of used statistics is given in Table 3. Each
of the statistics is calculated for both downlink and uplink
traffic, and on window sizes of 1, 2, 3, 5, 10, and 20 seconds.
To clarify the notion of the window, consider the following
example: A 5 s window feature is calculated on a 5 s interval
of network traffic, where the most recent of the 5 seconds
is the one we are trying to classify into a target KPI class.

TABLE 3. Condensed list of network traffic features used for real-time
KPI classification. Each feature is calculated for both downlink and uplink
traffic, and on windows of 1, 2, 3, 5, 10, and 20 seconds, constituting the
full set of 228 features.

To indicate the exact statistic, direction, and window size,
we use the following convention for naming the features:
<direction>_<statistic>_<window_size>. For
example, dl_max_iat_w20 refers to a feature calculated
as maximum downlink packet interarrival time, calculated
based on traffic captured in the last 20 seconds.

The dataset used for KPI estimation model training
(And19), includes both features corresponding to each inter-
val, as well as ground-truth labels. As stalling was rarely
observed, we focused on resolution and video bitrate clas-
sification to demonstrate our approach. Each 1 s interval
instance (row in the dataset) consists of 228 feature values and
2 labels: resolution classified into 2 classes (‘‘sd’’/‘‘hd’’), and
bitrate classified into 2 classes (‘‘low’’/‘‘high’’). Class ‘‘hd’’
corresponds to intervals in which the played video resolution
was 720p or higher, while in the case of bitrate, class ‘‘high’’
corresponds to instances with played video bitrate higher or
equal to 1000 kbps. The dataset contains 49825 instances,
each sample corresponding to 1 s of video playback. Figure 6
shows the distribution of instances across classes.
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FIGURE 6. Distribution of instances across real-time KPI classes in
dataset And19. Instances omitted to balance out the number of samples
are shaded.

To train resolution and bitrate classification models,
we have taken the following steps: (1) balancing out the num-
ber of samples per class by subsampling the dominant class
(only in the bitrate classification case), (2) splitting the dataset
into training (67%) and validation (33%) set, (3) selecting the
10 most relevant features for each classification by using 2
common approaches: Feature-Importance–based selection
(FI)8 and Sequential Feature Selection (SFS),9 and (4) train-
ing the models by using 2 algorithms: Decision Tree (DT)
and Random Forest (RF). We train and test 8 models in total,
addressing 2 aforementioned classifications using 2 feature
selection methods and 2 ML algorithms.

The results in terms of model performance are often depen-
dent on the complexity of the feature selection process and
on the complexity of the algorithm used to train the model.
We compare model performances while relying on two com-
monly used feature selection methods that differ greatly in
the amount of resources needed – selection based on feature
importance and sequential feature selection. We also com-
pare results achieved with two commonly used algorithms,
Decision Tree, and Random Forest consisting of 1000 trees.
We note that all median features were omitted, as their
calculation is memory-intensive and thus not preferred for
potential in-network utilization.

B. RESULTS
Table 4 summarizes the results in terms of resolution clas-
sification models’ performance on the validation set. The
table shows precision, recall, and accuracy values for all four
cases depending on whether FI or SFS was used for feature
selection, and on whether DT or RF was used for model
training. SFS is significantly more computationally-intensive
than FI (for comparison purposes only, taking a few hours to
complete, as compared to a second for FI run on the same PC).
However, as feature selection is done only in the model train-
ing phase, and models with SFS–selected features perform
significantly better, it makes sense to favor SFS. On the other
hand, the performance of RF–trained models is comparable
to that of DT–trained models. Given that we are dealing
with models that need to be utilized and deployed in the

8https://scikit-learn.org/
9http://rasbt.github.io/mlxtend/

TABLE 4. Performance of real-time resolution classification models
trained and tested using the And19 dataset.

network and run in real-time, simpler models are preferred,
thus yielding the conclusion that DT may be a better option.

Figure 7 shows the importance of features in each trained
model. In subfigures 7a and 7b, the feature list is the same,
given that in both cases the same FI-based selection was used.
However, the importance of these features in trained models
differs. The same is true in case of SFS-based selection
(subfigures 7c and 7d). It can be observed that the most
important features in all four cases mostly are the same, but
less important features are different depending on whether
FI or SFS was used. This indicates that models based on
SFS benefited from the exhaustive search of the feature
space through employing less important but still very relevant
features.

