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ABSTRACT Rate adaptation is an efficient mechanism to utilize the channel capacity by adjusting the
modulation and coding scheme in a dynamic wireless environment. The channel feedback, such as acknowl-
edgment/negative acknowledgment (ACK/NACK) messages or the channel measurement such as received
signal strength indicator (RSSI) can be applied to the rate adaptation. Existing rate adaptation algorithms
are mainly driven by heuristics. They can not achieve satisfactory transmission rates in the time-varying
environment. In this paper, we focus on the rate adaptation problem in a time-division duplex (TDD) system.
Amulti-armed bandit (MAB) strategy is applied to learn the changes of the channel condition from both RSSI
andACK/NACK signals. A discounted upper confidence bound based rate adaptation (DUCB-RA) algorithm
is proposed. We show that the performance of the proposed algorithm is converged to the optimal with math-
ematical proofs. Simulation results demonstrate that the proposed algorithm can adapt to the time-varying
channel and achieve better transmission throughput compared to existing rate adaptation algorithms.

INDEX TERMS Throughput, rate adaptation, wireless communication, time-division duplex, multi-armed
bandit.

I. INTRODUCTION
Comparing to wired communication systems, wireless com-
munication systems suffer from time-varying channels
caused by channel fading or interference [1]–[4]. These
stochastic effects become more severe when the environment
changes, for example, the movements of mobile stations
[5], [6]. Rate adaptation (RA) is necessary tomeet the channel
changes by adjusting the modulation and coding schemes of
the transmitter.

In order to determine appropriate transmission rate,
the channel condition needs to be evaluated. The channel
state information (CSI) that contains all information about
the channel properties is the most accurate measure of the
channel. However, complete CSI feedback is costly and
usually infrequent [7]. Other performance metrics such as
signal-to-noise ratio (SNR), received signal strength indicator
(RSSI), and acknowledgement/negative acknowledgement
(ACK/NACK) can be used to select appropriate transmission

The associate editor coordinating the review of this manuscript and

approving it for publication was Lei Guo .

rates [8], [9]. Based on the selection of channel condition
evaluation metrics, the RA schemes can be classified as
frame-level and measurement-based schemes [10].

Frame-level RA schemes determine the transmission rate
of current packet from the knowledge of previous trans-
missions. Such knowledge is available in the form of
the ACK/NACK signals. Frame-level RA schemes usually
can not respond to channel variations that occur on short
timescales. For comparison, measurement-based schemes
can respond to fast channel variation. These schemes deter-
mine the transmission rate based on the channel measure-
ments. The channel measurements include SNR, RSSI, etc.
The mapping between the rate and the channel measurement
can change when the channel condition changes [11].

Auto rate fallback (ARF) adjusted the transmission rate
intuitively: it decreased the transmission rate by one gear
when missing 2 ACKs consecutively and increased the trans-
mission rate by one gear when receiving 10 ACKs consecu-
tively [8]. Adaptive ARF (AARF) increased the time interval
between attempts at a higher rate when encountering succes-
sive probe failures [12]. ARF and AARF classified channel
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conditions as either ‘‘good’’ or ‘‘bad’’ based on receivedACK
signals, and adjusted the rate accordingly. This binary classi-
fication was not efficient in converging to the optimal rate,
especially when facing a large collection of available rates
or a rapidly varying channel. Minstrel utilized a mechanism
called multi-rate retry chain to update the rate adaptation
strategy [13]. The retry chain consisted of four different
rates and the corresponding number of attempts. Minstrel
allocated 90% transmission for the normal transmission, and
the rest 10% transmission for probing other rates. SampleRate
attempted the available rate in the order from the highest
one to the lowest one [14]. SampleRate allocated a fixed
percentage of packets to probe other rates. Due to the fixed
exploration ratio, SampleRate and Minstrel algorithms could
not adapt to the fast time-varying channel quickly, and their
performance degraded in the static channel.

