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ABSTRACT The k-means algorithm is generally the most known and used clustering method. There are
various extensions of k-means to be proposed in the literature. Although it is an unsupervised learning to
clustering in pattern recognition and machine learning, the k-means algorithm and its extensions are always
influenced by initializations with a necessary number of clusters a priori. That is, the k-means algorithm
is not exactly an unsupervised clustering method. In this paper, we construct an unsupervised learning
schema for the k-means algorithm so that it is free of initializations without parameter selection and can also
simultaneously find an optimal number of clusters. That is, we propose a novel unsupervised k-means (U-
k-means) clustering algorithm with automatically finding an optimal number of clusters without giving any
initialization and parameter selection. The computational complexity of the proposed U-k-means clustering
algorithm is also analyzed. Comparisons between the proposed U-k-means and other existing methods are
made. Experimental results and comparisons actually demonstrate these good aspects of the proposed U-k-
means clustering algorithm.

INDEX TERMS Clustering, K-means, number of clusters, initializations, unsupervised learning schema,
Unsupervised k-means (U-k-means).

I. INTRODUCTION
Clustering is a useful tool in data science. It is a method for
finding cluster structure in a data set that is characterized
by the greatest similarity within the same cluster and the
greatest dissimilarity between different clusters. Hierarchical
clustering was the earliest clustering method used by biolo-
gists and social scientists, whereas cluster analysis became
a branch of statistical multivariate analysis [1], [2]. It is
also an unsupervised learning approach to machine learning.
From statistical viewpoint, clustering methods are generally
divided as probability model-based approaches and nonpara-
metric approaches. The probability model-based approaches
follow that the data points are from a mixture probability
model so that a mixture likelihood approach to clustering
is used [3]. In model-based approaches, the expectation and
maximization (EM) algorithm is the most used [4], [5]. For
nonparametric approaches, clustering methods are mostly
based on an objective function of similarity or dissimilarity
measures, and these can be divided into hierarchical and
partitional methods where partitional methods are the most
used [2], [6], [7].
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In general, partitional methods suppose that the data set
can be represented by finite cluster prototypes with their own
objective functions. Therefore, defining the dissimilarity (or
distance) between a point and a cluster prototype is essential
for partition methods. It is known that the k-means algorithm
is the oldest and popular partitional method [1], [8]. The
k-means clustering has been widely studied with various
extensions in the literature and applied in a variety of sub-
stantive areas [9], [10], [11], [12]. However, these k-means
clustering algorithms are usually affected by initializations
and need to be given a number of clusters a priori. In general,
the cluster number is unknown. In this case, validity indices
can be used to find a cluster number where they are supposed
to be independent of clustering algorithms [13]. Many cluster
validity indices for the k-means clustering algorithm had
been proposed in the literature, such as Bayesian information
criterion (BIC) [14], Akaike information criterion (AIC) [15],
Dunn’s index [16], Davies-Bouldin index (DB) [17],
Silhouette Width (SW) [18], Calinski and Harabasz index
(CH) [19], Gap statistic [20], generalized Dunn’s index
(DNg) [21], and modified Dunn’s index (DNs) [22].

For estimation the number of clusters, Pelleg and
Moore [23] extended k-means, called X-means, by making
local decisions for cluster centers in each iteration of k-means

80716 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-0169-5265
https://orcid.org/0000-0002-4907-3548
https://orcid.org/0000-0001-8116-4733


K. P. Sinaga, M.-S. Yang: U-k-means Clustering Algorithm

with splitting themselves to get better clustering. Users need
to specify a range of cluster numbers in which the true cluster
number reasonably lies and then a model selection, such as
BIC or AIC, is used to do the splitting process. Although
these k-means clustering algorithms can find the number of
clusters, such as cluster validity indices and X-means, they
use extra iteration steps outside the clustering algorithms.
As we know, no work in the literature for k-means can be free
of initializations, parameter selection and also simultaneously
find the number of clusters. We suppose that this is due to its
difficulty for constructing this kind of the k-means algorithm.

In this paper, we first construct a learning procedure for the
k-means clustering algorithm. This learning procedure can
automatically find the number of clusters without any initial-
ization and parameter selection. We first consider an entropy
penalty term for adjusting bias, and then create a learning
schema for finding the number of clusters. The organization
of this paper is as follows. In Section II, we review some
related works. In Section III, we first construct the learning
schema and then propose the unsupervised k-means clus-
tering (U-k-means) with automatically finding the number
of clusters. The computational complexity of the proposed
U-k-means algorithm is also analyzed. In Section IV, several
experimental examples and comparisons with numerical and
real data sets are provided to demonstrate the effectiveness
of the proposed U-k-means clustering algorithm. Finally,
conclusions are stated in Section V.

