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ABSTRACT The works presented in this paper addresses the robust population-based global optimization
that is influenced by the simplicity and efficiency principles introduced in two new generation optimization
algorithms. Galactic Swarm Optimization is inspired by the motion of stars, galaxies, and superclusters of
galaxies under the influence of gravity. It acts well as a global controller of the whole optimization process
by employing multiple flexible cycles of exploration and exploitation phases to find new, better solutions.
However, the optimization process still suffers poverty in the exploitation phase, which is improved in this
work by its hybridization with our evolution version of the Whale Optimization Algorithm. Concretely,
the exploitation phase of Galactic Swarm Optimization is replaced by our Evolution Whale Optimization
Algorithm to avoid early convergence. The Whale Optimization Algorithm mimics the unusual social
behaviors and the hunting activities of humpbackwhales. However, it is not optimized for global optimization
when the number of dimensions is increased. Hence its is evolved in our works by Levy-Flight trajectory
for faster local search with adaptive step lengths and two-point crossover operator to reduce bias in the
offspring creation procedure. The achieved results through extensive and careful experiments showed that our
hybridization and evolution enhancements bring outstanding performance in terms of accuracy, convergence
speed, and stability.

INDEX TERMS Global optimization, hybridization, evolution computation, galactic swarm optimization,
whale optimization algorithm.

I. INTRODUCTION
Optimization is one of themost common and important issues
in both research and development of science and technology.
The real-world optimization problems often appear with high
complexity and dimension. These problems are known as
large-scale global optimization (or search) and cannot be
solved by traditional optimization algorithms because of the
high dimensions and complex interactions among variables.
The large-scale global optimization problems exist exten-
sively in many scientific research and engineering applica-
tions like distributed systems, large-scale machine learning,
and neural networks optimization [1]–[3].

Meta-heuristic algorithms used to solve many current opti-
mization problems in different domains such as system con-
trol [4], [5], machine design [6], Big Data [7], [8], engineer-
ing design problems [9]–[11], global optimization problems
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[12]–[14] and so forth. The algorithms could be classified
roughly into two categories [15]:

• Single-solution-based algorithms randomly generate a
certain solution and gradually improve the solution until
the best results are obtained. The typical example is Sim-
ulated Annealing. The main drawback of this technique
is that it may be trapped into a local optimum, which
prevents to find out global optimum.

• Population-based algorithms generate a set of random
solutions within a given search space. The typical exam-
ples are the Genetic Algorithm or Particle Swarm Opti-
mization. These solutions are updated continuously until
the best one is found out.

All meta-heuristic techniques operate the exploration and
exploitation phases in the search space. At the same time,
they also have to maintain the right balance between these
two phases. The exploration investigates various promising
areas in a search space while the exploitation finds optimal
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solutions around them [16]–[18]. Therefore, there is a need
to control these two phases effectively to achieve optimal
solutions for an optimization problem.

The standard meta-heuristic algorithms for solving the
large-scale global optimization problems often suffer the
degradation of optimization ability when the search space
dimension goes up. Thus, the performance of these algo-
rithms deteriorates when tackling serious dimensional prob-
lems. There are two major reasons for the performance dete-
rioration of these algorithms: (1) the increasing problem
dimension size leads to its space complexity and character-
istic alterations; (2) the search space exponentially increases
with the problem size; so an optimization algorithm must be
able to explore the entire search space efficiently, and this is
not a trivial task.

Following this context, the scope of this work presented
in this paper aims to challenge the dimension increase
in global optimization using meta-heuristic solutions. The
most notable feature of this work is the proposed optimizer
with the name Hybridization of Galactic Swarm Optimiza-
tion and Evolution Whale Optimization Algorithm (called
HGEW). This evolution hybridization optimizer composes
two population-based meta-heuristic algorithms:

• Galactic Swarm Optimization (GSO), and
• Our proposed evolution version of the Whale Optimiza-
tion Algorithm (WOA). The proposed evolution version
(called EWOA in short) improves the original one by
Levy-Flight trajectory and two-point crossover operator.

HGEW was carefully tested as the whole with the set
of CEC 2014 competition benchmark functions consisting
of both unimodal, multi-modal, hybrid, and composition
types, whose complexity characteristic is expanded following
the increase in the number of dimensions. The experiments
also compare the performance of HGEW with variants of
GSO and WOA. The obtained outcomes showed that HGEW
brings outstanding performance in terms of accuracy, conver-
gence speed, and stability in solving the global optimization
problems robustly. The proposed method introduced in this
paper could be applied to optimization problems in general,
like training neural network serving prediction tasks.

The structure of this paper is as follows. Section II presents
a background and related work. It contains an overview of
the optimization problem, large-scale global optimization,
meta-heuristic solutions, as well as GSO and WOA in detail.
The HGEW hybridization design composed of GSO and
EWOA are presented in Section III. The experimental setup
is described in Section IV. Section V brings experimen-
tal obtained results, comparisons and evaluations. Finally,
Section VI concludes the study and defines our plans.

II. BACKGROUND AND RELATED WORK
A. OPTIMIZATION AND META-HEURISTICS
In general, an optimization problem can be solved using the
exact or approximate approach. However, domain data usu-
ally have various and high characteristic dimensions, which

lead to NP-hard problems. It is difficult to solve these prob-
lems by exact methods like fast steepest, sequential quadratic
programming, conjugate gradient, and quasi-Newton meth-
ods. Approximate methods are promising to solve the above-
mentioned issues by effectively finding feasible solutions.
The approximate methods could be divided into two sub-
classes, namely heuristic and meta-heuristic algorithms.

