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ABSTRACT Deep Neural Networks (DNNs) have achieved remarkable accuracy improvements for auto-
matic modulation classification. However, the employed networks often have millions of parameters and
need very high computation, which makes it difficult to deploy these models on portable devices with
limited resources. We propose a cross model deep learning scheme to build a lightweight deep network for
accurate modulation classification. Firstly, a large Hybrid DNN (HDNN) that is composed of convolutional
and recurrent layers is constructed and trained for automatic and accurate classification of signals. Then we
build a smaller Layered Resnet Network (LRN) with shallow layers and few nodes. The HDNN and LRN
are taken as a Teacher Model (TM) and a Student Model (SM) respectively. Finally, a knowledge distillation
method is proposed to guide the learning of the SM, by formulating a teaching loss from the prediction of
the TM to train the SM. The performances of the proposed HDNN and LRN are investigated on the public
RadioML2016.10a and RadioML2016.10b data sets. The experimental results show that the trained HDNN
presents state-of-the-art classification results and the LRN trained in this scheme takes only about a sixth
of the HDNN’s inference time and consumes only 472.3KB for storage, with a slight accuracy decrease
compared with the large HDNN.

INDEX TERMS Automatic modulation classification, cross model deep learning, layered Resnet network.

I. INTRODUCTION
Automatic modulation classification (AMC) aims to recog-
nize the modulation type of a received radio signal, such
as BPSK, PAM, MPSK, and QAM. AMC is a promising
technology in the spectrum monitoring field [1] as it enables
the supervision of interference signals by identifying the
modulation format of the received signal. In addition, AMC
is a key technique to demodulate the received signal in non-
cooperative communication systems [2], [3]. Consequently,
AMC is widely applied in many applications, both civil and
military [4]–[6]. However, with the rapid development of
wireless communication technology in recent years, the radio
environment is becoming increasingly disordered, making
AMC more difficult.
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Traditional AMC methods can be roughly divided into
two groups: feature-based methods and likelihood-based
methods [7]. The feature-based methods [8]–[10] seek for
some handcraft features to distinguish different types of
signals, such as higher-order moment [11], instantaneous
frequency [7], instantaneous phase [11] and cyclic cumu-
lant [11]. However, finding reliable features relies too much
on manual selection, resulting in unstable results [7], [12].
In the likelihood-based methods, likelihood functions of dif-
ferent hypotheses are first calculated using received sig-
nals. Then the results are compared with a certain threshold
to make final classification decisions [12]. Compared with
feature-based methods, likelihood-based methods treat both
noises and channel models which reflect the propagation
characteristics of signals as prior information, nevertheless,
channel models are usually unavailable in practice [12].
Consequently, likelihood-based methods cannot adapt to a
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dynamic or unknown channel [7]. In addition, their computa-
tional complexity is very high [7].

Recently Deep Neural Networks (DNN) have been used
for simultaneous feature learning and classification of modu-
lated signals [12]–[17]. DNNs such as Convolutional Neural
Networks (CNNs) [7], [12], [15]–[18] or Long Short-Term
Memory Recurrent Neural Networks (LSTM-RNNs) [19],
[20] improved the accuracy of AMC methods. For example,
in [18],Wang et al. used the eye diagram of signals and Lenet-
5 for AMC. In [21] and [22], CNNs were used to deal with the
complex-valued raw signals, and the classification results on
RML2016.10a data set [23] showed that CNNs can achieve
higher accuracy than traditional expert feature engineering.

In [24], Rajendran et al. introduced a LSTM-RNN model
for AMC and indicated that LSTM-RNN models outper-
form CNN models with oversampled received signals at
small or medium scales. Later Swami and Sadler [11]
designed a new LSTM-RNN model comprised of a LSTM-
RNN layer and two Fully-Connected (FC) layers. It can
achieve high accuracy for automatic classification of six types
of digital modulation signals with varying noises. What’s
more, Sainath et al. [25] proved that CNN is good at reducing
frequency variations and LSTM-RNN is good at temporal
modeling. CNN and LSTM-RNN are complementary for
sequential data processing. Using this work,West andO’Shea
proposed a model comprised of inception modules and
LSTM-RNN to identify the modulation types of signals, and
the results showed remarkable accuracy improvements over
both CNN models and LSTM-RNN models in [26]. In [27],
a model composed of CNN, LSTM-RNN and Gated Recur-
rent Unit Recurrent Neural Network (GRU-RNN) achieved a
state-of-the-art performance. In [28], Sharan et al. employed
a CNN and LSTM-RNN model for AMC, and investigated
the feasibility and effectiveness of deep learning algorithms
for AMC. In existing models combined by CNN and LSTM-
RNN, the original CNN structure [11], [28] and the inception
structure [26] are utilized. However, these CNN structures are
difficult to train [29] and there is the vanishing gradient in
their training processes.