In case of bitrate classification (Table 5), there are no dras-
tic differences in performance of the four models, regardless
of the feature selection method and training algorithm. The
most important features are mostly the same for all four mod-
els, while other features differ (Figure 8). However, it may
be concluded that these less important features, in case of
bitrate classification, do not contributemuch to themodel per-
formance anyway, as the relationship between video bitrate
and traffic volume is more straightforward than in the case of
resolution.

TABLE 5. Performance of real-time video bitrate classification models
trained and tested using the And19 dataset.

VI. SESSION-LEVEL QoE/KPI MONITORING
To train models that estimate QoE/KPIs on a per-video
session-level, it is necessary to extract network traffic fea-
tures (predictors) from portions of the traffic corresponding to
video streaming sessions and label the lists of features with
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FIGURE 7. Feature importances in real-time resolution classification models.

FIGURE 8. Feature importances in real-time video bitrate classification models.

TABLE 6. Condensed list of network traffic features used for
session-level QoE/KPI classification. The full set consists of 62 features.

ground-truth (targets). In this section, we consider features
listed in Table 6 and label the instances with MOS (Mean
Opinion Score) classes (‘‘high,’’ ‘‘medium,’’ ‘‘low’’), longest

played resolution classes (‘‘hd,’’ ‘‘sd’’), and average played
video bitrate classes (‘‘high,’’ ‘‘low’’).

For each video in the dataset, MOS is calculated using the
ITU-T Recomm. P.1203 and the implementation published
online1011 [38], [39], and then classified as follows: into class
‘‘high’’ if MOS if higher or equal to 4.0, class ‘‘low’’ if
it is lower than 3.0, and ‘‘medium’’ otherwise. Class ‘‘hd’’
in longest played resolution classification indicates 720p or
higher resolutions, and average bitrates higher than 1000 kbps
were classified as ‘‘high’’ bitrate.

A. SESSION DELIMITATION
A prerequisite for session-level QoE/KPI estimation is ses-
sion delimitation, i.e., detection of the start and the end of
the video playback in the traffic. This problem has been
investigated in [15], where the authors delimit sessions based
on (1) a spike of non-video traffic in downlink at the start
of the session, and (2) no video traffic at the end of the
session. The authors attribute the aforementioned spike to the
download of the player code or to the download of the catalog
webpage. However, this solution is only viable in the case
when a user is using Web–based streaming applications, and
refreshing theWebpage to access the catalog before watching
another video. There are also limitations with regards to the
session end detection, as the amount of content in the buffer
will greatly depend on the available bandwidth, and thus the

10https://github.com/itu-p1203/itu-p1203
11https://github.com/Telecommunication-Telemedia-Assessment/itu-

p1203-codecextension
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amount of time at the end of the playback in which no content
is downloaded can vary.

As an initial step towards finding a more generic and
robust solution, we tried applying ML on 1 s intervals for
this purpose, and doing so on a dataset collected in a variety
of network conditions. We labelled the real-time features (as
listed in Table 3) of the And19 dataset with classes ‘‘start,’’
‘‘end,’’ and ‘‘other.’’ As all data was collected with possible
time-shift of up to 1 s (due to the precision of data collection
methods), we labelled the first three intervals as ‘‘start,’’
the last three as ‘‘end,’’ and otherwise as ‘‘other.’’We note that
for session-level QoE/KPI estimation, a delimitation error of
up to a few seconds is likely not to be considered critical.
We split the dataset in half, balanced out the number of
instances per class in the first half, selected traffic features
using SFS, and trained the models using Random Forest.
The models were tested on the whole other half, without
balancing.

We first list the selected features as follows:
• ul_min_pckt_size_gt100_w2,
• ul_max_pckt_size_gt100_w3,
• ul_min_pckt_size_gt100_w3,
• dl_mean_pckt_size_w5,
• ul_min_pckt_size_gt100_w5,
• ul_max_pckt_size_w5,
• dl_active_time_w10,
• ul_min_pckt_size_gt100_w10,
• ul_max_pckt_size_w10,
• ul_throughput_w20.