II. RELATED WORKS
In this section, we review several works that are closely
related with ours. The k-means is one of the most popular
unsupervised learning algorithms that solve the well-known
clustering problem. Let X = {x1, . . . , xn} be a data set in
a d-dimensional Euclidean spac Rd . Let A = {a1, . . . , ac}
be the c cluster centers. Let z = [zik ]n×c, where zik is
a binary variable (i.e. zik ∈ {0, 1}) indicating if the data
point xi belongs to k-th cluster, k = 1, · · · , c. The k-means
objective function is J (z,A) =

∑n
i=1

∑c
k=1 zik ‖xi − ak‖

2.
The k-means algorithm is iterated through necessary condi-
tions for minimizing the k-means objective function J (z,A)
with updating equations for cluster centers and memberships,
respectively, as

ak =

∑n
i=1 zikxij∑n
i=1 zik

and

zik =

{
1 if ‖xi − ak‖2 = min

1≤k≤c
‖xi − ak‖2

0, otherwise.

where ‖xi − ak‖ is the Euclidean distance between the data
point xi and the cluster center ak . There exists a difficult
problem in k-means, i.e., it needs to give a number of clusters
a priori. However, the number of clusters is generally unkown
in real applications. Another problem is that the k-means
algorithm is always affected by initializations.

To resolve the above issue for finding the number c
of cluster, cluster validity issues get much more attention.

There are several clustering validity indices available for esti-
mating the number c of clusters. Clustering validity indices
can be grouped into two major categories: external and
internal [24]. External indices are used to evaluate clustering
results by comparing cluster memberships assigned by a clus-
tering algorithm with the previously known knowledge such
as externally supplied class label [25], [26]. However, internal
indices are used to evaluate the goodness of cluster structure
by focusing on the intrinsic information of the data itself [27]
so that we consider only internal indices. In the paper,
these most widely used internal indices, such as original
Dunn’s index (DNo) [16], Davies-Bouldin index (DB) [17],
Silhouette Width (SW) [18], Calinski and Harabasz index
(CH) [19], Gap statistics [20], generalized Dunn’s index
(DNg) [21], and modified Dunn’s index (DNs) [22] are
chosen for finding the number of clusters and then compared
with our proposed U-k-means clustering algorithm.

The DNo [16], DNg [21], and DNs [22] are supposed to be
the simplest (internal) validity index where it compares the
size of clusters with the distance between clusters. The DNo,
DNg, and DNs indices are computed as the ratio between the
minimum distance between two clusters and the size of the
largest cluster, and so we are looking for the maximum value
of index values. Davies-Bouldin index (DB) [17] measures
the average similarity between each cluster and its most
similar one. The DB validity index attempts to maximize
these between cluster distances while minimizing the dis-
tance between the cluster centroid and the other data objects.
The Silhouette value [18] is a measure of how similar an
object is to its own cluster (cohesion) compared to other
clusters (separation). The silhouette ranges from −1 to +1,
where a high value indicates that the object is well matched
to its own cluster and poorly matched to neighboring clusters.
Thus, positive and negative large silhouette widths (SW)
indicate that the corresponding object is well clustered and
wrongly clustered, respectively. Any objects with the SW
validity index around zero are considered not to be clearly
discriminated between clusters. The Gap statistic [20] is a
cluster validity measure based upon a statistical hypothesis
test. The gap statistic works by comparing the change in
within-cluster dispersion with that expected under an appro-
priate reference null distribution at each value c. The optimal
number of clusters is the smallest c.

For an efficient method about the number of clusters,
X-means proposed by Pelleg and Moore [23], should be
the most well-known and used in the literature, such as
Witten et al. [28], and Guo et al. [29]. In X-means, Pelleg
and Moore [23] extended k-means by making local decisions
for cluster centers in each iteration of k-means with splitting
themselves to get better clustering. Users only need to specify
a range of cluster numbers in which the true cluster number
reasonably lies and then a model selection, such as BIC,
is used to do the splitting process. Although X-means has
been the most used for clustering without given a number
of clusters a priori, it still needs to specify a range of cluster
numbers based on a criterion, such as BIC. On the other hand,
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it is still influenced by initializations of algorithm. On the
other hand, Rodriguez and Laio [30] proposed an approach
based on the idea that cluster centers are characterized by a
higher density than their neighbors and by a relatively large
distance from points with higher densities, which they called
as a clustering by fast search (C-FS) and find of density
peaks. To identify the cluster centers, C-FS uses the heuristic
approach of a decision graph. However, the performance of
C-FS highly depends on two factors, i.e., local density ρi and
cutoff distance δi.