Heuristic algorithms are often used for optimization prob-
lems based on several assumptions, such as knowledge inside
a concrete domain [19]. Meta-heuristic algorithms are more
domain-independent, and often operate based on probabilistic
rules rather than deterministic ones. These algorithms are
considered as a more general approach to solving almost all
optimization problems with several advantages [20], [21],
including: 1) High flexibility due to considering the optimiza-
tion problems as black boxes; 2) Independence with gradient
information; 3) Easy implementation for several fields; 4)
Exploration capability enables to avoid local optima issue. As
presented in Section I, meta-heuristic techniques are divided
into single-solution-based and population-based algorithms.
The works presented in this paper are in the population-based
group.

B. POPULATION-BASED META-HEURISTIC ALGORITHMS
Population-based meta-heuristic algorithms often mimic the
natural phenomena [22]–[24]. In this direction, these algo-
rithms start the optimization process by generating a set (or
population) of individuals. Each individual represents a can-
didate solution for the optimization problem. The population
will be evolved iteratively by replacing the current population
with newly generated ones using some often-stochastic oper-
ators [25], [26]. The optimization process is proceeded until
satisfying a stopping criterion (e.g., the maximum number
of iterations [27], [28]). With inspiration, population-based
algorithms are categorized into: 1) Evolutionary-based group
mimics biological evolutionary behaviors such as recombi-
nation, mutation, and selection; 2) Physics-based group is
inspired by the physical laws; 3)Human-based group mimics
certain human behaviors; 4) Swarm-based group mimics the
social behaviors, e.g., decentralized and self-organized sys-
tems of organisms living in swarms, flocks, or herds.

Particle Swarm Optimization (PSO) [29] is a very first
well-known swarm-based optimization. It is the premise of
many other meta-heuristic algorithms proposed in recent
years. In PSO, a swarm contains several candidate solu-
tions (also known as particles), which coexist in the search
space of the problem with D dimensions. The solution often
cooperates and flies together to land on optimal personal
positions. Over time, the best personal position (its own best
position in the past) of each particle and the global best
position (the current best position of the entire swarm) are
recorded. The next position of a particle is updated based
on the personal best (cognitive behavior) and the global best
(social communication). PSO combines local search (through
personal best) with global search (through global best) to
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FIGURE 1. Particle swarm optimization operation workflow.

balance exploitation and exploration processes, as illustrated
in Figure 1 with its operation workflow.

GSO and WOA, which are in the center of interest of our
works belonging to the swarm-based group. The common
exciting feature of both algorithms is that they offer the
simplicity and efficiency principles presented in the following
subsections.

C. GALACTIC SWARM OPTIMIZATION (GSO)
GSO [30] is inspired by the behaviors of stars in galaxies, and
of galaxies in superclusters in the cosmos. It takes advantage
of the original PSO by usingmultiple flexible cycles of explo-
ration and exploitation phases to find new, better solutions.
Due to the simple implementation and efficiency, GSO has
been applied to several real-life problems [31]–[35] as well
as in searching global optimization [36], [37].

In the original GSO, under the influence of gravity, stars
in a galaxy are attracted to another star, which has greater
gravity. From these ideas, the movement of stars inside a
galaxy as well as the movement of galaxies are emulated in
the GSO algorithm by the following rules:

• Individuals in each galaxy are attracted to bigger ones
(i.e., better solutions) in their galaxy. The attraction
process is performed by using the PSO algorithm.

• Global bests of all galaxies are chosen to treat as a
super-warm. Here, the PSO algorithm is used again to
represent the movement of particles in the super-swarm.

GSO’s pseudocode is presented in Algorithm 1, and the
variable explanation is shown in detail by Table 1.

1) INITIALIZING STAGE
The main control parameters of whole GSO algorithm con-
sists of its parameters used in each phase (Table 1). Swarm
(population) includesM partitions called sub-swarms Xi con-
taining N elements (x(i)j ∈ RD). Each element is created
randomly within the search space [xmin, xmax]D.

X = {Xi|i = 1, 2, . . . ,M} (1)

Algorithm 1 Galactic Swarm Optimization (GSO)

1: Initialize x(i)j , v(i)j , p(i)j , g(i)j within [xmin, xmax]D randomly.

2: Initialize v(i), p(i), g within [xmin, xmax]D randomly.
3: for Iter = 0 to Itermax do
4: Begin PSO: Level 1
5: for i = 1 to M do
6: for k = 0 to L1 do
7: for j← 1 to N do
8: v(i)j ← ω1v

(i)
j +c1r1(p

(i)
j −x

(i)
j )+c2r2(g(i)−x

(i)
j )

9: x(i)j ← x(i)j + v
(i)
j

10: if f (x(i)j ) < f (p(i)j ) then

11: p(i)j ← x(i)j
12: if f (p(i)j ) < f (g(i)) then

13: g(i)← p(i)j
14: end if
15: end if
16: end for
17: end for
18: end for
19: Begin PSO: Level 2
20: Initialize Swarm y(i) = g(i) : i = 1, 2, . . . ,M;
21: for k = 0 to L2 do
22: for i = 1 toM do
23: v(i)← ω2v(i) + c3r3(p(i) − y(i))+ c4r4(g− y(i))
24: y(i)← y(i) + v(i)

25: if f (y(i)) < f (p(i)) then
26: p(i)← y(i)

27: if f (p(i)) < f (g) then
28: g← p(i);
29: end if
30: end if
31: end for
32: end for
33: end for
34: Results: g, f (g)

VOLUME 8, 2020 74993



B. M. Nguyen et al.: Hybridization of Galactic Swarm and Evolution Whale Optimization for Global Search Problem

TABLE 1. Galactic swarm optimization parameters.