Using these features, we achieved an accuracy of 83 %.
Although this would mean that in a 2-minute-long video, over
20 1 s intervals would be misclassified, further inspection of
the predictions shows that it is still a viable approach. The
results showed some typical classification errors that can be
addressed by simple postprocessing of the predictions:
• More than 3 ‘‘start’’ or ‘‘end’’ intervals labelled as
‘‘start’’/‘‘end’’ – the algorithm detects the initial burst
and the depleting phase – this does not affect the ability
of detecting the start or end.

• Instances between classes ‘‘start’’ and ‘‘end’’ are con-
fused – in our measurements, videos were played one
after the other, which may be the reason for this con-
fusion – the predictions still offer enough knowledge to
split between the videos.

We also inspected the benefits of adding feature windows
that succeed the interval window, as session-level QoE/KPI
estimation does not necessarily need to happen right after the
session is finished. We added the same features calculated
on windows surrounding the instance interval (the instance
interval is in the center of the window), and the same features
calculated on windows succeeding the instance interval (the
instance interval is the first interval in the window). The
accuracy increased to up to 92%, with misclassifications
following the same patterns as described earlier. However,
we note that the performance increase may originate from the
model detecting spikes after the end of the video, thus making

it only applicable in the case when videos are played one after
the other. While these are only initial results, they show the
potential of using ML for session delimitation, and present
challenges that are yet to be addressed.

B. MODEL TRAINING AND PERFORMANCE
We trained 12 models to validate the framework’s
session-level QoE/KPI classification: using two datasets (one
collected on an Android device, and one on iOS), two ML
algorithms for training purposes (Decision Tree and Random
Forest), and focusing on MOS, longest played resolution,
and video bitrate classification. For each of the models,
we first handle imbalances with regards to the number of
instances in each class (Figures 9 and 10). In the case of
bitrate, we randomly subsample the dominant class, while
in the case of MOS, we subsample the majority class and
upsample the minority class using SMOTE (SyntheticMinor-
ity Over-sampling Technique).12 Following the class bal-
ancing, the dataset was split into training and validation
sets (67% : 33%), features were subset using SFS, and top
10 features were used to train DT and RF models. The results
in terms of model performance are presented in Table 7 for
Android, and in Table 8 for iOS.

FIGURE 9. Distribution of instances across session-level QoE/KPI
estimation classes in dataset And19.

FIGURE 10. Distribution of instances across session-level QoE/KPI
estimation classes in dataset iOS19.

The results show that, both for Android and iOS, aver-
age video bitrate is predicted with highest performance.
Looking into features that were used in bitrate classification

12https://github.com/scikit-learn-contrib/imbalanced-learn
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FIGURE 11. Feature importances in session-level QoE/KPI classification models trained for Android platform.

TABLE 7. Performance of session-level YouTube QoE/KPI classification
models trained and tested using the And19 dataset.

TABLE 8. Performance of session-level YouTube QoE/KPI classification
models trained and tested using the iOS19 dataset.

models, it is clear that these models are also very simple,
as video bitrate highly correlates with downlink throughput.
We demonstrate this with Figure 11c, depicting the feature
importance in DT–based bitrate classification for Android.
Resolution classification models also heavily rely on down-
link throughput features, but result in lower performance,
when compared to bitrate classification models. This may
be emphasized due to the fact that used datasets include
around 20% of static content (such as music with album
covers). In these cases, high resolutions do not necessarily
result in high bitrates and consequently downlink throughput.

Features used in DT–based resolution classification for
Android are shown in Figure 11b.

Finally, MOS classification proves to perform the worst,
ranging from 59 to 65%. This is expected, as MOS is already
a complex construct influenced by a variety of KPIs that
reflect in different ways on the network-level. Features used
in RF–based MOS classification for Android are shown
in Figure 11a. Aiming to improve the performance of MOS
classification models, we propose the hybrid approach in
Section VI-E, which uses real-time KPI predictions as addi-
tional features. However, we stress that the MOS classifi-
cation models presented in this section may be sufficient
in certain applications, given that most misclassifications
occur between classes ‘‘low’’ and ‘‘medium’’ or ‘‘high’’ and
‘‘medium.’’