III. THE UNSUPERVISED K-MEANS CLUSTERING
ALGORITHM
There always exists a difficult problem in the k-means algo-
rithm and its extensions for a long history in the literature.
That is, they are affected by initializations and require a given
number of clusters a priori. We mentioned that the X-means
algorithm has been used for clustering without given a num-
ber of clusters a priori, but it still needs to specify a range of
number of clusters based on BIC, and it is still influenced by
initializations. To construct the k-means clustering algorithm
with free of initializations and automatically find the number
of clusters, we use the entropy concept. We borrow the idea
from the EM algorithm by Yang et al. [31]. We first consider
proportions αk in which the αk term is seen as the probability
of one data point belonged to the kth class. Hence, we use
− lnαk as the information in the occurrence of one data point
belonged to the kth class, and so −

∑c
k=1 αk lnαk becomes

the average of information. In fact, the term−
∑c

k=1 αk lnαk
is the entropy over proportions αk . When αk = 1/c,∀k =
1, 2, . . . , c, we say that there is no information about αk .
At this point, we have the entropy achieve the maximum
value. Therefore, we add this term to the k-means objective
function J (z,A) as a penalty. We then construct a schema
to estimate αk by minimizing the entropy to get the most
information for αk . To minimize −

∑c
k=1 αk lnαk is equiv-

alent to maximizing
∑c

k=1 αk lnαk . For this reason, we use∑c
k=1 αk lnαk as a penalty term for the k-means objective

function J (z,A). Thus, we propose a novel objective function
as follows: β ≥ 0

JUKM1 (z,A, α) =
n∑
i=1

c∑
k=1

zik ‖xi − ak‖2 − βn
c∑

k=1

αk lnαk

(1)

In order to determine the number of clusters, we next consider
another entropy term. We combine the variables membership
zik and the proportion αk . By using the basis of entropy
theory, we suggest a new term in the form of zik lnαk . Thus,
we propose the unsupervised k-means (U-k-means) objective
function as follows:

JU−k−means(z,A, α)=
n∑
i=1

c∑
k=1

zik ‖xi−ak‖2−βn
c∑

k=1

αk lnαk

−γ

n∑
i=1

c∑
k=1

zik lnαk (2)

We know that, when β and γ in Eq. (2) are zero, it becomes
the original k-means. The Lagrangian of Eq. (2) is

J̃ (z,A, α, λ) =
n∑
i=1

c∑
k=1

zik ‖xi − ak‖2 − βn
c∑

k=1

αk lnαk

−γ

n∑
i=1

c∑
k=1

zik lnαk − λ

(
c∑

k=1

αk − 1

)
(3)

We first take the partial derivative of the Lagrangian (3) with
respect to zik , and setting them to be zero. Thus, the updating
equation for zik is obtained as follows:

zik =


1 if ‖xi − ak‖2 − γ lnαk = min

1≤k≤c
‖xi − ak‖2

− γ lnαk
0, otherwise.

(4)

The updating equation for the cluster center ak is as follows:

ak =
∑n

i=1
zikxij

/∑n

i=1
zik (5)

We next take the partial derivative of the Lagrangian
with respect to αk , we obtain ∂ J̃

∂αk
= −βn (lnαk + 1)

−γ
∑n

i=1
zik
αk
− λ = 0 and−βnαk (lnαk + 1)−γ

∑n
i=1 zik−

λαk = 0. Thus, we have −
∑c

k=1 nβαk lnαk −∑c
k=1 nβαk − γ

∑c
k=1

∑n
i=1 zik −

∑c
k=1 λαk = 0 with λ =

−nβ
∑c

k=1 αk lnαk−nβ−nγ.Weobtain−βnαk (lnαk+1)−
γ
∑n

i=1 zik − (−nβ
∑c

k=1 αk lnαk − nβ − nγ ) αk = 0 and
then we get the updating equation for αk as follows:

α
(t+1)
k =

n∑
i=1

zik/n+ (β/γ )α(t)k

(
lnα(t)k −

c∑
s=1

α(t)s lnα(t)s

)
(6)

where t denotes the iteration number in the algorithm.
We should mention that Eq. (6) created above is important

for our proposed U-k-means clustering method. In Eq. (6),∑c
s=1 αs lnαs is the weighted mean of lnαk with the weights

α1, . . . , αc. For the kth mixing proportion α(t)k , if lnα(t)k is
less than the weighted mean, then the new mixing propor-
tion α(t+1)k will become smaller than the old α(t)k . That is,
the smaller proportionwill decrease and the bigger proportion
will increase in the next iteration, and then competition will
occur. This situation is similar as the formula in Figueiredo
and Jain [32]. If αk ≤ 0 or αk < 1/n for some 1 ≤ k ≤ c(t),
they are considered to be illegitimate proportions. In this
situation, we discard those clusters and then update the cluster
number c(t) to be

c(t+1) = c(t) −
∣∣∣{α(t+1)k

∣∣∣α(t+1)k < 1
/
n, k = 1, . . . ,c(t)

}∣∣∣
(7)

where |{}| denotes the cardinality of the set {}. After
updating the number of clusters c, the remaining mixing
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proportion α∗k and corresponding z∗ik need to be
re-normalized by

α∗k = α
∗
k

/∑c(t+1)

s=1
α∗s (8)

z∗ik = z∗ik

/∑c(t+1)

s=1
z∗is (9)

We next concern about the parameter learning of γ and β
for the two terms of

∑n
i=1

∑c
k=1 zik lnαk and

∑c
k=1 αk lnαk .