The SNR-guided rate adaptation (SGRA) algorithm set
up the relationship between SNR and frame delivery ratio
(FDR), and utilized forced probes to calibrate such relation-
ship in a real-world channel [9]. SGRA ignored the fact
that the mapping from SNR to the transmission rate was not
deterministic in practical channel conditions. In [15] and [16],
the authors acknowledged that RSSI or SNR alone did not
accurately capture the changes in wireless channels.

Besides, The ACK/NACK signals are always delayed feed-
backs of previous transmissions [17], while the impact of
the delay is ignored in existing work. The delayed feedback
may cause incorrect rate selection thus degrade the overall
throughput.

To address the above issues, reinforcement learning algo-
rithms can be appropriate tools. All RA strategies have
to trade-off between exploitation and exploration in the
dynamic wireless environment. It is straightforward to map
the exploitation and exploration phases of the multi-armed
bandit (MAB) algorithm into the RA framework and it is
easy to control the switches between the exploitation and
exploration phases [18]. In addition, in the RA problem,
the channel state transition does not depend on the rate
selection (action). The action reward does not depend on the
previous channel state either. Thus, MAB is sufficient and
effective to model the RA problem.

In this paper, we model the RA problem as a MAB
problem. A discounted upper confidence bound based rate
adaptation (DUCB-RA) algorithm is proposed. Our contribu-
tions can be summarized as follows: First, both of RSSI and
ACK/NACK signals are adopted to determine appropriate
transmission rates, while major existing work only deals with
one of them. Secondly, we treat the ACK/NACK signals as
delayed responses to the quality of the transmission, which is
typical in most wireless systems such as the long term evolu-
tion (LTE) system [17]. Thus, ourmodel ismore accurate than
other works. Thirdly, we model the RA adaptation as a MAB
problem. We show theoretically that the proposed algorithm
is asymptotically optimal.

The rest of the paper is organized as follows. Section II
introduces the system model. Section III presents the

proposed DUCB-RA algorithm, and Section IV gives a the-
oretical analysis to the proposed algorithm’s performance.
Section V discusses the RA performance under various sim-
ulation scenarios. Finally Section VI concludes the paper.

II. SYSTEM MODEL
For a wireless communication system, the capacity of an
additive white Gaussian noise (AWGN) channel depends on
the channel bandwidth and SNR. Thus the mapping from
SNR to the optimal transmission rate is fixed. When taking
the channel fading into consideration, such relationship is no
longer fixed. The relation between the optimal rate and SNR
can be highly dynamic when the channel condition changes.
In addition, it is not trivial to obtain a reliable estimate of the
SNR of a link. Many radio interfaces only provide RSSI as
an uncalibrated SNR estimate.

In this work, we consider a time-division duplex (TDD)
based system. Fig. 1 depicts the simplified transmission
between the transmitter and the receiver. At time slot 1,
the transmitter sends packet to the receiver. The receiver
reports ACK/NACK signal to the transmitter. The trans-
mit process and receive process occur alternatively. In this
system, we assume that the channel condition is ‘‘slow-
varying’’. In other words, the channel condition does not
changewithin a packet transmission, while it can change from
packet to packet.

FIGURE 1. Packet transmission in TDD system.

For each packet, the transmitter needs to select a rate from
the set of available rates {Rk}Kk=1. In this set, we assign a larger
index to a larger rate, i.e., R1 is the lowest rate, and RK is the
largest one.

In the RA problem, performance metrics that measures
the channel conditions can be considered. The RSSI can
be measured when a packet is received. The RSSI of the
received signal can be a measure of the SNR of the transmit
channel considering the reciprocity of the TDD system. The
ACK/NACK signal, usually provided as the control informa-
tion, can be obtained by the transmitter as an indicator.

The ACK/NACK signals, in general, are delayed response
to the quality of the previous transmissions. For example,
in time division LTE (TD-LTE) system, the ACK/NACK
responds to the transmitted signal 3 time slots ago [17]. With-
out loss of generality, we assume the ACK/NACK signals are
delayed for D time slots, where D ≥ 3, and D is odd due to
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the nature of the TDD system. If the ACK signal is received,
the transmission is successful. If the NACK signal is received
or the ACK/NACK signal is lost, the transmission fails. Let
θt,k denote the probability of a successful transmission in the
time slot t with rate Rk .
Next, we consider the channel conditions. According the

variation of the channels, we classify the channels into two
categories: stationary channel environment, non-stationary
channel environment.