Xi =
{
X (i)
j |j = 1, 2, . . . ,N

}
(2)

Xi ∩ Xj = ∅ ∀i 6= j (3)

2) UPDATING STAGE (EXPLORATION AND EXPLOITATION
PHASE)
This stage covers two phases as follows:
• Exploration of sub-swarms. PSO algorithm is run for
each sub-swarm. Since swarm X is initially divided into
M groups, PSO will run M times independently with
global bests g(i) tied to each sub-swarm. g(i) will be
updated if any particles in the sub-swarm have personal
best p(i)j , which is a better solution than g(i), f (p(i)j ) <
f (g(i)). Each sub-swarm independently explores its best
solution in its search space. This task is initialized by
calculating velocity v(i)j and position x(i)j of particles.

• Exploitation in super-swarm. All global bests from M
sub-swarms presented in the first phase above are gath-
ered to form the super-swarm. In other words, a new
super-swarm Y is created by collecting M global bests
of each sub-swarm Xi.

Y =
{
y(i)|y(i) = g(i),∀i = 1, 2, . . . ,M

}
(4)

In this way, velocity v(i) and position y(i) are updated using
PSO algorithm one again (the first use is in the first phase
presented above). Thus, the super-warm utilizes the best solu-
tions that are computed by sub-swarms in the previous phase,
and then it initializes the population for the second phase of
GSO. The populationmade by the best solutions from the first
phase helps the PSO algorithm in the second phase to start at
a better beginning point. Based on that, GSO achieves faster,
accurate convergence.

However, GSO faces the problem of being trapped in local
optima and slow convergence due to the poverty of exploita-
tion and exploration [38]. Concretely, although PSO in the
first phase of GSO could push initialized particles to move a

giant step to the global minimum, the exploitation capability
of PSO in the second phase is not good enough to escape
the local minimums and to prevent premature convergence,
which was indicated in [39].

D. WHALE OPTIMIZATION ALGORITHM (WOA)
WOA recently emerged as a beneficial algorithm, which is
applied in many practical problems such as forecasting water
resources demand [40], flow shop scheduling problem [41],
opinion leader detection in online social network [42], med-
ical diagnosis [43]. However, it was first proposed in [44],
which mimicked the unusual social behaviors and the engag-
ing hunting activities of humpback whales. Hunting prey
operation of humpback whales is called bubble-net feeding,
which is often done in groups. The group size can range from
two or three and up to sixty whales participating at once. After
the bubble net is executed, it is kept shrinking until the food
is eaten [45].

In the beginning, due to the random initialization of the
whale population, the position of prey is not known. WOA
assumes that a solution with the best fitness will be the prey,
and it is reset at the beginning of each iteration. After the
target is recognized, other whales will try to update their
position around the prey. The hunting process executed by
humpback whales is represented perfectly by three operations
as follows:

1) Shrinking encircling mechanism enables the reduction
of the encirclingmagnitude to update position landed in
the search space between the original solution position
and the best one at the current iteration.

2) Spiral updating position is based on the way, or hump-
back whales approach their prey. A spiral equation is
created to emulate the helix-shape movement of hump-
back whales within the space between the position of
whale and prey.

3) Search for prey represents the exploration process
while whales find prey randomly that enables WOA to
escape the local minimum easily.

WOA,with its operations, are thoroughly discussed in [44].
We summarize the mechanisms of WOA by Algorithm 2.
Although the original WOA with the encircling mechanism
and the spiral path is good at exploring the search space,
it outperforms other natural inspired algorithms from the
perspective of simplicity and efficiency, WOA still requires a
specific improvement for tackling the large-scale global opti-
mization when it gets stuck into local optima and degrades
accuracy [46].

E. MOTIVATION AND CONTRIBUTION OF THE WORK
The work presented in this paper addresses the global opti-
mization problem. In our research direction, this optimizer
could be used to find suitable parameters for the neural net-
work in workload prediction and auto-scaling problems [22],
[23], [47] of distributed systems like cloud computing and
blockchain networks [48], [49].
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Algorithm 2Whale Optimization Algorithm (WOA)
1: Initialize the population = {Xi|i = 1, 2, . . . ,N } ran-

domly
2: Calculate fitness of each solution (whale)
3: X∗← the best solution
4: for Iter = 0→ Itermax do
5: for solution in population do
6: Update a,A,C, l, p (Section II-D)
7: if p < 0.5 then
8: if |A| < 1 then
9: Shrinking encircling mechanism
10: else
11: Search for prey process
12: end if
13: else
14: Spiral updating position
15: end if
16: end for
17: Evaluate population: if a feature of a solution goes

beyond its boundary, set it the value of the boundary
18: Recompute the fitness of all solutions
19: Update X∗ if a better solution is found.
20: end for
21: Results: X∗, f (X∗)