Based on some increasingly learning rates of cluster
number with e−c

(t)/100, e−c
(t)/250, e−c

(t)/500, e−c
(t)/750, and

e−c
(t)/1000, it is seen that e−c

(t)/100 decreases faster, but
e−c

(t)/500, e−c
(t)/750 and e−c

(t)/1000 decreases slower. We sup-
pose that the parameter γ should not decrease too slow or too
fast, and so we set the parameter γ as

γ (t) = e−c
(t)/250 (10)

Under competition schema setting, the algorithm can auto-
matically reduce the number of clusters, and also simultane-
ously gets the estimates of parameters.

Furthermore, the parameter β can help us control the com-
petition. We discuss the variable β as follows. We first apply
the rule −e−1 ≤ αk lnαk < 0. If 0 < αk ≤ 1∀k , and let E =
c∑

s=1
αs lnαs < 0, then we have αkE = αk

c∑
s=1

αs lnαs < 0.

Thus, we obtain

−e−1β < βαk (lnαk −
c∑

s=1

αs lnαs) < β(−αkE) (11)

Under the constraint
∑c

k=1 αk = 1, and only when αk < 1/2,
we can have that (lnαk −

∑c
s=1 αs lnαs) < 0. To avoid the

situation where all αk ≤ 0, the left hand of inequality (14)
must be larger than −max{αk |αk < 1/2, k = 1, 2, · · · , c}.
We now have an elementary condition of β as follows:
−e−1β > −max{αk |αk < 1/2, k = 1, 2, · · · , c}. Thus,
we have Thus, we have β < max{αke|αk < 1/2, k =
1, 2, · · · , c} < e/2. Therefore, to prevent β from being too
big, we can use β ∈ [0, 1]. Furthermore, if the difference
between α(t+1)k and α(t)k is small, then β must become large
in order to enhance its competition. If the difference between
α
(t+1)
k and α(t)k is large, then β will become small to maintain

stability. Thus, we define an updating equation for β with

β =
∑c

k=1
exp{−ηn|α(t+1)k − α

(t)
k |}/c (12)

where η = min
{
1, 1/tbd/2−1c

}
and bac represents the largest

integer that is no more than a and t denotes the iteration
number in the algorithm.

On the other hand, we consider the inequations

max
1≤k≤c

α
(t+1)
k ≤ max

1≤k≤c

(
1
n

∑n
i=1 zik

)
+
β
γ

max
1≤k≤c

α
(t)
k

(
ln max

1≤k≤c
α
(t)
k −

∑c
s=1 α

(t)
s lnα(t)s

)

and

max
1≤k≤c

(
1
n

∑n
i=1 zik

)
+

β
γ

max
1≤k≤c

α
(t)
k

×

(
ln max

1≤k≤c
α
(t)
k −

∑c

s=1
α(t)s lnα(t)s

)
< max

1≤k≤c

(
1
n

∑n
i=1 zik

)
+β

(
−

(
max
1≤k≤c

α
(t)
k

∑c

s=1
α(t)s lnα(t)s

))
.

If

max
1≤k≤c

(
1
n

∑n
i=1 zik

)
− β max

1≤k≤c
α
(t)
k

∑c

s=1
α(t)s lnα(t)s ≤ 1,

then the restriction of max
1≤k≤c

α
(t+1)
k ≤ 1 is held, and then we

obtain

β ≤

(
1− max

1≤k≤c

(
1
n

∑n
i=1 zik

))/
(
− max

1≤k≤c
α
(t)
k

∑c

s=1
α(t)s lnα(t)s

)
(13)

According to Eqs. (12) and (13), we can get

β(t+1) = min


∑c

k=1 exp(−ηn
∣∣∣α(t+1)k − α

(t)
k

∣∣∣)
c

,

1− max
1≤k≤c

(
1
n

∑n
i=1 zik

)
(− max

1≤k≤c
α
(t)
k
∑c

k ′=1 lnα
(t)
k ′ )

 (14)

Because the β can jump at any time, we let β = 0 when
the cluster number c is stable. When the cluster number c
is stable, it means c is no longer decreasing. In our setting,
we use all data points as initial means with ak = xk , i.e.
cinitial = n, and we use αk = 1/cinitial,∀k = 1, 2, ..., cinitial

as initial mixing proportions. Thus, the proposed U-k-means
clustering algorithm can be summarized as follows:

U-k-means clustering algorithm
Step 1: Fix ε > 0. Give initial c(0) = n, α(0)k = 1/n, a(0)k =

xi, and initial learning rates γ (0) = β(0) = 1. Set
t = 0.

Step 2: Compute z(t+1)ik using a(t)k , α(t)k , c
(t), γ (t), β(t) by (4).