A. STATIONARY CHANNEL ENVIRONMENT
In stationary channel environment, the channel is consid-
ered to be static. A stationary channel implies that θt,k
does not evolve over time. In stationary channel environ-
ment, a larger rate may incur more errors, thus may have
lower successful transmission probability than a smaller rate,
i.e., θt,k ≤ θt,k−1.

B. NON-STATIONARY CHANNEL ENVIRONMENT
In practice, channel conditions are always non-stationary,
i.e., θt,k may evolve over time. Due to the movement of users
or objects, the wireless communication system suffers from
fading effects. The RSSI varies over time.

In addition, if we consider the changes of the environment,
the mapping between the RSSI and the optimal transmission
rate may also changes.

We assume that the RSSI can be divided into discrete L lev-
els {Sl}Ll=1 based on the fading status, and the channel states
is also discretized into M states {Cm}Mm=1 based on the noise
level to simplify the discussion. Furthermore, we assume that
the channel state becomes worse from CM to C1. In a worse
channel, higher RSSI is required to achieve the same rate. The
channel state transitions can be modeled as a hidden Markov
model (HMM) [19]. The transition probability from channel
state i to state j is defined as

Pi→j = Pr(Ct = j|Ct−1 = i). (1)

In this work, we assume the channel changes slowly,
meaning the channel state transition only occurs between
adjacent channel states. Clearly, when the channel state
changes, the probability of successful transmission θt,k may
also change.

In order to determine the appropriate transmission rate,
RA algorithms can be applied. For example, The LA algo-
rithm compares the average RSSI RSSavg with the threshold
Thk for rate Rk to select the appropriate rate [20]. The average
RSSI RSSavg is defined as

RSSavg = (1− a1)RSS ′avg + a1RSSi, (2)

where RSS ′avg is the average RSSI of previous time slot, RSSi
is the RSSI value observed in time slot i, and a1 ∈ [0, 1]
is a time decaying factor. When the transmission fails, the LA
algorithm updates the threshold Thk associated with the
rate as

Thk = (1− a2)Thk + a2RSSi, (3)

where a2 ∈ [0, 1] is the weight of RSSi value observed in time
slot i.

RSSI is not a perfect indicator for the channel condition.
When noise or interference changes, the RSSI may stay
unchanged. In this case, the LA algorithm may be stuck at
a low rate.

The enhanced history-aware robust rate adaptation algo-
rithm (HA-RRAA) proposed in [21] selects a new rate for
the packet transmissions in the next adaptive timewindow TR.
HA-RRAA observes the ACK/NACK information in the time
window, and calculates the packet loss ratio of these frames.
It decreases the rate to the next lower one if the loss ratio is
greater than a threshold, or increases to the next higher one if
the loss ratio is smaller than another threshold.

RSSI and ACK/NACK provide information about the
channel condition from different perspectives. RSSI is an
estimate of SNR, which gives a direct suggestion to the
transmission rate. ACK/NACK signals record authentic chan-
nel response of each packet transmission. Conventional RA
algorithms generally performed adaptation based on one of
these signals. In our proposed algorithm, we take both RSSI
and ACK/NACK signals as inputs. The proposed algorithm
is discussed in detail in the next section.

III. DISCOUNTED UPPER CONFIDENCE BOUND BASED
RATE ADAPTATION ALGORITHM
In this section, we present a discounted upper confidence
bound based rate adaptation (DUCB-RA) algorithm that
adopts both RSSI and ACK/NACK information. The rate
selection problem can be modeled as a MAB problem. Under
each RSSI level Sl , there areK possible transmission ratesRk .
The K transmission rates can be considered as arms in the
MAB problem. A total of L MAB problems can be formu-
lated. When a transmission of rate Rk at RSSI level Sl occurs,
the specific arm of the MAB problem is pulled. A reward
that evaluates the performance of the current selection can
be calculated when the corresponding ACK/NACK signal is
received. Next transmission rate can be determined based on
the RSSI measurement and the updated reward estimations.
The overall algorithm is detailed as follows.