On the other hand, the available networks often have a large
number of parameters, which makes it difficult to implement
on portable devices with limited resources. For example,
in [28] the network contains 313,603 parameters with one
LSTM-RNN layer, four convolution layers, and two fully
connected layers. In addition, the time complexity of the
models comprised of CNN and LSTM-RNN layers is high in
training or prediction as the LSTM-RNN operation is time-
consuming [30]. Thus, these networks take a long time to
automatically predict the types of signals.

Deep Residual nets (Resnet) [29] have been applied exten-
sively in the field of computer vision. Resnet can simplify
the training complexity of deep networks as the shortcut
connection is adopted [29]. In order to limit the training
complexity, in this paper, we utilize 1-D Resnet and LSTM-
RNN layers to build a Hybrid Deep Neural Network (HDNN)
for AMC. HDNN can present promising results on multiple

AMC data sets. Moreover, in order to reduce the storage
and computational cost of HDNN for real-time applications,
we propose a Cross Model Deep Learning (CMDL) scheme
to build a lightweight deep model for accurate prediction.
We first construct a smaller Layered Resnet Network (LRN)
with shallow layers and few nodes. Then, inspired by the
Knowledge Distillation (KD) that builds a small and effi-
cient model with reasonable performance degradation from
a large and complex model, we define HDNN and LRN as a
Teacher Model (TM) and a Student Model (SM) respectively.
A Knowledge Distillation (KD) method is proposed to pilot
the learning of the SM by formulating a teaching loss from
the prediction of the TM to train the SM. In the training
of the LRN, the inter-class similarity learned and revealed by
the HDNN, is used to develop a more reliable LRN.

Compared with the available works, the contributions of
our work can be summarized as follows:

• We propose a HDNN composed of Resnet and LSTM-
RNN. We employ 1-D Resnet to reduce the training
complexity of this model. To the best of our knowledge,
this is the first attempt to combine 1-D Resnet and
LSTM-RNN for AMC.

• In order to implement HDNN rapidly, we construct a
lightweight deep model, LRN. This model is comprised
of only three Resnet stacks and one FC layer.

• We propose a CMDL scheme to make the LRN achieve
accurate prediction, where we utilize a KD method to
guide the learning of the LRN, by formulating a teaching
loss from the prediction of HDNN to train the LRN.

We analyze the performance of the trained LRN on
the public RadioML2016.10a and RadioML2016.10b data
sets. The experimental results show that the trained HDNN
presents state-of-the-art classification results, and the trained
LRN achieves a slight accuracy decrease compared with the
HDNN and is beneficial to the rapid signal classification with
limited resources. The trained LRN takes only about a sixth
of theHDNN’s inference time and occupies 472.3KB storage.
In order to further compress LRN, the model is also quantized
in experiments, the quantized LRN consumes only 301.2KB
for storage, with the same performance or a slight accuracy
increase compared with the trained LRN.

The remaining part of this paper is elaborated as follows.
In Section II, CMDL is described in detail. Experimental
results and related analysis are presented in Section III.
Finally, a conclusion is drawn in Section IV.

II. CROSS MODEL DEEP LEARNING
In this section, a large HDNN and a small LRN are first
constructed as TM and SM respectively. Then, the CMDL
scheme is proposed to train LRN from HDNN.

A. CONSTRUCTIONS OF TM AND SM
In this subsection, a large HDNN is first constructed, which
consists of three Resnet stacks, one LSTM-RNN layer, and
one FC layer.

78924 VOLUME 8, 2020



H. Ma et al.: CMDL Scheme for AMC

FIGURE 1. The structure of a LSTM-RNN cell. et is the input, Ct is the
memory of this cell and ht is its hidden state at time t .