Our proposed approach is inspired by the simplicity and
efficiency offered in GSO and WOA swarm-based algo-
rithms. GSO acts well as a global controller of the whole opti-
mization process, but it suffers early convergence in exploita-
tion because of the limitations of the PSO algorithm used in
the second phase of GSO (i.e., easily being trapped in a local
minimum, especially in complex multi-peak search problems
as shown in [50] and [38]. On the other hand, WOA pos-
sesses a decent exploitation capability as comparedwith other
well-known nature-inspired algorithms (e.g., GA and PSO),
as shown in [44]. In order to accelerate convergence speed as
well as retain the diversity of the population in WOA, several
variants of this algorithm are introduced in [51], which used
chaotic technique, and in [52] used Levy-Flight trajectory
technique. The results have shown in [52] that WOA variants
outperform many algorithms such as Moth Flame Optimizer,
Bat Algorithm, Artificial Bee Colony, and the origin WOA.
However, the exploitation and exploration capabilities of
WOA variants still need to be enhanced since they still face
the problem of premature convergence when tackling prob-
lems having increasing dimensions. Based on those motiva-
tions, the main contributions of our works include:

1) Proposing an evolution hybridization between GSO
and EWOA as a new optimizer to avoid early conver-
gence in the exploitation phase while keeping advan-
tages of the original GSO as the whole as well as its
exploration power. The new evolution hybridization is
called HGEW in short, which stands for the Hybridiza-
tion of Galactic Swarm Optimization and Evolution
Whale Optimization Algorithm.

2) Proposing an evolution version of WOA based on
Levy-Flight trajectory and two-point crossover oper-
ator. The aim is to provide faster local search with
adaptive step lengths in the HGEW exploitation phase
and to reduce bias in the offspring creation procedure.
The new evolution version of WOA is called EWOA in
short, which stands for Evolution Whale Optimization
Algorithm (EWOA).

3) Providing thorough evaluation of HGEW functionali-
ties as the whole through extensive experiments with
different high-dimensional benchmark functions of two
types of unimodal and multi-modal functions.

4) Providing thorough validation HGEW functionalities
in comparison with baseline optimizers such as GSO
and WOA-based with Levy-Flight trajectory. HGEW
is also carefully compared with other hybridization
variances such as GSOwithWOA andGSOwith Levy-
Flight WOA. The gained results prove the HGEW
contribution values in the aspects: more stability and
robustness in comparison with existing ones.

III. EVOLUTION HYBRIDIZATION OF GSO AND EWOA
As above presented in Section II-E, our proposed evolution
hybridization HGEW is built as GSO hybridization with our
evolved EWOA. HGEW acts as the global controller of the
whole optimization process with exploration and exploitation
phases. It replaces the exploitation phase of GSO by our
proposed EWOA as follows.

A. EVOLUTION WHALE OPTIMIZATION ALGORITHM
(EWOA)
The original WOA (Section II-D) can easily tackle problems
of low-dimensional optimization. However, when applying
WOA to global optimization problems with a higher dimen-
sion, it often trappers in local optima because the diversity
population is decreased rapidly. To improve the exploration,
convergence speed, and local minimum avoidance, several
variants of WOA were introduced [46], [52]–[56]. The Levy-
Flight trajectory [52] is one of the popular techniques used
to improve the performance of meta-heuristics algorithms
such as in Firefly [57], Krill Herd [58], Grey Wolf Opti-
mization [25], [59], [60], Butterfly [61], and Harris Hawks
Optimization [62].

In our work, WOA is evolved as EWOA in evolution way
with enhanced searchability based on two ideas:

1) Using Levy-Flight trajectory to escape the local optima
and accelerate the convergence speed,

2) Using Crossover operator to create more potential ran-
dom offspring candidates in an evolution way than
in [44].

1) LEVY-FLIGHT
The Levy-Flight [52] is a random process with step length
chosen from Levy distribution. In WOA, Levy-Flight could
help to maximize the diversification of newly created
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Algorithm 3 Evolution Whale Optimization (EWOA)
1: Initialize the population = {Xi|i = 1, 2, . . . ,N } ran-

domly
2: Calculate fitness of each solution (whale)
3: X∗← the best solution
4: for Iter = 0 to Itermax do
5: for solution in population do
6: Update a,A,C, l, p1, p2 (Section II-D)
7: if p1 < 0.5 then
8: if |A| < 1 then
9: Shrinking encircling mechanism based on

Levy-Flight
10: else
11: if p2 < 0.4 then
12: Updating by Crossover operator
13: else
14: Search for prey (exploration phase)
15: end if
16: end if
17: else
18: Spiral updating position
19: end if
20: end for
21: Evaluate population: if a feature of a solution goes

beyond its boundary, set it the value of the boundary
22: Recompute the fitness of all solutions
23: Update X∗ if a better solution is found
24: end for
25: Results: X∗, f (X∗)

solutions, and allows the algorithm to exploit more efficiently
in the search space. Additionally, it also avoids the local
minimum issue and increases the acceleration of conver-
gence [46], [52]. The technique also supports to obtain the
balance between exploration and exploitation phases. WOA
thus can jump out easily when it gets stuck at a local min-
imum. The mathematical expression of the technique is as
follows:

X t+1 = (X t + µsign[rand − 0.5])⊕ Levy (5)

where

X t indicates the current position;
µ is a random number chosen by uniform distribu-

tion;
rand is random number in [0, 1];
⊕ stands for entry-wise multiplication;
sign sign[rand − 0.5] has only one of three values −1,

1, or 0.