To begin with, for RSSI level Sl , an initial guess of the
transmission rate can be obtained. For example, such guess
can be obtained during the random access phase. Then, each
rate Rk is assigned with initial performance estimate r0,k ,
which is the instantaneous reward obtained of each transmis-
sion. If the transmission rate is smaller than the initial guess,
the instantaneous reward is assigned as r0,k = Rk/RK . If the
transmission rate is larger than the initial guess, r0,k = 0.
The accumulated estimated reward rk is initialized by the
instantaneous reward, or rk = r0,k .

In the subsequent transmissions, the estimated reward rk
is updated based on the ACK/NACK feedbacks. The instan-
taneous reward of selected rate Rk is given by rt,k =
ACKtRk/RK , where ACKt = 1 when an ACK signal is
received at time slot t , or ACKt = 0 otherwise. As we dis-
cussed earlier, the ACK/NACK feedback is a delayed version.
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The ACK/NACK received in time slot t gives a quantified
evaluation of the transmission with rate Rk occurred in time
slot (t − D). Since RK is the largest rate in the available
set. It is clear that the instantaneous reward is bounded with
rt,k ∈ [0, 1]. Based on the recorded historical reward and
the instantaneous reward rt,k , the estimated reward rk at time
slot t can be updated as

rk =
1
Nt,k

t∑
i=1+D

γ t−iri,kδi−D,k , (4)

where γ is a forgetting factor, δt,k is an indicator parameter.
In (4), Nt,k is the discounted number chosen times of Rk ,
which is denoted as

Nt,k =
t∑
i=0

γ t−iδi,k . (5)

When the channel is non-stationary, the parameter γ in (4)
is used to limit the influence of outdated observation. The
parameter δt,k indicates which rate is selected at time slot t ,
which is defined as

δt,k =

{
1, if Rk is selected at time slot t,
0, if other rate is selected at time slot t.

(6)

Since the initial guess of the rate is performed for the system,
the parameter δt,k can initialized by setting δ0,k = 1.
The estimated reward rk is updated after the ACK/NACK

signal is fed back. If there is no ACK/NACK signals received,
rk can still be updated by assuming a NACK signal is
received. In this case, however the current estimate of RSSI
can not be obtained. The transmitter maintains the previous
estimation of RSSI to perform the rate selection.

For the next transmission, the rate associated with the
maximum estimated reward rk is selected for transmission.
The rate selection mechanism is given by

k∗ = argmax
k∈K

rk . (7)

When the channel condition changes, (7) may not be able
to track the optimal rate. For example, when the channel
condition becomes better, the above RA algorithms will con-
tinue to select the previous rate as it yields the best estimated
reward. The new best rate is not chosen due to lack of
exploration. A bias term ct,k can be introduced to increase the
probability of exploring other rates. With exploration, more
rates can be probed with updated performance estimates. The
decision of rate adaptation is more appropriate, especially
in a time-varying channel. Based on the one-sided confi-
dence interval derived from the Chernoff-Hoeffding bound
[22], [23], ct,k is set as

ct,k = 2
√
ξ log(nt/Nt,k ), (8)

where ξ is an adjustable parameter to control the exploration.
In (8), nt represents the total discounted number of chosen
times of all the Rk , which is denoted as

nt =
K∑
k=1

Nt,k . (9)

Thus the new rate selection mechanism is given by

k∗ = argmax
k∈K

rk + ct,k . (10)

With the bias term ct,k expressed in (8), the new rate selec-
tion mechanism suggests that if a rate is less selected, a larger
bias is applied to the estimated reward. The probability of
been selected is increased. The parameter ξ in (8) can be
applied to control the exploration ratio. In a fast-varying chan-
nel, more exploration is needed. A larger ξ can be applied.
Otherwise, a smaller ξ can be applied.
The proposed DUCB-RA algorithm is summarized in

Algorithm 1. The transmitter selects the rate according to the
initial channel interaction at the beginning, then updates the
estimated rk based on the ACK/NACK feedbacks. The rate
of the next transmission can be determined with (10). With
the proposed DUCB-RA algorithm, the transmitter can track
the time-varying channel through both RSSI andACK/NACK
information and provide appropriate rate for transmission.