A LSTM-RNN cell, which contains input gate (it ), forget
gate (ft ), output gate (ot ) and cell gate (C̃t ), is illustrated
in Fig. 1. The gates are calculated as follows:

ft = σ (W f · [ht−1, et ]+ bf ) (1)

it = σ (W i · [ht−1, et ]+ bi) (2)

ot = σ (Wo · [ht−1, et ]+ bo) (3)

C̃t = tanh(WC · [ht−1, et ]+ bC ) (4)

where ft , it , ot , C̃t are the forget gate, input gate, output gate
and cell gate, respectively; W f , W i, Wo and WC are forget
gate, input gate, output gate and cell gate weight matrices,
respectively; and bf , bi, bo, bC are forget gate, input gate,
output gate and cell gate biases, respectively. et is the input
at time t . The gate weights can be learned from the previous
state ht−1 and the input data et .

The LSTM-RNN cell has the memory (Ct ) and the hidden
state (ht ) along with four gates. The memory Ct and the
hidden state ht at time t are updated as follows:

Ct = ft · Ct−1 + it · C̃t (5)

ht = ot · tanh(Ct ). (6)

Utilizing this gating mechanism, LSTM-RNN cells can
preserve information for a longer duration, thereby extracting
temporal features.

In addition, 1-D convolution with low computation, as a
complement to LSTM-RNN, also is employed to reduce
frequency variations of signals for AMC. A 1-D convolution
kernel can be described by

yq[j] = g(
k∑
l=1

wq[l]s[j+l−(k−1)/2]+bq) j∈ [1, n] (7)

y = [y1, . . . , yq, . . . , yp] 1 ≤ q ≤ p (8)

where s denotes the input of the 1-D convolution kernel, and
its length is n. Equation. (7) represents the operation of the
q− th 1-D convolution kernel in a 1-D convolution layer and
k is the size of this convolution kernel where k is generally
odd. wq[l] and bq indicate the weights and the bias of this
convolution kernel respectively. g(·) is an activate function
and Glorot et al. [31] is used in our models. y is the output of
the 1-D convolution layer and p is the number of its channel.
The number of the trainable parameters in a 1-D convolu-

tion kernel is k+1, and it only is about one k−th of that in the

2-D convolution kernel with the size of k × k (The number
of the trainable parameters in the 2-D convolution kernel is
k × k + 1).
Based on LSTM-RNN cells and 1-D convolution, the TM,

a HDNN, is designed for AMC. As shown in Fig. 2 (a), a
signal with the size of [2, 128] is fed into this model first,
where the signal is a 128-sample complex (baseband I/Q)
time-domain vector. Then we employ three ResNet stacks
(Res1, Res1, and Res3), one LSTM-RNN layer (LSTM1)
comprised of 100 LSTM cells, and one FC layer (FC1) to
build the TM. The structure of the ResNet stack composed
of 1-D convolution layers is presented in Fig. 2 (c). The
standard cross-entropy loss is used as the loss for the training
of the TM. It can be described as

LT (x, l) = l log(softmax(TM (x))) (9)

where x ∈ X, X is the training data set and l is the true label
of x. TM (x) denotes the output of the TM. softmax(·) is the
softmax function.

In addition, as shown in Fig. 2, two ResNet stacks in
the training TM, Res1 and Res2, are directly transferred to
build the SM. Then, they are followed by one pooling layer
(Pooling1) and one FC layer (FC2).

B. CROSS MODEL DEEP LEARNING
In fact, it is particularly difficult to make the SM obtain
similar performance to the TM by using (9) as the SM, LRN,
only has 84,939 parameters and it needs more parameters and
more layers for higher accuracy.

In the CMDL scheme, we extend KD to train the SM from
the TM, HDNN. We employ knowledge, TM (x) and FTM (x),
learned by the TM to improve the performance of the SM.

Based onKD, a loss where TM (x) is introduced is designed
to train the SM, and it can be described by

Lsm(x, l) = softmax(
TM (x)
T

) log(softmax(
SM (x)
T

)) (10)

where SM (x) denotes the prediction of the SM. Lsm (x, l) is an
inconsistency loss defined by the standard cross-entropy loss
between SM (x) and TM (x), and it is utilized to make the SM
learn from TM (x).