Step 3: Compute γ (t+1) by (10).
Step 4: Update α(t+1)k with z(t+1)ik and α(t)k by (6).
Step 5: Compute β(t+1) with α(t+1) and α(t) by (14).
Step 6: Update c(t) to c(t+1) by discard those clusters with

α
(t+1)
k ≤ 1/n and adjust α(t+1)k and z(t+1)ik by (8)

and (9).
IF t ≥ 60 and c(t−60) − c(t) = 0, THEN let β(t+1) =
0.

Step 7: Update a(t+1)k with c(t+1) and z(t+1)ik by (5).
Step 8: Compare a(t+1)k and a(t)k .

IF max
1≤k≤c(t)

∥∥∥a(t+1)k − a(t)k

∥∥∥ < ε, THEN Stop.

ELSE t = t+1 and return to Step 2.
Before we analyze the computational complexity for the

proposed U-k-means algorithm, we give a brief review
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of another clustering algorithm that had also used the
idea from the EM algorithm by Yang et al. [31]. This
is the robust-learning fuzzy c-means (RL-FCM) proposed
by Yang and Nataliani [33]. In Yang and Nataliani [33],
they gave the RL-FCM objective function J (U, α,A) =∑n

i=1
∑c

k=1 µik ‖xi − ak‖
2
− r1

∑n
i=1

∑c
k=1 µik lnαk +

r2
∑n

i=1
∑c

k=1 µik lnµik − r3n
∑c

k=1 αk lnαk with µik , not
binary variables, but fuzzy c-memberships with 0 ≤ µik ≤ 1
and

∑c
k=1 µik = 1 to indicate fuzzy memberships for the

data point xi belonging to k-th cluster. If we compare the
proposed U-k-means objective function JU−k−means(z,A, α)
with the RL-FCM objective function J (U, α,A), we find
that, except µik and zik with different membership represen-
tations, the RL-FCM objective function J (U, α,A) in Yang
and Nataliani [33] gave more extra terms and parameters
and so the RL-FCM algorithm is more complicated than the
proposed U-k-means algorithm with more running time. For
experimental results and comparisons in the next section,
we make more comparisons of the proposed U-k-means
algorithm with the RL-FCM algorithm. We also analyze
the computational complexity for the U-k-means algorithm.
In fact, the U-k-means algorithm can be divided into three
parts: (1) Compute the hard membership partition zik with
O (ncd); (2) Compute the mixing proportion αk with O (nc);
(3) Update the cluster center ak with O (n). The total compu-
tational complexity for the U-k-means algorithm is O (ncd),
where n is the number of data points, c is the number of
clusters, and d is the dimension of data points. Compared
with the RL-FCM algorithm [33], the RL-FCM has the total
computational complexity fwith O

(
nc2d

)
.

IV. EXPERIMENTAL RESULTS AND COMPARISONS
In this section we give some examples with numerical and
real data sets to demonstrate the performance of the proposed
U-k-means algorithm. We show these unsupervised learn-
ing behaviors to get the best number c∗ of clusters for the
U-k-means algorithm. Generally, most clustering algorithms,
including k-means, are employed to give different numbers
of clusters with associated cluster memberships, and then
these clustering results are evaluated by multiple validity
measures to determine the most practically plausible clus-
tering results with the estimated number of clusters [13].
Thus, we will first compare the U-k-means algorithm with
the seven validity indices, DNo [16], DNg [21], DNs [22],
Gap statistic (Gap-stat) [20], DB [17], SW [18] and CH [19].
Furthermore, the comparisons of the proposed U-k-means
with k-means [8], robust EM [31], clustering by fast search
(C-FS) [30], X-means [23], and RL-FCM [33] are also made.
For measuring clustering performance, we use an accuracy
rate (AR) with AR =

∑c
k=1 n (ck)/n, where n (ck) is the

number of data points that obtain correct clustering for the
cluster k and n is the total number of data points. The larger
AR is, the better clustering performance is.
Example 1: In this example, we use a data set of 400 data

points generated from the 2-variate 6-component Gaussian
mixture model f (x;α, θ) =

∑c
k=1 αk f (x; θk ) with

parameters αk = 1/6,∀k, µ1 =
(
5 2

)T
, µ2 =

(
3 4

)T
,

µ3 =
(
8 4

)T
, µ4 =

(
6 6

)T
, µ5 =

(
10 8

)T
, µ6 =(

7 10
)T , and ∑1 = · · · =

∑
6 =

(
0.4 0
0 0.4

)
with

2 dimensions and 6 clusters, as shown in Fig. 1(a). We imple-
ment the proposed U-k-means clustering algorithm for the
data set of Fig. 1(a) in which it obtains the correct number
c∗ = 6 of clusters with AR=1.00, as shown in Fig. 1(f),
after 11 iterations. These validity indices of CH, SW, DB,
Gap statistic, DNo, DNg, and DNs are shown in Table 1.
All indices give the correct number c∗ = 6 of clusters,
except DNg.

FIGURE 1. (a) Original data set; (b)-(e) Processes of the U-k-means
after 1, 2, 4, and 9; (f) Convergent results.