For Levy part, the law vision of the Levy distribution is:

L(s) ∼ |s|−1−β with 0 < β ≤ 2 (6)

where β is an index, s is the step length of the Levy-Flight,
which is calculated following Mantegna’s algorithm (Equa-

tion 7).

s =
µ

|v|1/β
(7)

where µ and v are chosen from normal distributions

µ ∼ N (0, σ 2
µ) and (8)

v ∼ N (0, σ 2
v ) (9)

σµ =
[ 0(1+ β). sin(π.β/2)
0((1+ β)/2).β.2(β−1)/2

]1/β
(10)

σv = 1 (11)

A step size avoiding Levy-Flight jumping out the search
space is defined by Equation 12.

Levy = random(size(D))⊕ L(β) (12)

L(β) ∼
µ

|v|1/β
(Xi − X∗) (13)

where D is the dimension of search space, Xi and X∗ are the
current solutions and best solutions, respectively.

Levy-Flight models two movements of whale based on the
infinite variance of Levy distribution: while the long-distance
movement is used to enhance the ability of exploration,
the short-distance is performed to increase the exploitation
capability. In our EWOA, the Shrinking encircling mecha-
nism is eliminated, and Levy-Flight is employed to replace
it in order to explore and exploit in the search space more
effectively. Themathematical model of the exploitation phase
of EWOA thus is modified and represented as follows:

X t+1 =

{
(X t + µsign[rand − 0.5]) ⊕Levy, if p ≥ 0.5
D′.ebl . cos(2π l)+ X t∗, otherwise

(14)

where µ = 1/sqrt(t) with t is the current iteration and sqrt()
stands for square root operation. rand is a number in range
[0, 1], so that sign[rand − 0.5] presents a sign function with
three values−1, 0, 1, which makes the process more random
(Algorithm 3).

2) CROSSOVER OPERATOR
As described above, the problems of the original WOA
biodiversity reduction in global optimization need to be
tackled too. In our work, a new operation inspired by the
behaviors of humpback whales when they migrate to trop-
ical water and give birth in mating seasons is proposed. In
evolutionary-based meta-heuristics such as Genetic Algo-
rithm [63], [64], or Differential Evolution [65], crossover
operator plays a role as increasing the diversity of population.
Therefore, to keep the population diversity in WOA through-
out the iteration, we apply the operator to WOA. Thus,
the operator uses the current best solution X∗, and a random
solution in the current population Y is chosen as parents. Then
they generate an offspring Z (new solution) following two-
point crossover rule (Figure 2) with the following workflow:
• Firstly, two numbers i and j (two crossover points) are
chosen randomly, ranging from 0 to dimension D. The
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FIGURE 2. Two-point crossover operator.

choices of i and jmust satisfy two main conditions: i < j
and j− i = cr .D with cr is the operator crossover rate.

• Secondly, i and j divide a potential solution into two
parts. In this way, the best solution X∗, for example,
is divided into X∗[i, j] part and the rest. The segments
feature of solutions then is exchanged and creates two
new offspring. One of them will be chosen as a new
whale in the WOA model.

The mathematical process of Crossover operator is pre-
sented as follows:

Z [0, i] = Y [0, i] (15)

Z [i, j] = X∗[i, j] (16)

Z [j,D− 1] = Y [j,D− 1] (17)

Unlike single-point Crossover, which faces a bias problem
when the chosen point is near the end of features, a two-
point crossover still works effectively in that case. Apart from
this, the best solution X∗ plays an important guiding role in
this operation, which helps WOA explore a new potential
solution as an offspring. Additionally, the randomly chosen
solution Y keeps maintaining the diversity of population and
enhancing exploitation. As Shrinking encircling mechanism
was improved by Levy-Flight, and Spiral updating position
was proved to perform a decent exploitation task in [44],
we employ Crossover operator to improve the exploration
phase of original WOA. However, in the crossover mech-
anism, if the operator is always used, population diversity
will decrease dramatically. Hence, the operator is controlled
through p2 hyper-parameter in Algorithm 3.

B. HGEW: A HYBRIDIZATION OF GSO AND EWOA
As presented in Section II-C, GSO takes the advantages of

the original PSO algorithm by using flexible multiple cycles
of exploration and exploitation phases to escape local mini-
mums and land to new, better solutions. However, using PSO
still causes mediocre convergence issue [38]. Specifically,
although PSO in the first phase of GSO can help initialized
particles move a giant step to the global minimum, PSO in
the second phase would not be able to exploit enough to
escape the local minimums and to prevent premature conver-
gence due to the restrictions of original PSO algorithm [66].

According to [44], [46], [52], as compared with PSO,
WOA, and other its variants could bring better results with
their exploration and exploitation. For that reason, in our
HGEW evolution hybridization design, PSO at the second

Algorithm 4 HGEW Hybridization of GSO and EWOA

1: Initialize x(i)j , v(i)j , p(i)j , g(i)j , within [xmin, xmax]D ran-
domly.