Algorithm 1 DUCB-RA Algorithm

1: Input: {Rk}Kk=1, current RSSI Sl , estimated reward rk .
2: for t = 2, 4, · · · ,T
3: Obtain the ACK/NACK signal.
4: Update the estimated reward rk associated with Sl
5: using (4).
6: if no ACK/NACK signal then
7: Keep the previous RSSI as Sl for the next rate
8: selection.
9: else
10: Measure current RSSI as Sl for the next rate selec-
11: tion.
12: end if
13: Select rate for the next time slot (t + 1) using (10)

according to Sl .
14: end for

IV. PERFORMANCE ANALYSIS
In this section, we study the performance of the proposed
DUCB-RA algorithm. We show theocratically that the regret
performance achieves a sub-linear order. In other words,
the proposed algorithm is asymptotically optimal.

Ideally, if a rate adaptation mechanism has perfect knowl-
edge of the current channel condition, an appropriate rate that
maximizes the throughput can be selected. Regret is intro-
duced to measure the performance loss between the proposed
algorithm and the omniscient RA mechanism with perfect
knowledge of the channel condition. The accumulative regret
RT is introduced to measure the performance loss of the pro-
posed algorithm compared to the omniscient RAmechanism.
The RT is the gap between the accumulative reward obtained
from the proposed algorithm and that of the omniscient
RA mechanism. We show next that with properly selected
parameters, the regret performance of proposed DUCB-RA
algorithm achieves a sub-linear order. The sub-linear growth
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of the accumulative regret demonstrates that the proposed
algorithm is asymptotically optimal [22].

We first analysis the performance of the algorithm assum-
ing that RSSI is constant and ACK/NACK signals are fed
back timely.

Let Ts represents the time slots that transmission occurs
and Tr represents the time slots that the reception occurs.
We have Ts = {2k − 1; 2k − 1 ≤ T , k ∈ N}, Tr = {2k;
2k ≤ T , k ∈ N}. In the subsequent notations in this section,
t ∈ Ts if there is no extra explanation.

The expectation of RT is given by

E [RT ] = E

[
T∑
t=1

(
rt,k∗t − rt,k

)
δt,k1{µt,k<µt,k∗t }

]
, (11)

where E[·] denotes the expectation, 1{·} is an indicator func-
tion, which is 1 if the statement in the parentheses is true,
or 0 otherwise. In (11), µt,k = θt,kRk/RK is the expected
reward of choosing Rk . Let k∗t denote the optimal rate in
time slot t . If µt,k < µt,k∗t , Rk is not the optimal choice.
The term δt,k1{µt,k<µt,k∗t } in (11) represents the case that
the sub-optimal rate is selected in time slot t . The term(
rt,k∗t − rt,k

)
represents the reward loss due to the selection

of the sub-optimal rate.
Let MT (k) denote the number of times of choosing the

sub-optimal rate Rk in the first T time slots, which is
expressed as

MT (k) =
T∑
t=1

δt,k1{k 6=k∗t }. (12)

Since rt,k ∈ [0, 1] and rt,k∗t > rt,k , we have

0 < rt,k∗t − rt,k < 1, (13)

substituting (12) and (13) into (11), we have

E [RT ] = E

[
T∑
t=1

(
rt,k∗t − rt,k

)
δt,k1{µt,k<µt,k∗t }

]

≤ E

[
T∑
t=1

δt,k1{µt,k<µt,k∗t }

]

= E

[
T∑
t=1

K∑
k=1

δt,k1{k 6=k∗t }

]

=

K∑
k=1

E [MT (k)] . (14)

According to (14), if we find the upper bound of the
expectation of the number of times that suboptimal rates are
selected, we can establish the upper bound of the expected
regret.
In (12), MT (k) can be further divided into two

parts by a control parameter 3 for the subsequent

proof.