Due to a lack of guidelines in terms of network conditions
in which the data should be collected, what kind of content
the dataset should include, etc., data collection methods differ
across related work. Moreover, related work mostly focuses
on YouTube viewed in the browser, rather the native YouTube
app. We thus avoid direct comparisons with related work
in terms model performance. We are aware that introducing
estimated chunk–based features, such as in [15], [19] would
potentially improve the performance of the models presented
in this section. However, chunk detection requires signifi-
cantly more processing, and may be impossible in cases when
multiple chunks are downloaded in parallel. This is why,
to keep our models simple and robust, we only focus on
network-layer features.

C. POTENTIAL FOR MODEL GENERALIZATION
In light of the variety of use-cases, even if only focusing on
YouTube, it is beneficial to explore the possibility of training
models able to address multiple cases.We train 6models – for
classifying MOS, resolution and bitrate using DT and RF –
on the merged dataset that includes both Android and iOS
data (And19 and iOS19). To the best of our knowledge, QoE
estimation for video streaming on iOS has only to a certain
extent been addressed in previous work [23], but not in the
context of generic models that address multiple platforms.
We follow the same procedure as in Section VI-B, including
splitting, subsetting the merged dataset to balance out the

74702 VOLUME 8, 2020



I. Orsolic, L. Skorin-Kapov: Framework for In-Network QoE Monitoring of Encrypted Video Streaming

number of samples in line with the least populated class and
SFS–based feature selection. Trained models’ performance is
summarized in Table 9.

TABLE 9. Performance of session-level YouTube QoE/KPI classification
models for Android and iOS (trained and tested using the merged
And19 and iOS19 dataset).

The results are evidently comparable with the results
achieved with separate models. This means that a single
model can potentially address multiple use-cases and there
is no need to first recognize the platform once the model
is deployed. This does not necessarily mean that the model
itself can be trained on a single-platform dataset and applied
to another platform, as has been investigated in [23], due to
service implementation differences on the two platforms [40].
Similar conclusions, but focused on different services and not
platforms, have been found in [15]. The authors show that
developing well–performing generic models is feasible if the
training set included data from all services. Applying models
trained on one service to another brought a significant drop
in model performance. In [23] we found that the drop for
different platforms is not that significant, but still existent.

D. MODEL RE-EVALUATION
Streaming services can occasionally apply updates of the
adaptation logic and thus change the typical network traffic
patterns that QoE/KPI estimation models are dependent on.
While the changes can be observed on an application-level as
changes in the amount of data that is preloaded (buffered),
changed segment size, etc., in this section we test to what
extent these changes reflect on the performance of QoE/KPI
classification models. We train the models on the dataset
And18, collected on an Android device in early 2018 and test
it on the dataset collected on Android in early 2019 (And19).
Figure 12 depicts the number of instances in each of the
classes in dataset And18. The same is displayed for dataset
And19 in Figure 9. Prior to model training, we subsample
the And18 dataset to balance out the number of instances in
accordance with the least populated class. We note that the
dataset And19 was not subsampled prior to model testing.
Models’ performance is reported in Table 10.

The results show a slight decrease in performance of
resolution– and bitrate–classification models, but significant

FIGURE 12. Distribution of instances across session-level QoE/KPI
estimation classes in dataset And18.

TABLE 10. Performance of session-level YouTube QoE/KPI classification
models trained on Android dataset from 2018 (And18) on a newer
Android dataset from 2019 (And19).

decrease inMOS–classification performance.We explain this
as follows. The KPIs we aim to predict, longest played res-
olution and average video bitrate, are averaged across the
whole session and do not carry temporal information. Thus,
a lot of information regarding the adaptation strategy is lost.
On the other hand, the ITU-T Recomm. P.1203 model, based
upon which MOS is calculated, takes into account all the
QoE-influencing data on a per-second level, which is where
the adaptation strategy changes come into play.