Hinton et al. [32] proved that softmax(·/T ) with a higher
temperature value T produces a softer probability distribution
over classes than that with a temperature value T of 1. The
softer probability distribution makes the distillation pay more
attention to matching the negative logits below the average,
which is beneficial to train an efficient model [32]. With
a high value T , the derivative w.r.t. SM (x) is calculated
in [32] by

∂LsM (x, l)
∂SM (x)

≈
1

num× T 2 (SM (x)− TM (x)) (11)

where num is the number of the modulation types. It is
obvious that minimizing Ls(x, l) can make SM (x) equal
to TM (x) in (11). Thus, the SM is trained to approximate
to the TM.
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FIGURE 2. Structures of TM and SM. (a) The structure of the proposed HDNN. (b) The structure of the proposed
LRN. (c) The structure of the ResNet stack. p ×Cov1D_1× k denotes a layer with p 1-D convolutional kernels, where
the sizes of these convolutional kernels are 1 × k. Max_Pooling1D_s1_s2 is a 1-D max-pooling layer with the size
s1 × 1 and the stride s2. FC_I_O is a Fully-connected layer with the input size of I and the output size of O. x is a
signal as the input of models and its size is [2, 128]. num is the number of the modulation types to be identified.
BN is a batch normalization layer. LSTM_100 denotes a LSTM-RNN layer comprised of 100 LSTM cells. In our
scheme, HDNN is considered as the TM and LRN is the SM. HDNN is first trained. Then, we utilize TM(x) to guide
the training of the SM.

In addition, in order to better learn knowledge from the
TM, the SM is trained to learn the feature distribution of the
TM by using (12) as features extracted by shallow layers are
more generality [33].

Lsf (x) = ||FTM (x)− FSM (x)||22 (12)

where FTM (x) and FSM (x) denotes the feature distribution of
the TM and that of the SM respectively. The derivative w.r.t.
Lsf (x, l) is:

∂Lsf (x)

∂FSM (x)
= FTM (x)− FSM (x) (13)

where we can find that minimizing Lsf (x) can make FSM (x)
approximate to FTM (x) in (13).
In this paper, the teaching loss to train the SM is defined as

L = Lsm(x, l)+ L
s
f (x). (14)

The CMDL is a multi-stage training process. Firstly,
the TM is trained. Then, the SM is trained by knowledge
generated by the trained TM. One important consideration in
CMDL is summarized as follows.
• The construction and training of the TM are not neces-
sary. Existing models with high accuracy for AMC can
be considered as the TM.

III. SIMULATIONS, RESULTS, AND DISCUSSION
In this section, several experiments on RML2016.10a data set
and RML2016.10b data set [23] are implemented to show the
performance of the proposed CMDL.

The hardware of the test platform is HP z840 workstation
with Intel E5-2600 3.2GHz CPU, 128G memory and two
GTX 1080 GPU. All training processes are performed on
two GPU and all testing processes are on one GPU. All
experiments are implemented by Python 2.7 based on the
Keras framework. The training log can be downloaded at this
link, and all codes and data will be available.

In our experiments, all models are trained in an end-to-
end manner by the Adam optimization algorithm in all exper-
iments. The batch-size is set to 384. The learning rate is
0.01 and the learning rate decay rate is 0. In Adam optimiza-
tion algorithm, exponential decay rates follow those provided
in the original paper [34]. In addition, the training epoch is set
to 300. T is set into 10.

A. DATASETS
The RML2016.10a data set generated with GNU Radio is
adopted to evaluate the modulation recognition task, and it
consists of 220,000 signals at SNRs of −20∼18 dB with
11 classes of modulations (8 digital and 3 analog types:
8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, PAM4,
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TABLE 1. Comparisons of different models.

FIGURE 3. Variations of training losses.

QAM16, QAM64, QPSK, and WBFM). The task is to utilize
a signal represented by a 128-sample complex (baseband I/Q)
time-domain vector to identify its modulation scheme out
of 11 possible classes. The sample is fed into models in a
2× 128 vector.