Moreover, we consider the data set with noisy points to
show the performance of the proposed U-k-means algorithm
under noisy environment. We add 50 uniformly noisy points
to the data set of Fig. 1(a), as shown in Fig. 2(a). By imple-
menting the U-k-means algorithm on the noisy data set of
Fig. 2(a), it still obtains the correct number c∗ = 6 of clusters
after 28 iterations with AR=1.00, as shown in Fig. 2(b).
These validity index values of CH, SW, DB, Gap-stat, DNo,
DNg, and DNs for the noisy data set of Fig. 2(a) are shown
in Table 2. The five validity indices of CH,DB,Gap-stat, DNo
and DNs give the correct number of clusters. But, SW and
DNg give the incorrect numbers of clusters.
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TABLE 1. Validity index values of CH, SW, DB, Gap-stat, DNo, DNg, and
DNs for the data set of Fig. 1(a).

FIGURE 2. 6-cluster dataset with 50 noisy points; (b) Final results from
U-k-means.

TABLE 2. Validity index values of CH, SW, DB, Gap-stat, DNo, DNg, and
DNs for the noisy data set.

Example 2: In this example, we consider a data set
of 800 data points generated from a 3-variate 14-component
Gaussian mixture with 800 data points with 3 dimensions
and 14 clusters, as shown in Fig. 3(a). To estimate the num-
ber c of clusters, we use CH, SW, DB, Gap-stat, DNo, DNg,
and DNs. To create the results of the seven validity indices,
we consider the k-means algorithm with 25 different initial-
izations. These estimated numbers of clusters from CH, SW,
DB, Gap statistic, DNo, DNg, and DNs with percentages are
shown in Table 3. It is seen that all validity indices can give
the correct number c∗ = 14 of clusters, except DNg, where
the Gap-stat index gives the highest percentage of the correct
number c∗ = 14 of clusters with 64%.We also implement the
proposedU-k-means for the data set, and then compare it with
the R-EM, C-FS, k-means with the true number of clusters,
X-means, and RL-FCM clustering algorithms. We mention
that U-k-means, R-EM, and RL-FCM are free of parameter
selection, but others are dependent on parameter selection for
finding the number of clusters. Table 4 shows the comparison

FIGURE 3. 14-cluster dataset; (b) Final results from U-k-means.

TABLE 3. Results of the seven validity indices.

results of the U-k-means, R-EM, C-FS, k-means with the true
cluster number c = 14, X-means, and RL-FCM algorithms.
Note that C-FS, k-means with the true number of clusters, and
X-means algorithms are dependent of initials or parameter
selection, and so we consider their average AR (AV-AR)
under different initials or parameter selection. From Table 4,
it is seen that the proposed U-k-means, R-EM, and RL-FCM
clustering algorithms are able to find the correct number of
clusters c∗ = 14 with AR=1.00. While C-FS obtained the
correct c∗ = 14 with 96% and AV-AR=0.9772. The k-means
with the true c gave AV-AR=0.8160. The X-means obtained
the correct c∗ = 14 with 76% and AV-AR=1.00. Note that the
numbers in parentheses indicate the percentage in obtaining
the correct number of clusters for clustering algorithms under
25 different initial values.
Example 3: To examine the effectiveness of the proposed

U-k-means for finding the number of clusters, we generate
a data set of 900 data points from a 20-variate 6-component
Gaussian mixture model. The mixing proportions, mean val-
ues and covariance matrices of the Gaussian mixture model
are listed in Table 5. The validity indices of CH, SW, DB,
Gap-stat, DNo, DNg, and DNs are used to estimate the
number c of clusters. The k-means algorithm with 25 differ-
ent initializations are considered to create the results of the
seven validity indices. These estimated numbers of clusters
from the seven validity indices with percentages are shown
in Table 6 where the parentheses are indicating the percent-
ages of validity indices in giving the correct number of clus-
ters under 25 different initial values. It is seen that CH, SW,
and Gap-stat give the correct number c∗ = 6 of clusters with
the highest percentage. We also implemented the U-k-means
and compare it with R-EM, C-FS, k-means with the true
number c, X-means, and RL-FCM algorithms. The obtained
numbers of clusters and ARs of these algorithms are shown
in Table 7. As it can be seen, the proposed U-k-means, C-FS
andX-means correctly find the number of clusters for the data
set. The R-EM and RL-FCM underestimate the number of
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TABLE 4. Results of U-k-means, R-EM, C-FS, k-means with the true c, X-means, and RL-FCM for the data set of Fig. 3(a).

TABLE 5. Mixing proportions, mean values and covariance matrices of Example 3.

TABLE 6. Results of the seven validity indices for the data set of Example 3.

TABLE 7. Results of U-k-means, R-EM, C-FS, k-means with the true c, X-means, RL-FCM for Example 3.