2: Initialize v(i), p(i), g within [xmin, xmax]D randomly.
3: for Iter = 0 to Itermax do
4: Begin PSO: Level 1
5: for i = 1 to M do
6: for k = 0 to L1 do
7: for j← 1 to N do
8: v(i)j ← ω1v

(i)
j +c1r1(p

(i)
j −x

(i)
j )+c2r2(g(i)−x

(i)
j )

9: x(i)j ← x(i)j + v
(i)
j

10: if f (x(i)j ) < f (p(i)j ) then

11: p(i)j ← x(i)j
12: if f (p(i)j ) < f (g(i)) then

13: g(i)← p(i)j
14: end if
15: end if
16: end for
17: end for
18: end for
19: Begin EWOA: Level 2
20: Initialize Swarm y(i) = g(i) : i = 1, 2, . . . ,M
21: for k ← 0 to L2 do
22: for i← 1 toM do
23: Update a,A,C, l, p1, p2 (Section II-D)
24: if p1 < 0.5 then
25: if |A| < 1 then
26: Shrinking encircling mechanism based on

Levy-Flight
27: else
28: if p2 < 0.4 then
29: Updating by Crossover operator
30: else
31: Search for prey (exploration phase)
32: end if
33: end if
34: else
35: Spiral updating position
36: end if
37: Evaluate population: Evaluate population: if a

feature of a solution goes beyond its boundary,
set it the value of the boundary

38: Recompute the fitness of all solutions
39: Update g if a better solution is found.
40: end for
41: end for
42: end for
43: Results: g, f (g)

phase of the original GSO is replaced by EWOA. The HGEW
workflow is presented in Algorithm 4.

VOLUME 8, 2020 74997



B. M. Nguyen et al.: Hybridization of Galactic Swarm and Evolution Whale Optimization for Global Search Problem

TABLE 2. Benchmark functions (The implementation is available at [69]).

• In the first phase, we retain PSO for exploration.
PSO in the first phase thus works as an initializer,
which decreases the search space and creates a better-
initialized population used in the second phase.

• After that, EWOA in the second phase takes the advan-
tages by using the population generated from the first
phase to move faster to the global minimum.

– Considering at the beginning of each iteration,
the population in the second phase is always created
again, but sub-swarms in the first phase continue
exactly at the location where they left in the previ-
ous iteration. This process always allows EWOA to
collect better individuals from subswarms through-
out iterations when it starts to run.

– On the other hand, the global best position in
the second phase is recorded at the end in each iter-
ation, and then it is employed in the next iteration,
so that leads to a faster move and convergence in
EWOA.

TABLE 3. Parameters used in GSO-based algorithms.

TABLE 4. Parameters used in LWOA algorithm.

The source code of the proposed Hybridization of Galac-
tic Swarm Optimization and Evolution Whale Optimization
Algorithm (HGEW) is publicly available in [67] as Open
Source under Apache 2.0 license.
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TABLE 5. Results and comparisons of different algorithms on unimodal and multi-modal benchmark functions with 20D.

IV. EXPERIMENTS
Our HGEW evolution hybridization between GSO and
EWOA is evaluated as the whole optimizer using different
scalable benchmark functions. The following optimizers are
used to compare the effectiveness with HGEW:
• GSO [30] original one with two PSO phases;
• LWOA as the improved version ofWOA based on Levy-
Flight trajectory [52];

• GSO-WOA as the hybridization with PSO [29] in the
first phase and WOA [44] in the second phase;

• GSO-LWOA as the hybridization with PSO [29] the first
phase and LWOA [52] in the second phase.

Several well-known optimization algorithms such as
GA, PSO, and their variances, as well as Artificial Bee
Colony and Ant Colony Optimization, are not considered
in our experiments because they were compared with the
improved version of WOA based on Levy-Flight trajectory
(LWOA) [52].

Except for LWOA, the work [68] presents a systematic
and meta-analysis survey of WOA usage with its modifi-
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FIGURE 3. Average rankings of each algorithm for unimodal and
multimodal functions.

cations such as adaptive, self-adaptive, improved, chaotic,
modified, and memetic versions in different areas. From all
of these modifications, LWOA has shown better performance
compared to other variances in various domains. This is the
reason to compare our proposed HGEW with LWOA also
in combinations with GSO, i.e., LWOA, WOA-GSO, and
LWOA-GSO in our experiments.

Thus, WOA and LWOA demonstrated its advantages over
those above techniques. The demonstration is also the reason
to explain why we used WOA as well as LWOA with GSO in
our experiments to evaluate our proposed HGEW.

A. BENCHMARK FUNCTIONS
The work presented in this paper aims to address the
global optimization problem, which stems from optimiz-
ing neural networks for workload prediction tasks. The set
of 30 functions on Real Parameter Single Objective Opti-
mization (incorporates expensive function optimization) of
the CEC 2014 competition [70], [71] as benchmark functions
for testing HGEW’s performance in our experiments. Here
is suitable to mention that many real-world problems belong
to multi-objective optimization, which will be in the scope
of our future works. These 30 benchmark functions are pre-
sented in Table 2 and they are categorized into four groups as
follows.
• Unimodal functions C1 − C3, which contain only one
global optimal point in the search space.

• Multi-modal functionsC4−C16, which have one global
optimal point going along with local minimum points.

• Hybrid functions C17−C22: the function variables are
randomly divided into some sub-components. Different
basic unimodal and multi-modal functions thus are used
for the sub-components.

• Composition functions C23−C30 merge the properties
of the sub-functions and maintains continuity around the
global/local optima.

We carefully carried out experiments with dimension
D ∈ {20, 50, 100} for each benchmark function.

B. EVALUATION METHOD
An evaluation method widely used for many algorithms in
evolutionary computing is based on the number of iterations,

FIGURE 4. Average rankings of each algorithm for hybrid and
composition functions.

which the algorithms run through. It is notable that in each
iteration, GSO-based algorithms run the optimization process
in the first phase withm sub-swarms before the second phase,
so there are two complete optimization processes taking place
in one iteration. This mechanism is different from other
swarm-based algorithms since they have only one optimiza-
tion process for all search agents in each iteration. Therefore,
the traditional evaluation method above is no longer in use
because it is not fair to estimate the performance of GSO-
based algorithms.