In order to better evaluate the proposed CMDL, a larger
version of the RML2016.10a data set, the RML2016.10b
data set, is also employed for AMC in our experiments. The
RML2016.10b data set consists of 1,200,000 signals at SNRs
of −20∼18 dB with 10 classes of modulations (7 digital
and 3 analog types: 8PSK, AM-DSB, BPSK, CPFSK, GFSK,
PAM4, QAM16, QAM64, QPSK, and WBFM).

For ease of comparison, all data sets are download at
https://www.deepsig.io/datasets. We utilize an official code
downloaded from https://github.com/radioML/examples to
split the data sets, where 90% of the data is considered as
training data subset and 10% of the data is testing data subset
in each data set.

B. THE TRAINING PROCESS
In this subsection, models are first trained. Then, we ana-
lyze the SM’s performance variation with the tempera-
ture value. Next, we introduce the performance analysis
of CMDL.

FIGURE 4. The accuracies of the proposed models in predicting for each
class. The SM trained in the teaching loss shows a similar characteristic to
that of the trained TM for different modulation types.

1) TRAINING OF MODELS
The proposed TM is first trained on the RML2016.10a train-
ing data subset in the standard cross-entropy loss. After the
training in each epoch, the RML2016.10a testing data subset
is employed to test the model. The model with the best accu-
racy on the testing data subset is saved as the trained model
for prediction in the training process. As shown in Table 1,
the TM achieves 62.98% accuracy on the testing data. Then,
the proposed SM is trained on RML2016.10a training data
subset in the standard cross-entropy loss, and it has an accu-
racy of 55.20% on the testing data. Next, the SM is trained on
RML2016.10a training data subset in the proposed teaching
loss, and the performance (62.41%) similar to that (62.98%)
of the trained TM is obtained by the trained SM. Finally,
in order to further compress the model, all parameters in the
SM trained in the teaching loss are encoded by float16. The
quantized SMobtains the same accuracy as themodel without
parameter quantization. The training loss variations of the
TM and the SMs are illustrated in Fig. 3.

In order to show the SM’s performance variation with
the temperature value, when T is set to 1, 3, 10, the SM
is trained on RML2016.10a training data subset, respec-
tively. As illustrated in Table 1, prediction accuracy on
RML2016.10a testing data subset increases with the increase
of T. When T is 10, the SM achieves the best perfor-
mance. Hence, for the remaining experiments, we will use
a T of 10.
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FIGURE 5. The visualization results of features from the last layers in SM and TM. ∗ denotes that this model is trained in the standard
cross-entropy loss and # means that this model is trained in the teaching loss. Compared with the feature difference between the SM∗ and the
TM∗, the feature difference between the SM # and the TM∗ is small, and their features change approximately in the same trend.

2) PERFORMANCE ANALYSIS OF CMDL
In fact, we expect the performance of the trained TM is
better than that of the SM trained in the standard cross-
entropy loss. As shown in Table 1, the trained TM exhibits
significant performance improvement over the SM trained
in the standard cross-entropy loss. Nevertheless, it is worth
noting that the training time of the SM is only about a
quarter of the TM’s training time, and the testing time of the
SM is only about one-sixth of the TM’s testing time as the
LSTM-RNN operation is very time-consuming [30]. What’s
more, as illustrated in Table 1, the teaching loss makes the SM
obtain the performance improvement of 7.21%, which shows
the proposed CMDL is effective for the performance boost of
a lightweightmodel. One important reason is that the teaching
loss employs knowledge learned by the trained TM to guide
the training of the SM. However, an unexpected fact is that
the quantized SM spent the same time as the SM without
parameter quantization, which may be due to implementation
issues. In theory, the quantized SM can cut computation time
in half.

We utilize the trained models to predict all signals in
the RML2016.10a testing data subset and plot the accura-
cies of the proposed models in predicting for each class.
As shown in Fig. 4, the TM trained in the standard cross-
entropy loss achieves the better performance than the SM
trained in the standard cross-entropy loss for eight modu-
lation types (8PSK, AM-DSB, AM-SSB, BPSK, CPFSK,
GFSK, PAM4 and QAM64), and the SM trained in the
standard cross-entropy loss shows the better performance for
other modulation types (QAM16, QPSK andWBFM), which
shows the characteristics of two models for the prediction of
different modulation types. In addition, the SM trained in the
teaching loss also obtains the better performance than the SM