TABLE 8. Results of U-k-means, R-EM, C-FS, k-means with the true c, X-means, RL-FCM for Example 4.

clusters for the data set. Both U-k-means and X-means get
the best AR.
Example 4: In this example, we consider a synthetic data

set of non-spherical shape with 3000 data points, as shown
in Fig. 4(a). The U-k-means is implemented for this data
set with the clustering results as shown in Figs. 4(b)-4(f).
The U-k-means algorithm decreases the number of clus-
ters from 3000 to 2132 after the iteration is implemented
once. From Figs. 4(b)-4(f), it is seen that the U-k-means

algorithm exhibits fast decreasing for the number of clus-
ters. After 11 iterations, the U-k-means algorithm obtains
its convergent result with c∗ =9 and AR= 1.00, as shown
in Fig. 4(f). We next compare the proposed U-k-means algo-
rithm with R-EM, C-FS, k-means with true c, X-means, and
RL-FCM. All the experiments are performed 25 times with
parameter selection where the average AR results under the
correct number of cluster are reported in Table 8. As shown
in Table 8, U-k-means gives the correct number c∗ =9 of
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TABLE 9. Descriptions of the eight data sets used in Example 5.

FIGURE 4. (a) 9-diamonds data set; (b)-(e) Results of the U-k-means
after 1, 3, 5, and 7 iterations; (f) Final results of the U-k-means
after 11 iterations.

clusters with AR=1.00, followed by k-means with true c=9
achieves an average AR=0.9190 and C-FS with c∗ =9 (96%)
achieves averageAR=0.7641. While R-EMoverestimates the
number of clusters with c∗ =12, but X-means and RL-FCM
underestimate the number of clusters with c∗ =2.

We next consider real data sets. These data sets are from
the UCI Machine Learning Repository [34].

Example 5: In this example, we use the eight real data
sets from UCI Machine Learning Repository [34], known
as Iris, Seeds, Australian credit approval, Flowmeter D,
Sonar, Wine, Horse, and waveform (version 1). Detailed
information on these data sets such as feature characteristics,
the number c of classes, the number n of instances and the
number d of features is listed in Table 9. Since data features
in Seeds, Flowmeter D, Wine and Waveform (version 1) are
distributed in different ranges and data features in Australian
(credit approval) are mixed feature types, we first preprocess
data matrices using matrix factorization technique [35]. This
preprocessed technique can give these data in uniform to get
good quality clusters and improve accuracy rates of clustering
algorithms. Clustering results from the U-k-means, R-EM,
C-FS, k-means with the true c, k-means+Gap-stat, X-means,
and RL-FCM algorithms for different real data sets are shown
in Table 10, where the best results are presented in boldface.
It is seen that the proposed U-k-means gives the best result in
estimating the number c of clusters and accuracy rate among
them except for Australian data. The C-FS algorithm gives
the corrected numbers of clusters for Iris, Seeds, Australian,
Flowmeter D, Sonar, Wine, and Horse data sets while it
underestimates the number of clusters for the waveform data
set with c∗ =2. The X-means algorithm only obtains the
correct number of clusters for Seeds, Wine and Horse data
sets. The R-EM obtains the correct number of clusters for Iris
and Seeds data sets. The k-means+Gap-stat only obtains a
correct number of clusters for the Seed data set. The RL-FCM
algorithm obtains the correct number of clusters for the Iris,
Seeds and Waveform (version 1) data sets. Note that the
results in parentheses are the percentages of algorithms to
get the correct number c of clusters.
Example 6: In this example, we use the six medical

data sets from the UCI Machine Learning Repository [34],
known as SPECT, Parkinsons, WPBC, Colon, Lung and
Nci9. Detailed descriptions on these data sets with feature
characteristics, the number c of classes, the number n of
instances and the number d of features are listed in Table 11.
In this experiment, we first preprocess the SPECT, Parkinson,
WPBC, Colon, and Lung data sets using the matrix
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TABLE 10. Clustering results from various algorithms for different real data sets with the best results in boldface.

TABLE 11. Descriptions of the six medical data sets used in Example 6.

TABLE 12. Results from various algorithms for the six medical data sets with the best results in boldface.

factorization technique.We also conduct experiments to com-
pare the proposed U-k-means with R-EM, C-FS, k-means
with the true c, k-means+Gap-stat, X-means, and RL-FCM.
The results are shown in Table 12. For C-FS, k-means
with the true c, k-means+Gap-stat and X-means, we make
experiments with 25 different initializations, and report their
results with the average AR (AV-AR) and the percent-
ages of algorithms to get the correct number c of clusters,
as shown in Table 12. It is seen that the proposed U-k-means
gets the correct number of clusters for SPECT, Parkinsons,
WPBC, Colon, and Lung. While for the Nci9 data set,

the U-k-means algorithm gets the number of clusters with
c∗ = 8 which is very closed to the true c=9. In terms
of AR, the U-k-means algorithm significantly performs
much better than others. The R-EM algorithm estimates the
correct number of clusters on SPECT. However, it under-
estimates the number of clusters on Parkinsons, and over-
estimates the number of clusters on WPBC. We also
reported that the results of R-EM on Colon, Lung and
Nci9 data sets are missing because the probability of one
data point belonged to the kth class on these data sets
are known as illegitimate proportions at the first iteration.
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TABLE 13. Clustering results from various algorithms for different real data sets with the best results in boldface.