In our experiments, we assessed the performance of algo-
rithms with benchmark functions by using several function
evaluations (FE) [30]. The function evaluation number of an
algorithm is merely the number of updating operators over
time that the algorithm runs through as follow:
• For PSO and WOA, the number of function evaluations
FE is computed by:

FE = n ∗ Itermax (18)

where n is the number of particles in population, and
max iteration is Itermax .

• For GSO-based algorithms:

FE = (m.n.l1 + m.l2) ∗ Itermax (19)

where m is the sub-swarm number. Each sub-swarm
contains n particles; The maximal iteration is Itermax .
l1 and l2 are the iteration of the first and second phase;
m.n.l1 and m.l2 are FEs of the first and second phase in
each iteration respectively.

With the evaluation method described above, the experi-
mental results of each model are produced by calculating the
mean value (Equation 20) and the standard deviation value
(std , Equation 21) of the resulting series r containing 20 times
running for each algorithm.

mean = r̄ =
1
n

n∑
i=1

ri (20)

std =

√√√√ 1
n− 1

n∑
i=1

(ri − r̄)2 (21)

where N is the number of values and ri (i = 1, 2, . . . ,N ) are
observations.
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TABLE 6. Results and comparison of different algorithms on unimodal and multi-modal benchmark functions with 50D.

For each function, after mean and std values of each algo-
rithm are calculated, the algorithm performance is evaluated
by ranking in order of themean and std values. The evaluation
principle is as follows.

• In the case of two algorithms that are as good as each
other, their ranks are considered as the average rank of
2 positions, which they account for.

• The average_rank for each algorithm is calculated by
averaging its positions in all functions.

• The overall_rank is determined based on the
average_rank .

Finally, the rank of the algorithm which shows the best
performance in each function is highlighted in bold numbers
in Tables 5, 6, 7, 8, 9, and 10.
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TABLE 7. Results and comparison of different algorithms on unimodal and multi-modal benchmark functions with 100D.

C. SETTING PARAMETERS
The parameters for each algorithms in our experiments after
tuning process are set as follows:

• For HGEW, the acceleration constant (ci) of PSO in the
first phase is set to be 2.05 for every c parameter, and
with EWOA in the second phase, p2 = 0.4 for balancing
exploitation and exploration in EWOA.

• The number of function evaluations is 300000 for all the
experiments on benchmark functionswith dimensions of
20, 50, 100.

Corresponding parameters set up for GSO-based algo-
rithms and LWOA with the number of functions are shown
in Table 3 and Table 4. Note that in Table 3, there are
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TABLE 8. Results and comparison of different algorithms on hybrid and composition benchmark functions with 20D.

many sub-iterations of each HGEW and other GSO-based
algorithms, as presented in Algorithm 1.

V. EXPERIMENT RESULTS AND DISCUSSION

A. UNIMODAL AND MULTI-MODAL BENCHMARK
FUNCTIONS
The achieved results of the tested algorithms are shown
in Table 5, 6, and 7. All the experimental results of algorithms
on unimodal and multi-modal benchmark functions indicate
that HGEW gained the best performance with almost bench-
mark functions as compared with other optimizers (with
descriptions in Section IV). The obtained results stand in
the first position, followed by overall and average rankings
that are presented in Figure 3. In another perspective, HGEW

reaches the optimal global position in many functions regard-
less of search space size.

1) THE ACCURACY AND THE STABILITY
From the gained results of unimodal functions C1 − C16,
it could be made the following observations:

• HGEW reaches the optimal values on almost bench-
mark functions from C1 − C16 with decent stability.
It is notable that when the dimension of search space
increases from 20 to 100, HGEW’s performance is
still ranked in the first position among all algorithms,
while the results of GSO become worse, particularly in
C1,C2,C10 and C11 (Table 7). Looking more closely
at those functions in Table 7, HGEW’s mean of best
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TABLE 9. Results and comparison of different algorithms on hybrid and composition benchmark functions with 50D.

fitness values still reach the optimal values (C1, C10,
C11) or nearly the optimal value (C2) with the best
stability ( 10E − 4), while the others cannot land in the
optimal value (C1, C2).

• HGEW outperforms almost other algorithms in term
of std value on over a half number of functions, espe-
cially in C1,C2,C3,C8,C9, and C16 (Table 6, 7).
The results also show that HGEW stays more robust
than the others while running on each function
20 times.

• Other algorithms such as LWOA and GSO-WOA bring
decent results, being ranked in the second or third place
on several functions regardless of the size of the search
space. However, they cannot reach the optimal value in
unimodal functions (C1,C2,C3) with dimensions of 50
and 100 like HGEW.

In summary, all the gained results with unimodal andmulti-
modal functions figure out that HGEW has the excellent
optimization ability, and can stay unchanged with the rise in
dimension. For explanation, the participation of the current
best solution and a random particle in the current swarm,
Crossover operator enhances not only the exploitation capac-
ity. It leads the entire swarm to the optimal global position, but
also the diversity of the population that helps HGEW escape
local minimums.

2) THE CONVERGENCE CHARACTERISTICS
The curve results for unimodal (C2) and multi-modal func-
tions (C15) are presented in Figure 5 with the dimension
rising from 20 to 100 for each functions.

As depicted in the Figure, it is evident that HGEW not only
quickly converges towards the optimal global position but
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TABLE 10. Results and comparison of different algorithms on hybrid and composition benchmark functions with 100D.

also provides the best accuracy. Besides, the other GSO-based
algorithms show mediocre results in terms of accuracy, even
though they perform competitive convergence speed. LWOA
also brings good outcomes in some cases and has nearly
the same convergence speed compared with the convergence
speed of HGEW.