FIGURE 6. Comparisons with different methods. Compared with Resnet,
Inception, Densenet, FCNN, DHN, C2LDNN and LSTM-2, the trained TM
achieves much higher accuracy for AMC and the proposed SM trained in
the teaching loss shows a better performance.

trained in the standard cross-entropy loss for eightmodulation
types (8PSK, AM-DSB, AM-SSB, BPSK, CPFSK, GFSK,
PAM4 andQAM64) and its characteristic for the prediction of
different modulation types is changed compared with the SM
trained in the standard cross-entropy loss, which is similar
to the characteristics of the trained TM. This proves that
knowledge obtained by the TM is learned effectively by the
SM using the proposed teaching loss.
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In addition, when we use the trained models to test ran-
domly selected signals in the RML2016.10a testing data sub-
set, features from the last layers in the trained SMs and the
trained TM are visualized in Fig. 5. The feature difference
between the SM trained in the teaching loss and the trained
TM is small, and their features change approximately in the
same trend, which further proves that knowledge obtained
by the TM is effectively learned by the SM in the teaching
loss and the features extracted by the HDNN is beneficial to
performance improvement of the LRN for AMC.

C. THE EVALUATION OF THE PROPOSED MODELS
In this subsection, in order to further show the performance
of the proposed models, seven state-of-the-art CNN and
LSTM-RNN models (Resnet [26], Inception [26], Densenet
[26], FCNN [7], DHN [35], C2LDNN [26] and LSTM-2
[24]) are introduced to quantify the experimental results on
the RML2016.10a test data subset. Resnet, Inception and
Densenet were used in [26] for AMC. FCNN [7], DHN [35],
C2LDNN [26] and LSTM-2 [24] were proposed for AMC.
These models are evaluated on the RML2016.10a data set in
the original papers.

The experimental results are shown in Fig. 6. It can be
noticed that the trained TM and the SM trained in the teaching
loss achieve much higher accuracy than Resnet, Inception,
Densenet, FCNN, and C2LDNN on testing signals at SNRs
of −5∼18 dB and they result in similar performance com-
pared with other methods.

In view of the average accuracy, the best performance is
illustrated by the trained TM, and either superior or equal
performance is shown by the SM trained in the teaching loss.

D. THE GENERALITY OF THE PROPOSED CMDL
In this subsection, A Novel TM (NTM) and a Novel
SM (NSM) are designed to show the generality of the pro-
posed CMDL scheme on the RML2016.10b data set. The
structures of the NTM and the NSM are shown in Fig. 7.

In order to further evaluate the performance of models,
the NTM and the NSM are first trained in the standard
cross-entropy loss. Then, the NSM is trained in the teaching
loss. Finally, the trained NSM is quantized. The experimental
results are shown in Table 2. Compared with the NSM trained
in the standard cross-entropy loss, the NSM trained in the
teaching loss has a performance boost of 5.8%, which illus-
trates the feasibility and the generality of the proposed CMDL

TABLE 2. Comparisons of different models.

FIGURE 7. Structures of NTM and NSM. NSM(x) denotes the prediction of
the NSM and NTM(x) denotes the prediction of the NTM.

on this model. The trainedNSMwith reasonable performance
degradation from the trained NTM also saves a lot of time
in the training process and the testing process. In addition,
the quantized NSM has a slightly better performance than the
original NSM trained in the teaching loss, which is probably
because parameter quantization improves the generalization
performance of this model.

IV. CONCLUSION AND FUTURE WORK
In this paper, in order to better train a lightweight model for
AMC, we propose a novel scheme, CMDL. Firstly, we con-
struct a large HDNN for AMC and this model achieves state-
of-the-art performance compared with its counterparts. Then
a lightweight model, LRN, is built. Next, a KD method
is proposed by formulating a teaching loss from the pre-
diction of the HDNN to train the LRN. The trained LRN
that consumes only 472.3KB for storage achieves great per-
formance improvement compared with the LRN trained in
the standard cross-entropy loss, and results in either supe-
rior or equal performance compared with its counterparts,
which proves that the proposed CMDL scheme is beneficial
to train a lightweight model. In order to further compress the
lightweight LRN, in experiments, parameter quantization is
employed and the model size is reduced to 301.2KB with
either higher or equal accuracy.
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