TABLE 14. Results of U-k-means, R-EM, C-FS, k-means with the true c, X-means, and RL-FCM for the 100 images sample of the CIFAR-10 data set.

The C-FS algorithm presents better than k-means+
Gap-stat and X-means. The RL-FCM algorithm estimates the
correct number of clusters c for the SPECT, Parkinsons, and
WPBC data sets. While RL-FCM overestimates the number
of clusters on Colon, Lung and Nci9 with c∗ =62, c∗ =9,
and c∗ =60, respectively.

FIGURE 5. Yale Face 32 × 32.

Example 7: In this example, we apply the U-k-means
clustering algorithm for Yale Face 32 × 32 data set,
as shown in Fig. 5. It has 165 grayscale images in GIF
format of 15 individuals [36]. There are 11 images per
subject with different facial expression or configuration:
center-light, with/glasses, happy, left-light, w/no glasses, nor-
mal, right-light, sad, sleepy, surprised, and wink. In the
experiment, we use 135 images of 165 grayscale images.

FIGURE 6. The 100 Images Sample of CIFAR-10.

The results from different algorithms are shown in Table 13.
From Table 13, although U-k-means cannot correctly esti-
mate the true number c=15 of clusters for the Yale face
data set, but it gives the number of clusters c∗ =16 in
which it is closed to the true c=15. The R-EM algo-
rithm is missing because the probability of one data point
belonged to the kth class on this data set are known as
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TABLE 15. Comparison of average running times (in seconds) of
U-k-means, R-EM, C-FS, k-means with the true c, and RL-FCM
for all data sets. The fastest running times are highlighted.

illegitimate proportions at the first iteration. The C-FS gives
c∗ =12 and X-means gives c∗ =2 or 3. The k- means clus-
tering with the true c=15 gives AV-AR=0.34, while RL-FCM
gives c∗ =2.
Example 8: In this example, we apply the U-k-means

clustering algorithm to the CIFAR-10 color images [37]. The
CIFAR-10 data set consists of 60000 32 × 32 color images
in 10 classes, i.e., each pixel is an RGB triplet of unsigned
bytes between 0 and 255. There are 50000 training images
and 10000 test images. Each red, green, and blue channel
value contains 1024 entries. The 10 classes in the data set
are airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. Specifically, we take the first 100 color
images (10 images per class) and training 40 multi-way from
CIFAR-10 60K images data set for our experiment. The
rest 59900 images as the retrieval database. Fig. 6 shows

the 100 images sample from the CIFAR-10 images data set.
The results for the number of clusters and AR are given
in Table 14. From Table 14, it is seen that the proposed
U-k-means and k-means with the true c=10 give better results
on the 100 images sample of the CIFAR-10 data set. The
U-k-means has the correct number c∗ =10 of clusters with
42.5% and AV-AR=0.28 and k-means with c=10 gives the
same AV-AR=0.28. For the C-FS, the percentage with the
correct number c∗ =10 of clusters is only 16.7% with AV-
AR=0.24. X-means underestimates the number of clusters
with c∗ =2. The results from R-EM and RL-FCM on this
data sets are missing because the probability of one data point
belonged to the kth class on these data sets are known as
illegitimate proportions at the first iteration.

We further analyze the performance of U-k-means,
R-EM, C-FS, and RL-FCM by comparing their average
running times of 25 runs for these algorithms, as shown
in Table 15. All algorithms are implemented in MATLAB
2017b. From Table 15, it is seen that the proposed U-k-means
is the fastest for all data sets among these algorithms, except
that the C-FS algorithm is the fastest for the Waveform data
set. Furthermore, in Section III, we had mentioned that the
proposed U-k-means objective function is simpler than the
RL-FCM objective function with saving running time. From
Table 15, it is seen that the proposed U-k-means algorithm is
actually running faster than the RL-FCM algorithm.

V. CONCLUSION
In this paper we propose a new schema with a learning
framework for the k-means clustering algorithm. We adopt
the merit of entropy-type penalty terms to construct a compe-
tition schema. The proposed U-k-means algorithm uses the
number of points as the initial number of clusters for solving
the initialization problem. During iterations, the U-k-means
algorithm will discard extra clusters, and then an optimal
number of clusters can be automatically found according to
the structure of data. The advantages of U-k-means are free
of initializations and parameters that also robust to different
cluster volumes and shapes with automatically finding the
number of clusters. The proposed U-k-means algorithm was
performed on several synthetic and real data sets and also
compared with most existing algorithms, such as R-EM,
C-FS, k-means with the true number c, k-means+gap, and
X-means algorithms. The results actually demonstrate the
superiority of the U-k-means clustering algorithm.
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