Also, from Figure 5, GSO shows the best performance
with the dimension of 20, but when the dimension goes up
to 50 or 100, it is outperformed by other algorithms such as
HGEW and LWOA. LWOA is competitive in both accuracy
and convergence speed, especially in the dimension of 50 in
both cases, it shows excellent performance even as decent
as HGEW at both unimodal and multi-modal benchmark
functions. However, generally, HGEW mostly gives the best
results among all algorithms in the term of accuracy.

B. HYBRID AND COMPOSITION BENCHMARK
FUNCTIONS
1) THE ACCURACY AND THE STABILITY
To resolve the optimization problem in multi-modal func-
tions C17 − C30, it can make an observation that HGEW
works very well with the global optimal position in most
of the cases as shown in Table 8, 9, and 10. Con-
cretely, HGEW performance is much better than original
GSO, LWOA and GSO-WOA with functions C20,C27 and
C28 functions. Furthermore, in almost benchmark func-
tions from C17 to C30, HGEW has the same average
mean values as compared with other algorithms, espe-
cially, for C16,C17,C19,C22,C24,C25,C26 functions,
it can reach the theoretical optimal position, giving the std
value at 0.
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FIGURE 5. The convergence curve of average fitness value on selected unimodal and multi-modal functions.

During the extension of dimension, our HGEW also
achieves better results, which are illustrated in Table 10:
C27,C29 and C30 with best fitness value landing very
near the optimal values and staying relatively robust (std
value 10E − 02). The conclusion is proved through com-
parisons among the gained outcomes shown in Table 8,

and 9. Not only that, but other algorithms such as original
GSO or GSO-WOA also generate the worse results as com-
pared with HGEW in terms of mean and std measurement,
specifically, GSO stands in the worst positions in all functions
and GSO-WOA is at 4th. As presented in Figure 4, HGEW
brings better outcomes following the increment of dimension
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FIGURE 6. The convergence curve of average fitness value on selected hybrid and composition functions.

(average rank is from 2.07 (20D) to 1.64 (50D and 100D),
which is the best outcomes among all algorithms), while
GSO-LWOA’s average ranking becomes worse from 2.43
(20D) to 2.71 and 2.86 (50D and 100D respectively). Thus,
HGEW tends to perform a potential solution when the dimen-
sion of search space increases; meanwhile, other algorithms
become worse. However, LWOA has a promising perfor-

mance for optimizing function C29 while HGEW has the
third position in most cases for that function. Even so, HGEW
still provides stability in our experiments with outstanding
outcomes.

In summary, GSO-LWOA is also very competitive when
working on multi-modal functions, but so far behind HGEW
in case of unimodal. These gained results proved that our
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proposed HGEW could explore the search space efficiently
and find promising regions of the search place. In this way,
HGEW has a strong ability to accomplish local minimum
avoidance as compared with LWOA and GSO-LWOA.

2) THE CONVERGENCE CHARACTERISTICS
The curve results are presented in Figure 6. The dimension
is selected in 20D, 50D and 100D with hybrid functions:
function C20 and composition function C30.
As depicted in Figure 6, analogous to the curves in uni-

modal andmulti-modal functions tests, HGEWalso generates
high convergence speed in hybrid and compos functions with
decent accuracy. For and C20 functions, HGEW always con-
verges to theoretical global optimal position with acceptable
speed compared to LWOA, while for C20 function, although
HGEW converges after some other algorithms, it performs a
better accuracy in the following iterations.

VI. CONCLUSION AND FUTURE WORK
The works presented in this paper aim to tackle the global
optimization problem. It is inspired by the simplicity and
efficiency principles presented in Galactic Swarm Optimiza-
tion and Whale Optimization Algorithm. However, with
many advantages, the original GSO suffers from premature
convergence, and mediocre accuracy, as well as the origi-
nal WOA, is not optimized in solving global optimization.
The HGEW (Hybridization of Galactic Swarm Optimiza-
tion and EvolutionWhale Optimization Algorithm) proposed
in this work can overcome those problems with enhance-
ments as follows. Using the Levy-Flight trajectory for adap-
tive search steps to jump out the optimal local position,
and two-point crossover operation for boosting the exploita-
tion capacity in the mean of evolution offspring creation
to help the optimizer move more in-depth to the optimal
global position in the search space. The main contribution
of the work was presented in Section II-E with the evolution
hybridization design presented in Section III. The HGEW
was validated in Section V with extensive experimental
results, comparisons, and evaluations. The obtained results
showed that HGEW has an outstanding performance as com-
pared with the others in terms of accuracy and convergence
speed.

In terms of the application, HGEW is one of the parts
of the V-chain [72] project. In which, the optimizer helps
find suitable parameters for neural networks in forecasting
workload of distributed systems like cloud computing and
blockchain. The main drawback of the proposed technique
is similar to other meta-heuristic algorithms. Concretely,
although HGEW brings good outcomes, it cannot ensure that
the achieved result is the global optimum. Our improvement
with Levy-Flight presented in this paper for HGEW also has
the goal of enhancing the ability to search the best optima,
but we believe that our algorithm’s optimization ability can be
enhanced even more. Hence, in the future, we try to improve
our HGEW by using different methods in the manner of

increasing searchability performance as well as to integrate
advanced features such as early-stopping condition into our
realization.
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