MT (k) =
T∑
t=1

δt,k1{k 6=k∗t ,Nt,k<3}︸ ︷︷ ︸
1©

+

T∑
t=1

δt,k1{k 6=k∗t ,Nt,k≥3}︸ ︷︷ ︸
2©

. (15)

According to the Lemma 1 in [23], the first part 1© in (15)
is upper-bounded by

T∑
t=1

δt,k1{k 6=k∗t ,Nt,k<3} ≤ dT (1− γ )/2e3γ
−

1
1−γ , (16)

where the notation d·e means the round up process.
If the channel state changes, the estimated reward for Rk

can be poor forD(γ ) rounds. As shown in [23],D(γ ) is given
by

D(γ ) = log((1− γ )ξ log nK )/ log(γ ), (17)

where nK is calculated according to (9). The natural logarithm
base e is omitted in this paper.

Let T ′ denotes the rest rounds exceptD(γ ) rounds, the sec-
ond part 2© in (15) is bounded by

T∑
t=1

δt,k1{k 6=k∗t ,Nt,k≥3} ≤ ϒD(γ )

+

∑
t∈T ′

δt,k1{k 6=k∗t ,Nt,k≥3}︸ ︷︷ ︸
3©

, (18)

where ϒ denotes the number of times of channel changes
within T .
We further divide the term 3© in (18) into two parts:

δt,k1{k 6=k∗t } and Nt,k ≥ 3. The term 3© is satisfied as the
intersection of the above two terms. The first part holds in the
following cases. First, µt,k and µt,k∗t are close to each other,
the bias term ct,k can not discriminate them. Thus (10) may
choose the sub-optimal rate. Second, the estimated reward rk∗t
of the optimal rate is under-estimated. Third, the estimated
reward rk of the sub-optimal rate is over-estimated. These
cases can be summarized as

µt,k∗t − ct,k ≤ µt,k + ct,k , (19a)

rkt ∗ ≤ µt,k∗t − ct,k∗t , (19b)

rk ≥ µt,k + ct,k . (19c)

The union of the above three terms is the necessary
and sufficient conditions for δt,k1{k 6=k∗t }. Combing (19) with
Nt,k ≥ 3, we can get the requirement of the term 3©. Next,
we analysis (19a) to (19c) in detail.

Let 1µ represent the minimum gap between µt,k and
µt,k∗t . If ct,k ≤

1µ
2 , (19a) never occurs. Substituting ct,k ≤

1µ
2 , we obtain the value of the control parameter 3 =

16ξ log nt/1µ2.
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For terms (19b) and (19c), the proof in [23] shows that the
probabilities of (19b) and (19c) are equal and are bounded by

Pr ≤ (1− γ )−1 − K +
⌈ log 1

1−γ

log(1+ η)

⌉
T (1− γ )

1− γ 1/(1−γ ) . (20)

Combining (16), (18), (19) and (20), we conclude

E [MT (k)] ≤ C1T (1− γ ) log
1

1− γ

+C2
ϒ

1− γ
log

1
1− γ

− 1, (21)

where

C1 =
16
√
2ξ

γ 1/(1−γ ) (1µ)2

+
4(

1− 1
e

)
log(1+ 4

√
1− 1/2ξ )

, (22)

C2 =
γ − 1

log(1− γ ) log γ
log ((1− γ )ξ log nK ) . (23)

The bound (21) is associate with T and ϒ . Setting
γ = 1− (

√
2ϒ/T )/4 [22], we have

lim
T→∞

E [MT (k)]
√
Tϒ logT

= 0. (24)

The growth rate
√
T logT is lower than the linear growth

rate T . We know that the growth rate of E [MT (k)] achieves
the sub-linear order. From (14), we conclude that the growth
rate of E [RT ] also achieves the sub-linear order.

The above proofs are conducted under the assumption that
the RSSI remains the same. When the RSSI changes, RSSI
may vary when channel state remains the same. The worst
case is that every RSSI level is excited in all ϒ channel state
changes. Thus the expected regret is bounded by

E [RT ] ≤ L
K∑
k=1

E [MT (k)] . (25)

which has the same sub-linear growth characteristic as the
fixed RSSI case.