E. CONSIDERATIONS FOR IMPROVING QoE/KPI
MONITORING PERFORMANCE-
HYBRID APPROACH
With the aim of improving the performance of MOS classi-
fication models, we enrich them with predictions made by
real-time resolution and bitrate classification models. Once
the per-second predictions for the session are available, they
are aggregated into two additional features (on top of the
ones defined in Table 6) – percHD and percHBr – percentage
of intervals with high definition and percentage of intervals
with high bitrate. As in previous sections, we balance out the
dataset, split it into train and validation set (67% : 33%), select
relevant features, and train DT and RFmodels. The results are
given in Table 11.
The performance of MOS classification models was sig-

nificantly improved, while the complexity of the model
is reduced. We illustrate this statement with Figure 13 that
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TABLE 11. Performance of session-level YouTube QoE classification
models enriched with real-time predictions as additional features.
Models were trained and tested using the And19 dataset.

FIGURE 13. Feature importances in the hybrid MOS classification model.

shows feature importances in the DT–based MOS classifi-
cation model. The percentage of intervals with HD resolu-
tion was confirmed as the most important feature, followed
by one of the commonly used throughput–based features.
PercHBr was not considered relevant by the SFS algorithm.
The reason for that may be that bitrate highly correlates with
certain throughput–based features, and introducing percHBr
carries no additional value to the model. On the other hand,
as throughput–based features can be misleading for videos
with static content, percHD carries additional value in iden-
tifying such cases.

VII. CONCLUSIONS AND FUTURE
RESEARCH CHALLENGES
The applicability of machine learning techniques has been
widely studied in the domain of in-network QoE/KPI esti-
mation for HAS. Studies have, however, for the most part
been focused on isolated problems, mostly trying to solve
methodological issues, such as data collection or feature
extraction. In this paper we provide a broader view of the
challenges in this domain by presenting a conceptual frame-
work for QoE/KPI estimation that enables automatic model
training, deployment and execution, and re-evaluation. Indi-
vidual components of the framework have been demonstrated
on a use-case concerning YouTube. The framework is generic
and can be translated to other services as well, by following
the guidelines given through the YouTube example. Follow-
ing this example, we present our methodology for real-time
KPI estimation and session-level QoE/KPI estimation, focus-
ing on YouTube video on demand.We emphasize the fact that
we collected data through the official YouTube apps, thus
observing realistic adaptation behaviors. Related work very
scarcely addresses this scenario (especially for iOS), due to
data collection being more complex.

As efficient data collection is crucial, we are currently
putting our efforts into automating the data collection
process, which will enable running larger measurement cam-
paigns, and thus potentially will increase the robustness of the

models. This would also enable including playback–related
user interactions, making our datasets more realistic. What
is currently missing are guidelines on what data distributions
are needed in collected datasets for models to be robust, and
furthermore how much data is needed. Specifically, what are
the different types of content that should be included, what
kind of network conditions should be included, etc.

There are also numerous challenges related to the deploy-
ment of devised models, especially in the context of 5G
networks and 5G-specific network functions that support
network data analytics [16]. One of the problems related to
the actual deployment is also the computational complexity.
While we scratch the surface of this question by address-
ing the trade-off between model complexity and accuracy,
it remains unclear how much resources these models would
require if deployed in the network, and what portion of the
traffic in the network should and could be analysed. An inter-
esting avenue for future research is also exploration of the
potential for utilizing P4 and deploying QoE estimations
directly in the data plane [41]–[43].

Undoubtedly, a big challenge for in-network QoE/KPI
estimation lies in the dimensionality of the problem and in
the changes that can be introduced within a single service
over time. From the data analytics perspective, this may
be observed as the ‘‘concept drift’’ phenomenon, depending
on the domain also known as ‘‘covariate shift’’ or ‘‘dataset
shift.’’ An interesting research question is whether these shifts
could be addressed in deployed models without collecting
new ground-truth data, or at least collecting significantly less
ground-truth data, using methods from the domain adaptation
field. With regards to the services with different streaming
adaptation logic, related work has shown that it is possible
to train well-performing generic models that infer QoE/KPIs
for multiple services. However, this has proven to be the
case only if the model was trained on data from all ser-
vices. The question remains whether different techniques,
for example those from the domain of transfer learning and
semi-supervised learning, couldmake training data collection
less exhaustive.

In future work, we plan to address additional use-cases,
but are especially interested in live streaming services, such
as YouTube Live and Twitch, as these types of services are
gaining popularity and are more delay–sensitive and thus
susceptible to QoE degradations.
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