Next, we consider the performance loss due to the delayed
feedback. We first consider a stationaryMAB problem which
the reward is fixed delayed by one time slot. On other
words, there is another selection between the action selec-
tion and the reward reception. The intercalary rate selection
does not receive any guidance as a result of the delayed
reward [24]. In a stationary MAB problem, the only per-
formance loss comes from the possible suboptimal action
selection caused by the first delayed feedback. ACK/NACK
signals are delayed D time slots in the system model we for-
mulate in Section II. The delayed feedbacks cause (D− 1)/2
times rate selection being unguided. The expectation of the
accumulative regret E

[
R′T
]
in the delayed model is bounded

by

E
[
R′T
]
≤ E [RT ]+ D−1

2 . (26)

Next, we consider the changes in the RSSI. Since there are
L MAB problems, i,e., RSSI is varying over time, the addi-
tional loss is multiplied by L at most. We have

E
[
R′T
]
≤ L(E [RT ]+

D− 1
2

). (27)

We further consider the performance loss caused by chan-
nel state changes, The previous obtained knowledge is out-
dated if the channel state is changed. The RA mechanism
needs learn the new condition. Thus extra loss caused by
delayed feedback need to be included whenever the channel
state is changed. We have

E
[
R′T
]
≤ L(E [RT ]+

D− 1
2
+ ϒ)

= L(
K∑
k=1

E [MT (k)]+
D− 1
2
+ ϒ). (28)

From (28), we conclude that E
[
R′T
]
also achieves the

sub-linear order, thus the proposed algorithm is asymptoti-
cally optimal.

The theoretical analysis sets the upper bound of the
performance loss of proposed DUCB-RA algorithm in the
time-varying channel. In section V, we provide simulation
results to demonstrate the performance of the proposed
algorithm.

V. SIMULATION RESULTS
In this section, we present numerical results of the proposed
DUCB-RA algorithm. A system with 15 different transmis-
sion rates {Rk}15k=1 is considered. Channel states are divided
into 10 states {Cm}10m=1 depending on the interference and
noise level. The path-loss model and Rician fading are intro-
duced to simulate the time-varying RSSI. The RSSI is quan-
tized into 35 levels {Sl}35l=1.

In our experiment, the transmitter sends packets to the
receiver from time slot 1. For each packet transmission,
the transmitter selects the rate from the set {Rk}15k=1 based on
the the RSSI evaluation and estimated reward.

We would like to examine the performance of DUCB-RA
compared with the other RA algorithms: ARF, LA, Min-
strel, and HA-RRAA in both stationary radio environments
and non-stationary radio environments. In the simulation,
the multi-rate retry chain in Minstrel is updated when every
10 data packets is sent to match the simulation condition of
the DUCB-RA algorithm. The initial threshold of LA is set
according to the best estimate of the initial channel condition.

We first consider a static channel condition. Both the
channel state and the RSSI are constant. The simulations are
conducted with different states and RSSIs. Since the channel
is static, we set the forgetting factor γ to 1, meaning all
previous samples are counted, and ξ to 0.1 since there is no
need to explore much.

The performances of above algorithms under different
channel settings are recorded in Table 1. In this table,
the throughputs are normalized by the optimal throughput
under selected channel conditions.
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TABLE 1. Normalized throughput in different static channel conditions.

From Table 1, we observe that all algorithms achieve sat-
isfactory performance in all cases. Due to the fixed explo-
ration ratio, ARF and Minstrel algorithms probe other rates
frequently in the stationary channel condition. Their perfor-
mance degrades in such case. Comparing the performance
in channel 3 to other channel conditions, we observe that
the performance of all RA algorithms becomes better. In this
case, the channel condition is the best and the optimal rate
selection is the highest rate. There are no higher rates for
exploration. The potential performance loss caused by the
exploration is reduced.

Let us look into the rate selections in different time slot in
one of the simulations. Fig. 2 shows the actual rate that the
transmitter chooses with ARF and DUCB-RA algorithm in
a fixed channel condition (channel 2 in Table 1). The opti-
mal rate is selected by the omniscient strategy with perfect
knowledge of the channel condition. It can be observed that
the proposed DUCB-RA algorithm always pick the optimal
rate except several probes. On the other hand, ARF, which
is driven by heuristics, probes the higher rate frequently in
the stationary channel condition, resulting considerable per-
formance loss.

FIGURE 2. The rate selection in the static channel.

Next, we study the RA performance in a time-varying
channel. In this simulation, 500 packets are sent within
T = 1000. The channel state transitions are generated by
the HMM model with neighborhood transition probability
of 0.04. There are 9 channel state transitions in the specific

realization. To track the time-varying channel, the parameters
γ and ξ are set to 0.95 and 0.65 respectively. The obtained
throughputs of different RA algorithms are shown in Fig. 3.
From this figure, we observe that the proposed DUCB-RA
algorithm can track the time-varying channel better than other
algorithms and provide the best average throughput among
all RA algorithms. From this figure, we also observe that all
RA algorithms can sense the degradation of the channel better
than sense the improvement of the channel. It is natural as the
loss of packet is easy to observe. On the other hand, when the
channel condition improves, appropriated exploration mech-
anism is needed to track the changes of the channel.

FIGURE 3. Throughput in a time-varying channel.

Let’s further study how the RA algorithms adapt to the
time-varying channel by showing their real-time rate selec-
tion activities in one realization of the simulations. In Fig. 4,
we show the real-time rate selection results of the proposed

FIGURE 4. The rate selection in a time-varying channel.
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algorithm and the Minstrel algorithm in the above simula-
tion. From Fig. 4, we observe that the proposed DUCB-RA
algorithm can track the time-varying channel better than the
Minstrel algorithm. When the variation of current channel is
gentle, DUCB-RA algorithm does not explore other rates as
aggressively as Minstrel. Minstrel random selects a rate in
exploration transmissions which is higher than or equal to the
previous best one. The random probe mechanism causes the
performance loss in the stationary channel, and is inefficient
when the channel condition improves fast.

In the third case, we study the impact of delayed feed-
back. We compare the simulation results with the cases that
ACK/NACK signals are fed back timely. The normalized
throughputs are shown in Table 2 for different RA algo-
rithms. We observe that comparing to the timely fed-back
ACK/NACK, all RA algorithms are getting worse if the
ACK/NACK signal are delayed. The performance degrada-
tion with delayed feedback is small for Minstrel and the
proposed DUCB-RA algorithms, suggesting that the rate
adaptation algorithms of these two algorithms are robust
against feedback delays.

TABLE 2. Normalized throughput in timely and delayed feedback cases.

In the last simulation, we study the regret performance of
the proposed DUCB-RA algorithm. The accumulated regret
of the proposed algorithm in different channel conditions are
shown in Fig. 5. In this simulation, channel 1 is the static
channel, channel 2 is the time-varying channel with timely
feedback and channel 3 is the time-varying channel with
delayed feedback. 2500 packets are sent within T = 5000.
The channel state transitions are generated by the HMM

FIGURE 5. Regret performance in different channels.

model with neighborhood transition probability of 0.04.
There are 100 channel state transitions in channel 2 and
channel 3. The parameters settings are γ = 1, ξ = 0.1,
γ = 0.9, ξ = 0.7 and γ = 0.9, ξ = 0.7 respectively
in these three channel conditions. We observe that the regret
performance of the proposed DUCB-RA algorithm achieves
a sub-linear order in all three cases, indicating asymptotically
optimal throughput.

VI. CONCLUSION
In this paper, a robust rate adaptation algorithm DUCB-RA
for time-varying channels is proposed. The rate selection
problem is formulated as a non-stationary MAB problem.
The proposed algorithm utilizes both the ACK/NACK and
RSSI information to select appropriate rate. Specifically,
the ACK/NACK signals are treated as delayed responses to
the quality of the transmission, which is typical in practice
yet is ignored in most studies. Thus our algorithm is more
accurate when choosing appropriate rate. We show that the
performance of the proposed algorithm is upper bounded by a
sub-linear order with mathematical proofs. Simulation results
demonstrate that the proposed algorithm can achieve better
performance than existing rate adaptation schemes in both
static and time-varying channel conditions.
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